1
|
Bobkova NV, Chuvakova LN, Kovalev VI, Zhdanova DY, Chaplygina AV, Rezvykh AP, Evgen'ev MB. A Mouse Model of Sporadic Alzheimer's Disease with Elements of Major Depression. Mol Neurobiol 2025; 62:1337-1358. [PMID: 38980563 DOI: 10.1007/s12035-024-04346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
After olfactory bulbectomy, animals are often used as a model of major depression or sporadic Alzheimer's disease and, hence, the status of this model is still disputable. To elucidate the nature of alterations in the expression of the genome after the operation, we analyzed transcriptomes of the cortex, hippocampus, and cerebellum of the olfactory bulbectomized (OBX) mice. Analysis of the functional significance of genes in the brain of OBX mice indicates that the balance of the GABA/glutamatergic systems is disturbed with hyperactivation of the latter in the hippocampus, leading to the development of excitotoxicity and induction of apoptosis in the background of severe mitochondrial dysfunction and astrogliosis. On top of this, the synthesis of neurotrophic factors decreases leading to the disruption of the cytoskeleton of neurons, an increase in the level of intracellular calcium, and the activation of tau protein hyperphosphorylation. Moreover, the acetylcholinergic system is deficient in the background of the hyperactivation of acetylcholinesterase. Importantly, the activity of the dopaminergic, endorphin, and opiate systems in OBX mice decreases, leading to hormonal dysfunction. On the other hand, genes responsible for the regulation of circadian rhythms, cell migration, and innate immunity are activated in OBX animals. All this takes place in the background of a drastic downregulation of ribosomal protein genes in the brain. The obtained results indicate that OBX mice represent a model of Alzheimer's disease with elements of major depression.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - L N Chuvakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - V I Kovalev
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - D Y Zhdanova
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - A V Chaplygina
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - A P Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
| |
Collapse
|
2
|
Gomez-Pinilla F, Thapak P. Exercise epigenetics is fueled by cell bioenergetics: Supporting role on brain plasticity and cognition. Free Radic Biol Med 2024; 220:43-55. [PMID: 38677488 PMCID: PMC11144461 DOI: 10.1016/j.freeradbiomed.2024.04.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Exercise has the unique aptitude to benefit overall health of body and brain. Evidence indicates that the effects of exercise can be saved in the epigenome for considerable time to elevate the threshold for various diseases. The action of exercise on epigenetic regulation seems central to building an "epigenetic memory" to influence long-term brain function and behavior. As an intrinsic bioenergetic process, exercise engages the function of the mitochondria and redox pathways to impinge upon molecular mechanisms that regulate synaptic plasticity and learning and memory. We discuss how the action of exercise uses mechanisms of bioenergetics to support a "epigenetic memory" with long-term implications for neural and behavioral plasticity. This information is crucial for directing the power of exercise to reduce the burden of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
3
|
曾 玉, 贾 金, 卢 洁, 曾 诚, 耿 红, 陈 颐. [Estrogen, estrogen receptor and miR-21 in adenomyosis: their pathogenic roles and regulatory interactions]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:627-635. [PMID: 38708494 PMCID: PMC11073943 DOI: 10.12122/j.issn.1673-4254.2024.04.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To explore the pathogenic roles of miR-21, estrogen (E2), and estrogen receptor (ER) in adenomyosis. METHODS We examined the expression levels of miR-21 in specimens of adenomyotic tissue and benign cervical lesions using qRT-PCR. In primary cultures of cells isolated from the adenomyosis lesions, the effect of ICI82780 (an ER inhibitor) on miR-21 expression levels prior to E2 activation or after E2 deprivation were examined with qRT-PCR. We further assessed the effects of a miR-21 mimic or an inhibitor on proliferation, apoptosis, migration and autophagy of the cells. RESULTS The expression level of miR-21 was significantly higher in adenomyosis tissues than in normal myometrium (P < 0.05). In the cells isolated from adenomyosis lesions, miR-21 expression level was significantly higher in E2 activation group than in ER inhibition + E2 activation group and the control group (P < 0.05); miR-21 expression level was significantly lower in cells in E2 deprivation+ER inhibition group than in E2 deprivation group and the control group (P < 0.05). The adenomyosis cells transfected with miR-21 inhibitor showed inhibited proliferation and migration, expansion of mitochondrial endoplasmic reticulum, increased lysosomes, presence of autophagosomes, and increased cell apoptosis, while transfection of the cells with the miR-21 mimic produced the opposite effects. CONCLUSION MiR-21 plays an important role in promoting proliferation, migration, and antiapoptosis in adenomyosis cells by altering the cell ultrastructure, which may contribute to early pathogenesis of the disease. In addition to binding with E2, ER can also regulate miR-21 through other pathways to participate in the pathogenesis of adenomyosis, thus having a stronger regulatory effect on miR-21 than E2.
Collapse
Affiliation(s)
- 玉燕 曾
- 广州中医药大学第二附属医院妇科,广东 广州 510120Department of Gynecology, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - 金金 贾
- 广州中医药大学第一附属医院妇科,广东 广州 510405Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - 洁 卢
- 广州中医药大学第二附属医院妇科,广东 广州 510120Department of Gynecology, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - 诚 曾
- 广州中医药大学第一附属医院妇科,广东 广州 510405Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - 红玲 耿
- 广州中医药大学第二附属医院妇科,广东 广州 510120Department of Gynecology, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - 颐 陈
- 广州中医药大学第二附属医院妇科,广东 广州 510120Department of Gynecology, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
4
|
Huang Y, Abdelgawad A, Turchinovich A, Queen S, Abreu CM, Zhu X, Batish M, Zheng L, Witwer KW. RNA landscapes of brain tissue and brain tissue-derived extracellular vesicles in simian immunodeficiency virus (SIV) infection and SIV-related central nervous system pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535193. [PMID: 37034720 PMCID: PMC10081316 DOI: 10.1101/2023.04.01.535193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Introduction Antiretroviral treatment regimens can effectively control HIV replication and some aspects of disease progression. However, molecular events in end-organ diseases such as central nervous system (CNS) disease are not yet fully understood, and routine eradication of latent reservoirs is not yet in reach. Brain tissue-derived extracellular vesicles (bdEVs) act locally in the source tissue and may indicate molecular mechanisms in HIV CNS pathology. Regulatory RNAs from EVs have emerged as important participants in HIV disease pathogenesis. Using brain tissue and bdEVs from the simian immunodeficiency virus (SIV) model of HIV disease, we profiled messenger RNAs (mRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), seeking to identify possible networks of RNA interaction in SIV infection and neuroinflammation. Methods Postmortem occipital cortex tissue were collected from pigtailed macaques: uninfected controls and SIV-infected subjects (acute phase and chronic phase with or without CNS pathology). bdEVs were separated and characterized in accordance with international consensus standards. RNAs from bdEVs and source tissue were used for sequencing and qPCR to detect mRNA, miRNA, and circRNA levels. Results Multiple dysregulated bdEV RNAs, including mRNAs, miRNAs, and circRNAs, were identified in acute infection and chronic infection with pathology. Most dysregulated mRNAs in bdEVs reflected dysregulation in their source tissues. These mRNAs are disproportionately involved in inflammation and immune responses, especially interferon pathways. For miRNAs, qPCR assays confirmed differential abundance of miR-19a-3p, let-7a-5p, and miR-29a-3p (acute SIV infection), and miR-146a-5p and miR-449a-5p (chronic with pathology) in bdEVs. In addition, target prediction suggested that several circRNAs that were differentially abundant in source tissue might be responsible for specific differences in small RNA levels in bdEVs during SIV infection. Conclusions RNA profiling of bdEVs and source tissues reveals potential regulatory networks in SIV infection and SIV-related CNS pathology.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ahmed Abdelgawad
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Andrey Turchinovich
- Division of Cancer Genome Research, German Cancer Research Center DKFZ, Heidelberg, Germany
- Heidelberg Biolabs GmbH, Mannheim, Germany
| | - Suzanne Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Celina Monteiro Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xianming Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Noureddine S, Nie J, Schneider A, Menon V, Fliesen Z, Dhahbi J, Victoria B, Oyer J, Robles-Carrillo L, Nunes ADDC, Ashiqueali S, Janusz A, Copik A, Robbins PD, Musi N, Masternak MM. microRNA-449a reduces growth hormone-stimulated senescent cell burden through PI3K-mTOR signaling. Proc Natl Acad Sci U S A 2023; 120:e2213207120. [PMID: 36976763 PMCID: PMC10083567 DOI: 10.1073/pnas.2213207120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/05/2023] [Indexed: 03/29/2023] Open
Abstract
Cellular senescence, a hallmark of aging, has been implicated in the pathogenesis of many major age-related disorders, including neurodegeneration, atherosclerosis, and metabolic disease. Therefore, investigating novel methods to reduce or delay the accumulation of senescent cells during aging may attenuate age-related pathologies. microRNA-449a-5p (miR-449a) is a small, noncoding RNA down-regulated with age in normal mice but maintained in long-living growth hormone (GH)-deficient Ames Dwarf (df/df) mice. We found increased fibroadipogenic precursor cells, adipose-derived stem cells, and miR-449a levels in visceral adipose tissue of long-living df/df mice. Gene target analysis and our functional study with miR-449a-5p have revealed its potential as a serotherapeutic. Here, we test the hypothesis that miR-449a reduces cellular senescence by targeting senescence-associated genes induced in response to strong mitogenic signals and other damaging stimuli. We demonstrated that GH downregulates miR-449a expression and accelerates senescence while miR-449a upregulation using mimetics reduces senescence, primarily through targeted reduction of p16Ink4a, p21Cip1, and the PI3K-mTOR signaling pathway. Our results demonstrate that miR-449a is important in modulating key signaling pathways that control cellular senescence and the progression of age-related pathologies.
Collapse
Affiliation(s)
- Sarah Noureddine
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
| | - Jia Nie
- Sam and Ann Barshop Insititute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX78229
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, 96010-610Pelotas, Brazil
| | - Vinal Menon
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN55455
| | - Zoubeida Fliesen
- Department of Medical Education, School of Medicine, California University of Science & Medicine, Colton, CA92324
| | - Joseph Dhahbi
- Department of Medical Education, School of Medicine, California University of Science & Medicine, Colton, CA92324
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
| | - Jeremiah Oyer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
| | - Liza Robles-Carrillo
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
| | - Allancer Divino De Carvalho Nunes
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN55455
| | - Sarah Ashiqueali
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
| | - Artur Janusz
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
- Celon Pharma Innovative Drugs Research & Development Department, Celon Pharma S.A., 05-152Kazun Nowy, Poland
| | - Alicja Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN55455
| | - Nicolas Musi
- Sam and Ann Barshop Insititute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX78229
- San Antonio Geriatric Research Education and Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX78229
- Department of Medicine, Cedars Sinai Medical Center, LA90048
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32827
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, 60-355Poznan, Poland
| |
Collapse
|
6
|
Reduced Expression of Voltage-Gated Sodium Channel Beta 2 Restores Neuronal Injury and Improves Cognitive Dysfunction Induced by A β1-42. Neural Plast 2022; 2022:3995227. [PMID: 36406589 PMCID: PMC9671742 DOI: 10.1155/2022/3995227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Voltage-gated sodium channel beta 2 (Nav2.2 or Navβ2, coded by SCN2B mRNA), a gene involved in maintaining normal physiological functions of the prefrontal cortex and hippocampus, might be associated with prefrontal cortex aging and memory decline. This study investigated the effects of Navβ2 in amyloid-β 1-42- (Aβ1-42-) induced neural injury model and the potential underlying molecular mechanism. The results showed that Navβ2 knockdown restored neuronal viability of Aβ1-42-induced injury in neurons; increased the contents of brain-derived neurotrophic factor (BDNF), enzyme neprilysin (NEP) protein, and NEP enzyme activity; and effectively altered the proportions of the amyloid precursor protein (APP) metabolites including Aβ42, sAPPα, and sAPPβ, thus ameliorating cognitive dysfunction. This may be achieved through regulating NEP transcription and APP metabolism, accelerating Aβ degradation, alleviating neuronal impairment, and regulating BDNF-related signal pathways to repair neuronal synaptic efficiency. This study provides novel evidence indicating that Navβ2 plays crucial roles in the repair of neuronal injury induced by Aβ1-42 both in vivo and in vitro.
Collapse
|
7
|
Xie J, Wu W, Zheng L, Lin X, Tai Y, Wang Y, Wang L. Roles of MicroRNA-21 in Skin Wound Healing: A Comprehensive Review. Front Pharmacol 2022; 13:828627. [PMID: 35295323 PMCID: PMC8919367 DOI: 10.3389/fphar.2022.828627] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
MicroRNA-21 (miR-21), one of the early mammalian miRNAs identified, has been detected to be upregulated in multiple biological processes. Increasing evidence has demonstrated the potential values of miR-21 in cutaneous damage and skin wound healing, but lack of a review article to summarize the current evidence on this issue. Based on this review, relevant studies demonstrated that miR-21 played an essential role in wound healing by constituting a complex network with its targeted genes (i.e., PTEN, RECK. SPRY1/2, NF-κB, and TIMP3) and the cascaded signaling pathways (i.e., MAPK/ERK, PI3K/Akt, Wnt/β-catenin/MMP-7, and TGF-β/Smad7-Smad2/3). The treatment effectiveness developed by miR-21 might be associated with the promotion of the fibroblast differentiation, the improvement of angiogenesis, anti-inflammatory, enhancement of the collagen synthesis, and the re-epithelialization of the wound. Currently, miRNA nanocarrier systems have been developed, supporting the feasibility clinical feasibility of such miR-21-based therapy. After further investigations, miR-21 may serve as a potential therapeutic target for wound healing.
Collapse
Affiliation(s)
- Jie Xie
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Weizhou Wu
- Department of Urology, Maoming People's Hospital, Guangdong, China
| | - Liying Zheng
- Postgraduate Pepartment, First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Xuesong Lin
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yuncheng Tai
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yajie Wang
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Le Wang
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
8
|
Non-Coding RNAs in the Cardiac Action Potential and Their Impact on Arrhythmogenic Cardiac Diseases. HEARTS 2021. [DOI: 10.3390/hearts2030026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cardiac arrhythmias are prevalent among humans across all age ranges, affecting millions of people worldwide. While cardiac arrhythmias vary widely in their clinical presentation, they possess shared complex electrophysiologic properties at cellular level that have not been fully studied. Over the last decade, our current understanding of the functional roles of non-coding RNAs have progressively increased. microRNAs represent the most studied type of small ncRNAs and it has been demonstrated that miRNAs play essential roles in multiple biological contexts, including normal development and diseases. In this review, we provide a comprehensive analysis of the functional contribution of non-coding RNAs, primarily microRNAs, to the normal configuration of the cardiac action potential, as well as their association to distinct types of arrhythmogenic cardiac diseases.
Collapse
|
9
|
Jia G, Wang Y, Yu Y, Li Z, Wang X. Long non‑coding RNA NR2F1‑AS1 facilitates the osteosarcoma cell malignant phenotype via the miR‑485‑5p/miR‑218‑5p/BIRC5 axis. Oncol Rep 2020; 44:1583-1595. [PMID: 32945459 PMCID: PMC7448419 DOI: 10.3892/or.2020.7698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNA (lncRNA) NR2F1 antisense RNA 1 (NR2F1-AS1) has been reported to be an oncogene in several cancer types, including osteosarcoma (OS). However, the underlying fundamental molecular mechanism of NR2F1-AS1 in OS remains largely unknown, which the present study aimed to elucidate. The present study demonstrated that NR2F1-AS1 expression is markedly increased in OS, and NR2F1-AS1 was shown to exert oncogenic functions in OS. Further molecular mechanistic studies revealed that microRNA (miR)-485-5p and miR-218-5p were direct targets of NR2F1-AS1. More importantly, miR-485-5p and miR-218-5p exhibited low expression levels and were negatively correlated with NR2F1-AS1 expression in OS tissues. It was then identified that baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) was a direct target of miR-485-5p and miR-218-5p in OS cells. Furthermore, a series of experiments suggested that NR2F1-AS1 affects the proliferation, migration, invasion and apoptosis of OS cells by regulating BIRC5. Finally, it was revealed that silencing of NR2F1-AS1 repressed the OS cell malignant phenotype by binding with miR-485-5p and miR-218-5p, and then downregulating BIRC5 expression, which suggests that the NR2F1-AS1/miR-485-5p/miR-218-5p/BIRC5 axis could be a potential target for treating OS.
Collapse
Affiliation(s)
- Guanghui Jia
- Department of Foot and Ankle Surgery, Zhengzhou Orthopedics Hospital, Zhengzhou, Henan 450052, P.R. China
| | - Yalei Wang
- Department of Foot and Ankle Surgery, Zhengzhou Orthopedics Hospital, Zhengzhou, Henan 450052, P.R. China
| | - Yali Yu
- Department of Laboratory, Zhengzhou Orthopedics Hospital, Zhengzhou, Henan 450052, P.R. China
| | - Zijun Li
- Department of Laboratory, Zhengzhou Orthopedics Hospital, Zhengzhou, Henan 450052, P.R. China
| | - Xiangyu Wang
- Department of Foot and Ankle Surgery, Zhengzhou Orthopedics Hospital, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|