1
|
Chen K, Li WD, Li XQ. The role of m6A in angiogenesis and vascular diseases. iScience 2024; 27:110082. [PMID: 39055919 PMCID: PMC11269316 DOI: 10.1016/j.isci.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Angiogenesis, whether physiological or pathological, plays a pivotal role in various physiological and disease conditions. This intricate process relies on a complex and meticulously orchestrated signal transduction network that connects endothelial cells, their associated parietal cells (VSMCs and pericytes), and various other cell types, including immune cells. Given the significance of m6A and its connection to angiogenesis and vascular disease, researchers must adopt a comprehensive and ongoing approach to their investigations. This study aims to ascertain whether a common key mechanism of m6A exists in angiogenesis and vascular diseases and to elucidate the potential application of m6A in treating vascular diseases.
Collapse
Affiliation(s)
- Ke Chen
- Department of Vascular Surgery, The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Wen-Dong Li
- Department of Vascular Surgery, The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Su L, Li X, Mao X, Xu T, Zhang Y, Li S, Zhu X, Wang L, Yao D, Wang J, Huang X. Circ-Ntrk2 acts as a miR-296-5p sponge to activate the TGF-β1/p38 MAPK pathway and promote pulmonary hypertension and vascular remodelling. Respir Res 2023; 24:78. [PMID: 36915149 PMCID: PMC10012448 DOI: 10.1186/s12931-023-02385-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs), a novel class of non-coding RNAs, play an important regulatory role in pulmonary arterial hypertension (PAH); however, the specific mechanism is rarely studied. In this study, we aimed to discover functional circRNAs and investigate their effects and mechanisms in hypoxia-induced pulmonary vascular remodelling, a core pathological change in PAH. METHODS RNA sequencing was used to illustrate the expression profile of circRNAs in hypoxic PAH. Bioinformatics, Sanger sequencing, and quantitative real-time PCR were used to identify the ring-forming characteristics of RNA and analyse its expression. Then, we established a hypoxia-induced PAH mouse model to evaluate circRNA function in PAH by echocardiography and hemodynamic measurements. Moreover, microRNA target gene database screening, fluorescence in situ hybridisation, luciferase reporter gene detection, and western blotting were used to explore the mechanism of circRNAs. RESULTS RNA sequencing identified 432 differentially expressed circRNAs in mouse hypoxic lung tissues. Our results indicated that circ-Ntrk2 is a stable cytoplasmic circRNA derived from Ntrk2 mRNA and frequently upregulated in hypoxic lung tissue. We further found that circ-Ntrk2 sponges miR-296-5p and miR-296-5p can bind to the 3'-untranslated region of transforming growth factor-β1 (TGF-β1) mRNA, thereby attenuating TGF-β1 translation. Through gene knockout or exogenous expression, we demonstrated that circ-Ntrk2 could promote PAH and vascular remodelling. Moreover, we verified that miR-296-5p overexpression alleviated pulmonary vascular remodelling and improved PAH through the TGF-β1/p38 MAPK pathway. CONCLUSIONS We identified a new circRNA (circ-Ntrk2) and explored its function and mechanism in PAH, thereby establishing potential targets for the diagnosis and treatment of PAH. Furthermore, our study contributes to the understanding of circRNA in relation to PAH.
Collapse
Affiliation(s)
- Lihuang Su
- grid.414906.e0000 0004 1808 0918Division of Pulmonary Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Xiuchun Li
- grid.414906.e0000 0004 1808 0918Division of Pulmonary Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Xulong Mao
- grid.414906.e0000 0004 1808 0918Division of Pulmonary Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Tingting Xu
- grid.414906.e0000 0004 1808 0918Division of Pulmonary Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Yiying Zhang
- grid.414906.e0000 0004 1808 0918Division of Pulmonary Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Shini Li
- grid.414906.e0000 0004 1808 0918Division of Pulmonary Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Xiayan Zhu
- grid.414906.e0000 0004 1808 0918Division of Pulmonary Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Liangxing Wang
- grid.414906.e0000 0004 1808 0918Division of Pulmonary Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Dan Yao
- grid.414906.e0000 0004 1808 0918Division of Pulmonary Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Jian Wang
- grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000 Guangdong China
- grid.266100.30000 0001 2107 4242Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, La Jolla, San Diego, CA USA
| | - Xiaoying Huang
- grid.414906.e0000 0004 1808 0918Division of Pulmonary Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| |
Collapse
|
3
|
Xu SL, Liu J, Xu SY, Fan ZQ, Deng YS, Wei L, Xing XQ, Yang J. Circular RNAs Regulate Vascular Remodelling in Pulmonary Hypertension. DISEASE MARKERS 2022; 2022:4433627. [PMID: 36393967 PMCID: PMC9649318 DOI: 10.1155/2022/4433627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Circular RNAs (circRNAs) are a newly identified type of noncoding RNA molecule with a unique closed-loop structure. circRNAs are widely expressed in different tissues and developmental stages of many species, participating in many important pathophysiological processes and playing an important role in the occurrence and development of diseases. This article reviews the discovery, characteristics, formation, and biological function of circRNAs. The relationship between circRNAs and vascular remodelling, as well as the current status of research and potential application value in pulmonary hypertension (PH), is discussed to promote a better understanding of the role of circRNAs in PH. circRNAs are closely related to the remodelling of vascular endothelial cells and vascular smooth muscle cells. circRNAs have potential application prospects for in-depth research on the possible pathogenesis and mechanism of PH. Future research on the role of circRNAs in the pathogenesis and mechanism of PH will provide new insights and promote screening, diagnosis, prevention, and treatment of this disease.
Collapse
Affiliation(s)
- Shuang-Lan Xu
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming, 650021 Yunnan, China
| | - Jie Liu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shuang-Yan Xu
- Department of Dermatology, The People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi 653100, Yunnan, China
| | - Ze-Qin Fan
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming, 650021 Yunnan, China
| | - Yi-Shu Deng
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming, 650021 Yunnan, China
| | - Li Wei
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming, 650021 Yunnan, China
| | - Xi-Qian Xing
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming, 650021 Yunnan, China
| | - Jiao Yang
- First Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan, China
| |
Collapse
|
4
|
Huang C, Jiang Z, Du D, Zhang Z, Liu Y, Li Y. Hsa_circ_0016070/micro‐340‐5p Axis Accelerates Pulmonary Arterial Hypertension Progression by Upregulating TWIST1 Transcription Via TCF4/β‐Catenin Complex. J Am Heart Assoc 2022; 11:e024147. [PMID: 35861841 PMCID: PMC9707813 DOI: 10.1161/jaha.121.024147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background
Hypoxia is considered a major leading cause of pulmonary hypertension (PH). In this study, the roles and molecular mechanism of circ_0016070 in PH were studied.
Methods and Results
The expression of circ_0016070 in serum samples, human pulmonary artery smooth muscle cells and hypoxia/monocrotaline‐treated rats was determined by real‐time quantitative polymerase chain reaction. Cell viability, migration, and apoptosis were analyzed by Cell Counting Kit‐8, wound healing, flow cytometry, and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assays, respectively. The molecular interactions were validated using RNA immunoprecipitation, chromatin immunoprecipitation, and dual luciferase reporter assays. The levels of phenotype switch‐related proteins were evaluated by Western blot and immunohistochemistry. The pathological characteristics were assessed using hematoxylin and eosin staining. circ_0016070 was highly expressed in the serum samples, hypoxia‐induced pulmonary artery smooth muscle cells and pulmonary arterial tissues of PH rats. Downregulation of circ_0016070 ameliorated the excessive proliferation, migration, vascular remodeling, and phenotypic transformation but enhanced cell apoptosis in the PH rat model. In addition, micro (miR)‐340‐5p was verified as a direct target of circ_0016070 and negatively regulated TCF4 (transcription factor 4) expression. TCF4 formed a transcriptional complex with β‐catenin to activate TWIST1 (Twist family bHLH transcription factor 1) expression. Functional rescue experiments showed that neither miR‐340‐5p inhibition nor TWIST1 or TCF4 upregulation significantly impeded the biological roles of circ_0010670 silencing in PH.
Conclusions
These results uncovered a novel mechanism by which circ_0016070 play as a competing endogenouse RNA of miR‐340‐5p to aggravate PH progression by promoting TCF4/β‐catenin/TWIST1 complex, which may provide potential therapeutic targets for PH.
Collapse
Affiliation(s)
- Chun‐Xia Huang
- The Second School of Clinical Medicine Southern Medical University Guangzhou Guangdong Province China
| | - Zhi‐Xin Jiang
- Department of Cardiology 305 Hospital of PLA Beijing China
| | - Da‐Yong Du
- Department of Cardiology 305 Hospital of PLA Beijing China
| | - Zhi‐Min Zhang
- Shanxi Medical University Linfen Peoples’ Hospital Linfen Shanxi Province China
| | - Yang Liu
- Department of Cardiology 305 Hospital of PLA Beijing China
| | - Yun‐Tian Li
- The Second School of Clinical Medicine Southern Medical University Guangzhou Guangdong Province China
- Department of Cardiology 305 Hospital of PLA Beijing China
| |
Collapse
|
5
|
Deng L, Han X, Wang Z, Nie X, Bian J. The Landscape of Noncoding RNA in Pulmonary Hypertension. Biomolecules 2022; 12:biom12060796. [PMID: 35740920 PMCID: PMC9220981 DOI: 10.3390/biom12060796] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023] Open
Abstract
The transcriptome of pulmonary hypertension (PH) is complex and highly genetically heterogeneous, with noncoding RNA transcripts playing crucial roles. The majority of RNAs in the noncoding transcriptome are long noncoding RNAs (lncRNAs) with less circular RNAs (circRNAs), which are two characteristics gaining increasing attention in the forefront of RNA research field. These noncoding transcripts (especially lncRNAs and circRNAs) exert important regulatory functions in PH and emerge as potential disease biomarkers and therapeutic targets. Recent technological advancements have established great momentum for discovery and functional characterization of ncRNAs, which include broad transcriptome sequencing such as bulk RNA-sequence, single-cell and spatial transcriptomics, and RNA-protein/RNA interactions. In this review, we summarize the current research on the classification, biogenesis, and the biological functions and molecular mechanisms of these noncoding RNAs (ncRNAs) involved in the pulmonary vascular remodeling in PH. Furthermore, we highlight the utility and challenges of using these ncRNAs as biomarkers and therapeutics in PH.
Collapse
Affiliation(s)
- Lin Deng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (L.D.); (Z.W.)
| | - Xiaofeng Han
- Department of Diagnostic and Interventional Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China;
| | - Ziping Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (L.D.); (Z.W.)
| | - Xiaowei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, China
- Correspondence: (X.N.); (J.B.)
| | - Jinsong Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (L.D.); (Z.W.)
- Correspondence: (X.N.); (J.B.)
| |
Collapse
|
6
|
Su D, Huang Y, Liu D, Huang Y, Ye B, Qin S, Chen C, Pang Y. Bioinformatic analysis of dysregulated circular RNAs in pediatric pulmonary hypertension linked congenital heart disease. Transl Pediatr 2022; 11:715-727. [PMID: 35685074 PMCID: PMC9173884 DOI: 10.21037/tp-22-117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) may play important roles in the progression of pulmonary arterial hypertension. However, the potential roles they play in childhood pulmonary arterial hypertension associated congenital heart disease (CHD) progression remains unclear. METHODS Thirteen human plasma samples including eight from pulmonary arterial hypertension secondary to CHD patients and five from a control group were analyzed using the Arraystar Human circRNA array. The relative expression levels of five differentially expressed circRNAs in pulmonary arterial hypertension were detected using real-time polymerase chain reaction (PCR) analysis. In parallel, these levels were also taken on control samples from 32 CHD patients. We used miRanda and TargetScan software packages to predict potential microRNA (miRNA)targets, which were then combined into a circRNA-miRNA-messenger RNA (mRNA) network. RESULTS Twenty-seven circRNAs (three upregulated and 24 downregulated) were differentially expressed between the pulmonary arterial hypertension and control groups. Compared to control group levels, circ_003416 expression in the pulmonary arterial hypertension group was significantly downregulated, while circ_005372 expression, in contrast, was significantly upregulated. The differential expression of these circRNAs was mainly linked to variation in levels of oxidative phosphorylation and tight junction signaling. CONCLUSIONS We identified one overexpressed and one underexpressed circRNA in plasma samples from children with CHD associated pulmonary arterial hypertension. Bioinformatic analysis indicated these dysregulated circRNAs might be associated with the occurrence and regulation of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Danyan Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanyun Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongli Liu
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuqin Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bingbing Ye
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Suyuan Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cheng Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yusheng Pang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Hypoxia-Induced circRNAs in Human Diseases: From Mechanisms to Potential Applications. Cells 2022; 11:cells11091381. [PMID: 35563687 PMCID: PMC9105251 DOI: 10.3390/cells11091381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Circular RNAs (circRNAs) are a special class of endogenous RNAs characterized by closed loop structures lacking 5′ to 3′ polarity and polyadenylated tails. They are widely present in various organisms and are more stable and conserved than linear RNAs. Accumulating evidence indicates that circRNAs play important roles in physiology-related processes. Under pathological conditions, hypoxia usually worsens disease progression by manipulating the microenvironment for inflammation and invasion through various dysregulated biological molecules. Among them, circRNAs, which are involved in many human diseases, including cancer, are associated with the overexpression of hypoxia-inducible factors. However, the precise mechanisms of hypoxic regulation by circRNAs remain largely unknown. This review summarizes emerging evidence regarding the interplay between circRNAs and hypoxia in the pathophysiological changes of diverse human diseases, including cancer. Next, the impact of hypoxia-induced circRNAs on cancer progression, therapeutic resistance, angiogenesis, and energy metabolism will be discussed. Last, but not least, the potential application of circRNAs in the early detection, prognosis, and treatment of various diseases will be highlighted.
Collapse
|
8
|
hsa_circWDR37_016 Regulates Hypoxia-Induced Proliferation of Pulmonary Arterial Smooth Muscle Cells. Cardiovasc Ther 2022; 2022:7292034. [PMID: 35116078 PMCID: PMC8786516 DOI: 10.1155/2022/7292034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by abnormal remodeling of pulmonary vessel walls caused by excessive pulmonary arterial smooth muscle cell (PASMC) proliferation. Our previous clinical studies have demonstrated the importance of the downregulated circRNA in PAH. However, the role of upregulated circRNAs is still elusive. Here, we identified the upregulated circRNA in PAH patients, hsa_circWDR37_016 (circWDR37), as a key regulator of hypoxic proliferative disorder of pulmonary arterial smooth muscle cells (PASMCs). Quantitative real-time PCR (qRT-PCR) analysis validated that exposure to hypoxia markedly increased the circWDR37 level in cultured human PASMCs. As evidenced by flow cytometry, 5-ethynyl-2′-deoxyuridine (EdU) incorporation, wound healing, and Tunel assay, silencing of endogenous circWDR37 attenuated proliferation and cell-cycle progression in hypoxia-exposed human PASMCs in vitro. Furthermore, bioinformatics and Luciferase assay showed that circWDR37 directly sponged hsa-miR-138-5p (miR-138) and was involved in the immunoregulatory and inflammatory processes of PAH. Together, these studies suggested new insights into circRNA regulated the pathology of PAH, providing a new potential therapeutic target for PAH treatment.
Collapse
|
9
|
Gu LF, Chen JQ, Lin QY, Yang YZ. Roles of mitochondrial unfolded protein response in mammalian stem cells. World J Stem Cells 2021; 13:737-752. [PMID: 34367475 PMCID: PMC8316864 DOI: 10.4252/wjsc.v13.i7.737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress. Under physiological and pathological conditions, the UPRmt is the key to maintaining intracellular homeostasis and proteostasis. Important roles of the UPRmt have been demonstrated in a variety of cell types and in cell development, metabolism, and immune processes. UPRmt dysfunction leads to a variety of pathologies, including cancer, inflammation, neurodegenerative disease, metabolic disease, and immune disease. Stem cells have a special ability to self-renew and differentiate into a variety of somatic cells and have been shown to exist in a variety of tissues. These cells are involved in development, tissue renewal, and some disease processes. Although the roles and regulatory mechanisms of the UPRmt in somatic cells have been widely reported, the roles of the UPRmt in stem cells are not fully understood. The roles and functions of the UPRmt depend on stem cell type. Therefore, this paper summarizes the potential significance of the UPRmt in embryonic stem cells, tissue stem cells, tumor stem cells, and induced pluripotent stem cells. The purpose of this review is to provide new insights into stem cell differentiation and tumor pathogenesis.
Collapse
Affiliation(s)
- Li-Fang Gu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jia-Qi Chen
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Qing-Yin Lin
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yan-Zhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750001, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
10
|
Qin Y, Li L, Luo E, Hou J, Yan G, Wang D, Qiao Y, Tang C. Role of m6A RNA methylation in cardiovascular disease (Review). Int J Mol Med 2020; 46:1958-1972. [PMID: 33125109 PMCID: PMC7595665 DOI: 10.3892/ijmm.2020.4746] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent and abundant type of internal post-transcriptional RNA modification in eukaryotic cells. Multiple types of RNA, including mRNAs, rRNAs, tRNAs, long non-coding RNAs and microRNAs, are involved in m6A methylation. The biological function of m6A modification is dynamically and reversibly mediated by methyltransferases (writers), demethylases (erasers) and m6A binding proteins (readers). The methyltransferase complex is responsible for the catalyzation of m6A modification and is typically made up of methyltransferase-like (METTL)3, METTL14 and Wilms tumor 1-associated protein. Erasers remove methylation by fat mass and obesity-associated protein and ALKB homolog 5. Readers play a role through the recognition of m6A-modified targeted RNA. The YT521-B homology domain family, heterogeneous nuclear ribonucleoprotein and insulin-like growth factor 2 mRNA-binding protein serve as m6A readers. The m6A methylation on transcripts plays a pivotal role in the regulation of downstream molecular events and biological functions, such as RNA splicing, transport, stability and translatability at the post-transcriptional level. The dysregulation of m6A modification is associated with cancer, drug resistance, virus replication and the pluripotency of embryonic stem cells. Recently, a number of studies have identified aberrant m6A methylation in cardiovascular diseases (CVDs), including cardiac hypertrophy, heart failure, arterial aneurysm, vascular calcification and pulmonary hypertension. The aim of the present review article was to summarize the recent research progress on the role of m6A modification in CVD and give a brief perspective on its prospective applications in CVD.
Collapse
Affiliation(s)
- Yuhan Qin
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Linqing Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Erfei Luo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jiantong Hou
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
11
|
Jin X, Xu Y, Guo M, Sun Y, Ding J, Li L, Zheng X, Li S, Yuan D, Li SS. hsa_circNFXL1_009 modulates apoptosis, proliferation, migration, and potassium channel activation in pulmonary hypertension. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:1007-1019. [PMID: 33614247 PMCID: PMC7868929 DOI: 10.1016/j.omtn.2020.09.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022]
Abstract
In this study, we explored the circular RNA (circRNA) profile in pulmonary arterial hypertension (PAH) patients caused by chronic obstructive pulmonary disease (COPD) and the effects of hsa_circNFXL1_009 on abnormal proliferation, apoptosis, and migration of human pulmonary arterial smooth muscle cells (hPASMCs) driven by hypoxia. Using microarrays, we screened the circRNA profile in whole-blood samples from three pairs of subjects and found 158 dysregulated circRNAs in patients with PAH-COPD. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis further validated that hsa_circNFXL1_009 was dramatically downregulated with the highest area under a receiver operating characteristic curve (ROC) in 21 pairs of subjects. Consistently, exposure to hypoxia markedly reduced the hsa_circNFXL1_009 level in cultured hPASMCs. Delivery of exogenous hsa_circNFXL1_009 attenuated hypoxia-induced proliferation, apoptotic resistance, and migration of hPASMCs, as evidenced by immunocytochemistry, 5-ethynyl-2′-deoxyuridine incorporation, wound healing, and a TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling) assay. A luciferase assay showed that hsa_circNFXL1_009 directly sponged hsa-miR-29b-2-5p (miR-29b) and positively regulated the expression of voltage-gated potassium (K+) channel subfamily B member 1 (KCNB1) at the mRNA level. Using patch-clamp electrophysiology, we proved that overexpression of hsa_circNFXL1_009 promoted a whole-cell K+ current in hPASMCs. Taken together, these studies identify hsa_circNFXL1_009 as a key regulator of PAH, and it may be used as a potential therapeutic target for the treatment of PAH.
Collapse
Affiliation(s)
- Xin Jin
- School of Medicine, Nankai University, Tianjin, China
| | - Yuanyuan Xu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Min Guo
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yushuang Sun
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Junzhu Ding
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lu Li
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaodong Zheng
- Department of Genetics and Cell Biology, Harbin Medical University-Daqing, Daqing, China
| | - Shuzhen Li
- Department of Immunology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Dandan Yuan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan-Shan Li
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Disease-Associated Circular RNAs: From Biology to Computational Identification. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6798590. [PMID: 32908906 PMCID: PMC7450300 DOI: 10.1155/2020/6798590] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are endogenous RNAs with a covalently closed continuous loop, generated through various backsplicing events of pre-mRNA. An accumulating number of studies have shown that circRNAs are potential biomarkers for major human diseases such as cancer and Alzheimer's disease. Thus, identification and prediction of human disease-associated circRNAs are of significant importance. To this end, a computational analysis-assisted strategy is indispensable to detect, verify, and quantify circRNAs for downstream applications. In this review, we briefly introduce the biology of circRNAs, including the biogenesis, characteristics, and biological functions. In addition, we outline about 30 recent bioinformatic analysis tools that are publicly available for circRNA study. Principles for applying these computational strategies and considerations will be briefly discussed. Lastly, we give a complete survey on more than 20 key computational databases that are frequently used. To our knowledge, this is the most complete and updated summary on publicly available circRNA resources. In conclusion, this review summarizes key aspects of circRNA biology and outlines key computational strategies that will facilitate the genome-wide identification and prediction of circRNAs.
Collapse
|
13
|
Yuan C, Gu J, Wu J, Yin J, Zhang M, Miao H, Li J. Circular RNA expression in the lungs of a mouse model of sepsis induced by cecal ligation and puncture. Heliyon 2020; 6:e04532. [PMID: 32760833 PMCID: PMC7393531 DOI: 10.1016/j.heliyon.2020.e04532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/23/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022] Open
Abstract
Circular RNAs (circRNAs) are novel endogenous RNAs with vital roles in the pathology of various diseases. However, their role in sepsis-induced lung injury is unknown. In this study, high-throughput gene sequencing was used to analyze the expression profiles of circRNAs in lung specimens of mice grouped by acute lung injury induced by cecal ligation and puncture (CLP) and sham. To identify differentially expressed circRNAs, the left lungs of sham (n = 3) and CLP (n = 3) mice were used for high-throughput sequencing. A total of 919 circRNAs were identified. Of these, 38 circRNAs showed significantly different expression levels between the groups (P < 0.05, fold change ≥2). The levels of 20 circRNAs were up-regulated and those of 18 others were down-regulated. In bioinformatics analysis of the source genes of these circRNAs, the genes were closely associated with the inflammatory response (e.g., the TGF-β, MAPK, Fc gamma R-mediated phagocytic, and VEGF pathways). Eight circRNAs with large intergroup differences, small intragroup differences, and high expression were selected for further validation by qRT-PCR. Two of the eight were significantly different. These two circRNAs were annotated with circRNA/miRNA interaction information downloaded from the TargetScan and miRanda databases and visualized. Our results provide novel insights into the roles of circRNAs in sepsis-induced acute lung injury.
Collapse
Affiliation(s)
- Caiyun Yuan
- Department of Pediatrics, Nantong Maternal and Child Health Care Hospital, Nantong, China
| | - Jie Gu
- Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhuan Wu
- Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiangwen Yin
- Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mengjie Zhang
- Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjun Miao
- Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Emergency Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Zhang JR, Sun HJ. LncRNAs and circular RNAs as endothelial cell messengers in hypertension: mechanism insights and therapeutic potential. Mol Biol Rep 2020; 47:5535-5547. [PMID: 32567025 DOI: 10.1007/s11033-020-05601-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Endothelial cells are major constituents in the vasculature, and they act as important players in vascular homeostasis via secretion/release of vasodilators and vasoconstrictors. In healthy arteries, endothelial cells play a key role in the regulation of vascular tone, cellular adhesion, and angiogenesis. A shift in the functions of the blood vessels toward vasoconstriction, proinflammatory state, oxidative stress and deficiency of nitric oxide (NO) might lead to endothelial dysfunction, a key event implicated in the pathophysiology of cardiovascular metabolic diseases, including diabetes, atherosclerosis, arterial hypertension and pulmonary arterial hypertension (PAH). Thus, reversibility of endothelial dysfunction may be beneficial for maintaining vascular homeostasis. In recent years, accumulative evidence has documented that noncoding RNAs (ncRNAs) are critically involved in endothelial homeostasis. Specifically, long noncoding RNAs (lncRNAs) and circular RNAs are highly expressed in endothelial cells where they serve as important mediators in normal endothelial functions. Dysregulation of lncRNAs and circular RNAs has been tightly associated with hypertension-related endothelial dysfunction. In this review, we will summarize the current progression and underlying mechanisms of lncRNA and circular RNA in endothelial cell biology under hypertensive conditions. We will also highlight their potential as biomarkers or therapeutic targets for hypertension and its associated endothelial dysfunction.
Collapse
Affiliation(s)
- Ji-Ru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Wuxi, 214062, People's Republic of China
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China. .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
15
|
Zhang H, Brown RD, Stenmark KR, Hu CJ. RNA-Binding Proteins in Pulmonary Hypertension. Int J Mol Sci 2020; 21:ijms21113757. [PMID: 32466553 PMCID: PMC7312837 DOI: 10.3390/ijms21113757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by significant vascular remodeling and aberrant expression of genes involved in inflammation, apoptosis resistance, proliferation, and metabolism. Effective therapeutic strategies are limited, as mechanisms underlying PH pathophysiology, especially abnormal expression of genes, remain unclear. Most PH studies on gene expression have focused on gene transcription. However, post-transcriptional alterations have been shown to play a critical role in inflammation and metabolic changes in diseases such as cancer and systemic cardiovascular diseases. In these diseases, RNA-binding proteins (RBPs) have been recognized as important regulators of aberrant gene expression via post-transcriptional regulation; however, their role in PH is less clear. Identifying RBPs in PH is of great importance to better understand PH pathophysiology and to identify new targets for PH treatment. In this manuscript, we review the current knowledge on the role of dysregulated RBPs in abnormal mRNA gene expression as well as aberrant non-coding RNA processing and expression (e.g., miRNAs) in PH.
Collapse
Affiliation(s)
- Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - R. Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - Cheng-Jun Hu
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
- Department of Craniofacial Biology School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-4576; Fax: +1-303-724-4580
| |
Collapse
|
16
|
Su H, Wang G, Wu L, Ma X, Ying K, Zhang R. Transcriptome-wide map of m 6A circRNAs identified in a rat model of hypoxia mediated pulmonary hypertension. BMC Genomics 2020; 21:39. [PMID: 31931709 PMCID: PMC6958941 DOI: 10.1186/s12864-020-6462-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hypoxia mediated pulmonary hypertension (HPH) is a lethal disease and lacks effective therapy. CircRNAs play significant roles in physiological process. Recently, circRNAs are found to be m6A-modified. The abundance of circRNAs was influenced by m6A. Furthermore, the significance of m6A circRNAs has not been elucidated in HPH yet. Here we aim to investigate the transcriptome-wide map of m6A circRNAs in HPH. RESULTS Differentially expressed m6A abundance was detected in lungs of HPH rats. M6A abundance in circRNAs was significantly reduced in hypoxia in vitro. M6A circRNAs were mainly from protein-coding genes spanned single exons in control and HPH groups. Moreover, m6A influenced the circRNA-miRNA-mRNA co-expression network in hypoxia. M6A circXpo6 and m6A circTmtc3 were firstly identified to be downregulated in HPH. CONCLUSION Our study firstly identified the transcriptome-wide map of m6A circRNAs in HPH. M6A can influence circRNA-miRNA-mRNA network. Furthermore, we firstly identified two HPH-associated m6A circRNAs: circXpo6 and circTmtc3. However, the clinical significance of m6A circRNAs for HPH should be further validated.
Collapse
Affiliation(s)
- Hua Su
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, China
| | - Guowen Wang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, China
| | - Lingfang Wu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, China
| | - Xiuqing Ma
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, China
| | - Kejing Ying
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, China
| | - Ruifeng Zhang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, China
| |
Collapse
|
17
|
Yang L, Liang H, Meng X, Shen L, Guan Z, Hei B, Yu H, Qi S, Wen X. mmu_circ_0000790 Is Involved in Pulmonary Vascular Remodeling in Mice with HPH via MicroRNA-374c-Mediated FOXC1. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:292-307. [PMID: 32199127 PMCID: PMC7082500 DOI: 10.1016/j.omtn.2019.12.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023]
Abstract
Recently, the identification of several circular RNAs (circRNAs) as vital regulators of microRNAs (miRNAs) underlines the increasing complexity of non-coding RNA (ncRNA)-mediated regulatory networks. This study aimed to explore the effects of mmu_circ_0000790 on the biological behaviors of pulmonary artery smooth muscle cells (PASMCs) in hypoxic pulmonary hypertension (HPH). The HPH mouse model and hypoxia-induced PASMC model were initially established, and the expression of mmu_circ_0000790 in the pulmonary vascular tissues and hypoxic PASMCs was determined using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). A series of in vitro experiments such as dual-luciferase, RNA pull-down, and RNA-binding protein immunoprecipitation (RIP) assays were conducted to evaluate the interactions among mmu_circ_0000790, microRNA-374c (miR-374c), and forkhead transcription factor 1 (FOXC1). The potential physiological functions of mmu_circ_0000790, miR-374c, and FOXC1 in hypoxic PASMCs were investigated through gain- and loss-of function approaches. Upregulated mmu_circ_0000790 was found in both the HPH-pulmonary vascular tissues and hypoxic PASMCs. Additionally, mmu_circ_0000790 could competitively bind to miR-374c and consequently upregulate the target gene of miR-374c, FOXC1. It was also observed that mmu_circ_0000790 induced proliferation and inhibited apoptosis of hypoxic PASMCs, which further promoted the pulmonary vascular remodeling in mice with HPH. Therefore, we speculate that mmu_circ_0000790 may serve as a prospective target for the treatment of patients with HPH.
Collapse
Affiliation(s)
- Lei Yang
- ICU, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, P.R. China.
| | - Huan Liang
- ICU, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, P.R. China
| | - Xianguo Meng
- ICU, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, P.R. China
| | - Li Shen
- Glorious Community, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, P.R. China
| | - Zhanjiang Guan
- ICU, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, P.R. China
| | - Bingchang Hei
- ICU, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, P.R. China
| | - Haitao Yu
- ICU, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, P.R. China
| | - Shanshan Qi
- ICU, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, P.R. China
| | - Xianchun Wen
- Institute of Medical Science, Qiqihar Medical College, Qiqihar 161002, P.R. China.
| |
Collapse
|
18
|
Zhang Y, Chen Y, Yao H, Lie Z, Chen G, Tan H, Zhou Y. Elevated serum circ_0068481 levels as a potential diagnostic and prognostic indicator in idiopathic pulmonary arterial hypertension. Pulm Circ 2019; 9:2045894019888416. [PMID: 31827769 PMCID: PMC6886280 DOI: 10.1177/2045894019888416] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs have continuous, stable, and covalently closed circular structures and are not easily degraded by nucleases, thus they are ideal serum biomarkers for detecting diseases. However, research is still lacking on circular RNAs as diagnostic and prognostic markers for idiopathic pulmonary arterial hypertension. This study investigated the potential role of serum circ_0068481 levels in idiopathic pulmonary arterial hypertension diagnosis and prognosis. This prospective cohort study enrolled 82 patients with idiopathic pulmonary arterial hypertension between January 2016 and July 2018 at Guangdong Provincial People's Hospital. Serum circ_0068481 levels were measured using quantitative reverse transcription-polymerase chain reaction. Baseline data, including clinical background, hemodynamic variables, and biochemical variables, were collected. Receiver operating characteristic curves were used to investigate diagnostic effect, the Kaplan-Meier method was used to estimate survival rates, and univariate analysis of prognostic factors was performed with a Cox proportional hazard model. We found that serum circ_0068481 expression levels were significantly higher in patients with idiopathic pulmonary arterial hypertension and had higher sensitivity and specificity for predicting idiopathic pulmonary arterial hypertension. Additionally, we found that circ_0068481 expression correlated significantly with heart function, 6-min walk distance, serum N-terminal pro-B-type natriuretic peptide, serum H2S, the 6th World Symposium on Pulmonary Hypertension risk stratification, right heart failure, and patient death. Moreover, serum circ_0068481 levels were elevated in patients with idiopathic pulmonary arterial hypertension and right heart failure and were able to predict right heart failure. Serum circ_0068481 levels were also elevated in patients who died with idiopathic pulmonary arterial hypertension and were able to predict poorer clinical outcomes. Circ_0068481 is a novel and noninvasive biomarker for diagnosing idiopathic pulmonary arterial hypertension and predicting poor clinical outcome in patients with idiopathic pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial People's Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai, P.R. China
| | - Yongbin Chen
- Department of cardiac surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Hua Yao
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Zhenbang Lie
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Guo Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Hong Tan
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Yingling Zhou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial People's Hospital Zhuhai Hospital (Zhuhai Golden Bay Center Hospital), Zhuhai, P.R. China
| |
Collapse
|
19
|
Shen YQ, Pan JJ, Sun ZY, Chen XQ, Zhou XG, Zhou XY, Cheng R, Yang Y. Differential expression of circRNAs during rat lung development. Int J Mol Med 2019; 44:1399-1413. [PMID: 31432143 PMCID: PMC6713411 DOI: 10.3892/ijmm.2019.4299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
At present, thousands of circular RNAs (circRNAs) have been found in cancer and various tissues from different species. However, the expression of circRNAs during rat lung development remains largely unknown. In the present study, circRNA expression profiles were screened in three mixed rat lung tissues at 3 time-points [embryonic day (E) 19, E21 and post-natal (P) day 3] during fetal rat development with circRNA high-throughput sequencing. Preliminary results were verified by reverse transcription-PCR (RT-PCR) at 4 time-points (E16, E19, E21 and P3). A total of 375 circRNAs were differently expressed in E19 vs. E21 (fold change ≥1.5; P<0.05). At the same time, a total of 358 circRNAs were differently expressed in E21 vs. P3 (fold change ≥1.5; P<0.05). A total of 3 circRNAs (rno_circ:chr7:24777879-24784993, r n o _c i r c:c h r14:14 62 0 910 −14 62 49 33 a n d r n o _circ:chr3:1988750- 1998592) were characterized by having consistent fold changes (≥1.5) between 3 time-points (E19, E21 and P3) and were selected for RT-PCR at 4 time-points (E16, E19, E21 and P3). Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of parent genes of the differentially expressed circRNAs revealed that these circRNAs may serve important roles in lung development. The present results support that these new found circRNAs participate in lung development. Furthermore, these findings may help to clarify the physiopathological mechanism of normal rat lung development, and may further provide a physiopatho-logical basis of lung developmental diseases.
Collapse
Affiliation(s)
- Yan-Qing Shen
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jing-Jing Pan
- Department of Pediatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhong-Yi Sun
- Department of Pediatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Qing Chen
- Department of Pediatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Guang Zhou
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao-Yu Zhou
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Rui Cheng
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Yang Yang
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
20
|
Wang J, Zhu M, Pan J, Chen C, Xia S, Song Y. Circular RNAs: a rising star in respiratory diseases. Respir Res 2019; 20:3. [PMID: 30611252 PMCID: PMC6321672 DOI: 10.1186/s12931-018-0962-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/11/2018] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (CircRNAs), as a new class of non-coding RNA molecules that, unlike linear RNAs, have covalently closed loop structures from the ligation of exons, introns, or both. CircRNAs are widely expressed in various organisms in a specie-, tissue-, disease- and developmental stage-specific manner, and have been demonstrated to play a vital role in the pathogenesis and progression of human diseases. An increasing number of recent studies has revealed that circRNAs are intensively associated with different respiratory diseases, including lung cancer, acute respiratory distress syndrome, pulmonary hypertension, pulmonary tuberculosis, and silicosis. However, to the best of our knowledge, there has been no systematic review of studies on the role of circRNAs in respiratory diseases. In this review, we elaborate on the biogenesis, functions, and identification of circRNAs and focus particularly on the potential implications of circRNAs in respiratory diseases.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Mengchan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Department of Infectious Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jue Pan
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, 221 West Yan An Road, Shanghai, 200040, China.
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|