1
|
Yen CM, Lin HC, Chen WS, Hsu CC, Liaw CC, Kung YY, Ma CP, Chen HY, Su YT, Chang CM. Evaluation of traditional Chinese medicine tea bag TBDESJS in patients with Sjögren's syndrome and dry eye syndrome: A phase II pilot study. Int J Rheum Dis 2024; 27:e15398. [PMID: 39473287 DOI: 10.1111/1756-185x.15398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/22/2024] [Accepted: 10/14/2024] [Indexed: 03/30/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sjögren's syndrome (SJS) and dry eye syndrome (DES) are characterized by ocular dryness from inadequate tear production or excessive evaporation. To evaluate the effectiveness of TBDESJS (Chun-Yu-Ching-Hua-Yin, CYCHY), a TCM tea bag, in treating SJS and DES patients compared with healthy controls (NHC). MATERIALS AND METHODS This phase II pilot study included 100 participants (60 SJS, 30 DES, 10 NHC) across 8 weeks, assessing changes in Schirmer's test, OSDI, ESSPRI, PSQI, FIRST, and artificial tear usage, using repeated measurement ANOVA and Tukey's honestly significant difference (HSD) for analysis. RESULTS Total 97 subjects completed the trial, for the left eye (OS) of Schirmer's test, significant improvements at 4, and 8 weeks were observed in SJS (0.13 ± 0.43-5.77 ± 2.87, and 7.60 ± 4.84 mm) and DES (0.21 ± 0.41-6.21 ± 2.97, and 7.86 ± 3.47 mm) (all p < .001). For the right eye (OD), significant improvements were observed in SJS (0.13 ± 0.39-6.77 ± 4.53, and 8.79 ± 5.92 mm) and DES (0.34 ± 0.55-6.59 ± 2.50, and 8.24 ± 3.42 mm) (all p < .001). Secondary outcomes showed reduced the dryness of ESSPRI scores in SJS (6.37 ± 1.97-5.57 ± 1.79, p < .001) and DES (6.10 ± 1.97-5.28 ± 2.23, p < .05). PSQI global scores improved significantly in all groups at 8 weeks (p < .05). Artificial tear usage decreased in SJS (4.93 ± 2.45-1.00 ± 0.82 times/day), DES (4.47 ± 1.99-0.66 ± 0.67 times/day) (all p < .001). No serious adverse events in this study. CONCLUSION TBDESJS significantly improved tear production, ocular dryness, and sleep quality, indicating potential neural regulation, anti-inflammatory and immunomodulatory benefits. These findings advocate for TBDESJS (Chun-Yu-Ching-Hua-Yin, CYCHY)'s comprehensive therapeutic value in SJS and DES treatment, emphasizing the need for further research to understand long-term effects and mechanisms.
Collapse
Grants
- V108B-031 Taipei Veterans General Hospital, Taipei, Taiwan
- V109B-034 Taipei Veterans General Hospital, Taipei, Taiwan
- V112C-190 Taipei Veterans General Hospital, Taipei, Taiwan
- V113C-087 Taipei Veterans General Hospital, Taipei, Taiwan
- NSTC-111-2320-B-A49A-501-MY2 National Science and Technology Council, Taipei, Taiwan
- NSTC-113-2320-B-A49-029 National Science and Technology Council, Taipei, Taiwan
Collapse
Affiliation(s)
- Chien-Ming Yen
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hong-Chun Lin
- Department of Chinese Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Sheng Chen
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Ching Liaw
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yen-Ying Kung
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Chinese Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Pei Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Yuan Chen
- Department of Traditional Chinese Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Ting Su
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Chinese Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Na SW, Yi JM, Yeo H, Park SM, Jeong M, Chun J, Jeong MK. Bojungikki-Tang Augments Pembrolizumab Efficacy in Human PBMC-Injected H460 Tumor-Bearing Mice. Life (Basel) 2024; 14:1246. [PMID: 39459546 PMCID: PMC11508561 DOI: 10.3390/life14101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Bojungikki-Tang (BJIKT) is traditionally used to enhance digestive function and immunity. It has gained attention as a supplement to chemotherapy or targeted therapy owing to its immune-boosting properties. This study aimed to evaluate the synergistic anti-tumor effects of BJIKT in combination with pembrolizumab in a preclinical model. MHC I/II double knockout NSG mice were humanized with peripheral blood mononuclear cells (PBMCs) and injected subcutaneously with H460 lung tumor cells to establish a humanized tumor model. Both agents were administered to evaluate their impact on tumor growth and immune cell behavior. Immunohistochemistry showed decreased exhaustion markers in CD8(+) and CD4(+) T cells within the tumor, indicating enhanced T cell activity. Additionally, RNA sequencing, transcriptome analysis, and quantitative PCR analysis were performed on tumor tissues to investigate the molecular mechanisms underlying the observed effects. The results confirmed that BJIKT improved T cell function and tumor necrosis factor signaling while suppressing transforming growth factor-β signaling. This modulation led to cell cycle arrest and apoptosis. These findings demonstrate that BJIKT, when combined with pembrolizumab, produces significant anti-tumor effects by altering immune pathways and enhancing the anti-tumor immune response. This study provides valuable insights into the role of BJIKT in the tumor microenvironment and its potential to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Se Won Na
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (S.W.N.); (J.-M.Y.); (M.J.)
| | - Jin-Mu Yi
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (S.W.N.); (J.-M.Y.); (M.J.)
| | - Heerim Yeo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.Y.); (S.-M.P.)
| | - Sang-Min Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.Y.); (S.-M.P.)
| | - Mibae Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (S.W.N.); (J.-M.Y.); (M.J.)
| | - Jaemoo Chun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (S.W.N.); (J.-M.Y.); (M.J.)
| | - Mi-Kyung Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (S.W.N.); (J.-M.Y.); (M.J.)
| |
Collapse
|
3
|
Yun HM, Kim SH, Kwon YJ, Park KR. Effect of Spicatoside a on Anti-Osteosarcoma MG63 Cells through Reactive Oxygen Species Generation and the Inhibition of the PI3K-AKT-mTOR Pathway. Antioxidants (Basel) 2024; 13:1162. [PMID: 39456416 PMCID: PMC11505237 DOI: 10.3390/antiox13101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Osteosarcoma is a primary malignant tumor found in the bones of children and adolescents. Unfortunately, many patients do not respond well to treatment and succumb to the illness. Therefore, it is necessary to discover novel bioactive compounds to overcome therapeutic limitations. Liriope platyphylla Wang et Tang is a well-known herb used in oriental medicine. Studies have shown that metabolic diseases can be clinically treated using the roots of L. platyphylla. Recent studies have demonstrated the anticarcinoma potential of root extracts; however, the exact mechanism remains unclear. The aim of this study was to examine the anti-osteosarcoma activity of a single compound extracted from the dried roots of L. platyphylla. We purified Spicatoside A (SpiA) from the dried roots of L. platyphylla. SpiA significantly inhibited the proliferation of human osteosarcoma MG63 cells in a dose- and time-dependent manner. SpiA also regulated the expression of various downstream proteins that mediate apoptosis (PARP, Bcl-2, and Bax), cell growth (cyclin D1, Cdk4, and Cdk6), angiogenesis (VEGF), and metastasis (MMP13). The Proteome Profiler Human Phospho-Kinase Array Kit showed that the AKT signaling protein was a target of SpiA in osteosarcoma cells. We also found that SpiA suppressed the constitutive activation of the PI3K-AKT-mTOR-p70S6K1 signaling pathway. We further validated the effects of SpiA on the AKT signaling pathway. SpiA induced autophagosome formation and suppressed necroptosis (a form of programmed cell death). SpiA increased the generation of reactive oxygen species (ROS) and led to the loss of mitochondrial membrane potential. N-acetylcysteine (NAC)-induced inhibition of ROS generation reduced SpiA-induced AKT inhibition, apoptotic cell death, and anti-metastatic effects by suppressing cell migration and invasion. Overall, these results highlight the anti-osteosarcoma effect of SpiA by inhibiting the AKT signaling pathway through ROS generation, suggesting that SpiA may be a promising compound for the treatment of human osteosarcoma.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Soo Hyun Kim
- National Development Institute for Korean Medicine, Gyeongsan 38540, Republic of Korea; (S.H.K.); (Y.-J.K.)
| | - Yoon-Ju Kwon
- National Development Institute for Korean Medicine, Gyeongsan 38540, Republic of Korea; (S.H.K.); (Y.-J.K.)
| | - Kyung-Ran Park
- Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| |
Collapse
|
4
|
Chen H, Wu Y, Wang J, Li Y, Chen Y, Wang X, Lv H, Liu X. Tilianin enhances the antitumor effect of sufentanil on non-small cell lung cancer. J Biochem Mol Toxicol 2024; 38:e23761. [PMID: 38952040 DOI: 10.1002/jbt.23761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Non-small cell cancer (NSCLC) is the most common cancer in the world, but its effective therapeutic methods are limited. Tilianin and sufentanil alleviate various human tumors. This research aimed to clarify the functions and mechanisms of Tilianin and sufentanil in NSCLC. The functions of Tilianin and sufentanil on NSCLC cell viability, apoptosis, mitochondrial dysfunction, and immunity in vitro were examined using Cell Counting Kit-8 assay, flow cytometry, reactive oxygen species level analysis, CD8+ T cell percentage analysis, Western blot, and enzyme-linked immunosorbent assay, respectively. The molecular mechanism regulated by Tilianin and sufentanil in NSCLC was assessed using Western blot, and immunofluorescence assays. Meanwhile, the roles of Tilianin and sufentanil in NSCLC tumor growth, apoptosis, and immunity in vivo were determined by establishing a tumor xenograft mouse model, immunohistochemistry, and Western blot assays. When sufentanil concentration was proximity 2 nM, the inhibition rate of NSCLC cell viability was 50%. The IC50 for A549 cells was 2.36 nM, and the IC50 for H1299 cells was 2.18 nM. The IC50 of Tilianin for A549 cells was 38.7 μM, and the IC50 of Tilianin for H1299 cells was 44.6 μM. Functionally, 0.5 nM sufentanil and 10 μM Tilianin reduced NSCLC cell (A549 and H1299) viability in a dose-dependent manner. Also, 0.5 nM sufentanil and 10 μM Tilianin enhanced NSCLC cell apoptosis, yet this impact was strengthened after a combination of Tilianin and Sufentanil. Furthermore, 0.5 nM sufentanil and 10 μM Tilianin repressed NSCLC cell mitochondrial dysfunction and immunity, and these impacts were enhanced after a combination of Tilianin and Sufentanil. Mechanistically, 0.5 nM sufentanil and 10 μM Tilianin repressed the NF-κB pathway in NSCLC cells, while this repression was strengthened after a combination of Tilianin and Sufentanil. In vivo experimental data further clarified that 1 µg/kg sufentanil and 10 mg/kg Tilianin reduced NSCLC growth, immunity, and NF-κB pathway-related protein levels, yet these trends were enhanced after a combination of Tilianin and Sufentanil. Tilianin strengthened the antitumor effect of sufentanil in NSCLC.
Collapse
Affiliation(s)
- Huixia Chen
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Yulin Wu
- Department of Anesthesia Operation Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jiazheng Wang
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Yike Li
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Yongxue Chen
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Xinbo Wang
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Hangyu Lv
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Xinyan Liu
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| |
Collapse
|
5
|
Li YM, Shen CY, Jiang JG. Sedative and hypnotic effects of the saponins from a traditional edible plant Liriope spicata Lour. in PCPA-induced insomnia mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118049. [PMID: 38484954 DOI: 10.1016/j.jep.2024.118049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liriope spicata Lour., a species listed in the catalogue of 'Medicinal and Edible Homologous Species', is traditionally used for the treatment of fatigue, restlessness, insomnia and constipation. AIM OF THE STUDY This study is aimed to evaluate the sedative and hypnotic effect of the saponins from a natural plant L. spicata Lour. in vivo. MATERIALS AND METHODS The total saponin (LSTS) and purified saponin (LSPS) were extracted from L. spicata, followed by a thorough analysis of their major components using the HPLC-MS. Subsequently, the therapeutic efficacy of LSTS and LSPS was evaluated by the improvement of anxiety and depression behaviors of the PCPA-induced mice. RESULTS LSTS and LSPS exhibited similar saponin compositions but differ in their composition ratios, with liriopesides-type saponins accounting for a larger proportion in LSTS. Studies demonstrated that both LSTS and LSPS can extend sleep duration and immobility time, while reducing sleep latency in PCPA-induced mice. However, there was no significant difference in weight change among the various mice groups. Elisa results indicated that the LSTS and LSPS could decrease levels of NE, DA, IL-6, and elevate the levels of 5-HT, NO, PGD2 and TNF-α in mice plasma. LSTS enhanced the expression of neurotransmitter receptors, while LSPS exhibited a more pronounced effect in regulating the expression of inflammatory factors. In conclusion, the saponins derived from L. spicata might hold promise as ingredients for developing health foods with sedative and hypnotic effects, potentially related to the modulation of serotonergic and GABAAergic neuron expression, as well as immunomodulatory process.
Collapse
Affiliation(s)
- Yi-Meng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chun-Yan Shen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Southern Medical University, School of Traditional Chinese Medicine, Guangzhou, 510515, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
6
|
Wang F, Liang L, Yu M, Wang W, Badar IH, Bao Y, Zhu K, Li Y, Shafi S, Li D, Diao Y, Efferth T, Xue Z, Hua X. Advances in antitumor activity and mechanism of natural steroidal saponins: A review of advances, challenges, and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155432. [PMID: 38518645 DOI: 10.1016/j.phymed.2024.155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.
Collapse
Affiliation(s)
- Fengge Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR, PR China
| | - Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, PR China
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Kai Zhu
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yanlin Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Saba Shafi
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yongchao Diao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany.
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| | - Xin Hua
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
7
|
Qin P, Li Q, Zu Q, Dong R, Qi Y. Natural products targeting autophagy and apoptosis in NSCLC: a novel therapeutic strategy. Front Oncol 2024; 14:1379698. [PMID: 38628670 PMCID: PMC11019012 DOI: 10.3389/fonc.2024.1379698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) being the predominant type. The roles of autophagy and apoptosis in NSCLC present a dual and intricate nature. Additionally, autophagy and apoptosis interconnect through diverse crosstalk molecules. Owing to their multitargeting nature, safety, and efficacy, natural products have emerged as principal sources for NSCLC therapeutic candidates. This review begins with an exploration of the mechanisms of autophagy and apoptosis, proceeds to examine the crosstalk molecules between these processes, and outlines their implications and interactions in NSCLC. Finally, the paper reviews natural products that have been intensively studied against NSCLC targeting autophagy and apoptosis, and summarizes in detail the four most retrieved representative drugs. This paper clarifies good therapeutic effects of natural products in NSCLC by targeting autophagy and apoptosis and aims to promote greater consideration by researchers of natural products as candidates for anti-NSCLC drug discovery.
Collapse
Affiliation(s)
- Peiyi Qin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Qingchen Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Zu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ruxue Dong
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Yuanfu Qi
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Hong P, Wu M, Wei X, Xu X, Wu P, Gan L, Wu R, Jin J, Zhang K, Li D, Chen M, Wong W, Liu W, Zheng X. Inhibitory effect of liriopesides B in combination with gemcitabine on human pancreatic cancer cells. Bioorg Chem 2024; 142:106937. [PMID: 37913583 DOI: 10.1016/j.bioorg.2023.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Gemcitabine (GEM) is a standard chemotherapeutic agent for patients with pancreatic cancer; however, GEM-based chemotherapy has a high rate of toxicity. A combination of GEM and active constituents from natural products may enhance its therapeutic efficacy and reduce its toxicity. This study investigated the synergistic effects of the combination of liriopesides B (LirB) from Liriope spicata var. prolifera and GEM on human pancreatic cancer cells. The results of our study showed that the combination of LirB and GEM synergistically decreased the viability of pancreatic cancer cells. The combination also caused a strong increase in apoptosis and a strong decrease in cell migration and invasion. Furthermore, LirB combined with GEM had potent inhibitory effects on pancreatic cancer stem cells (CSCs). Studies on the mechanisms of action showed that the combination more potently inhibited protein kinase B (Akt) and nuclear factor kappa B (NF-κB), as well as the downstream antiapoptotic molecules B-cell lymphoma 2 (Bcl-2) and survivin than either agent used alone. The results of this study suggest that the combination of LirB with GEM may improve the efficacy of GEM for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Peng Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Mengshuo Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xingchuan Wei
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Rihui Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Min Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Wingleung Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
9
|
Liu Q, Lu JJ, Hong HJ, Yang Q, Wang Y, Chen XJ. Ophiopogon japonicus and its active compounds: A review of potential anticancer effects and underlying mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154718. [PMID: 36854203 DOI: 10.1016/j.phymed.2023.154718] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Ophiopogon japonicus (Thunb.) Ker Gawl., a well-known Chinese herb, has been used in traditional Chinese medicine for thousands of years. Extensive in vitro and in vivo studies have shown that O. japonicus and its active compounds exhibit potential anticancer effects in a variety of cancer cells in vitro and suppress tumor growth and metastasis without causing serious toxicity in vivo. PURPOSE This review aims to systemically summarize and discuss the anticancer effects and the underlying mechanisms of O. japonicus extracts and its active compounds. METHODS The review is prepared following the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Various scientific databases including Web of Science, PubMed, Scopus, and Chinese National Knowledge Infrastructure were searched using the keywords: Ophiopogon japonicus, tumor, cancer, carcinoma, content, pharmacokinetics, and toxicity. RESULTS O. japonicus extracts and the active compounds, such as ruscogenin-1-O-[β-d-glucopyranosyl(1→2)][β-d-xylopyranosyl(1→3)]-β-d-fucopyranoside (DT-13), ophiopogonin B, and ophiopogonin D, exert potential anticancer effects, including the induction of cell cycle arrest, activation of apoptosis and autophagy, and inhibition of metastasis and angiogenesis. In addition, the mechanisms underlying these effects, as well as the pharmacokinetics, toxicity and clinical utility of O. japonicus extracts and active compounds are discussed. Furthermore, this review highlights the research and application prospects of these compounds in immunotherapy and combination chemotherapy. CONCLUSIONS The traditional herb O. japonicus and its phytochemicals could be safe and reliable anticancer drug candidates, alone or in combination with chemotherapeutic drugs. We hope that this review, which highlights the anticancer properties of O. japonicus, will contribute to drug optimization, therapeutic development, and future studies on cancer therapies based on this medicinal plant.
Collapse
Affiliation(s)
- Qiao Liu
- Institute of Chinese Medical Sciences, and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China
| | - Jin-Jian Lu
- Institute of Chinese Medical Sciences, and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR 999078, China
| | - Hui-Jie Hong
- Institute of Chinese Medical Sciences, and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China
| | - Qi Yang
- Institute of Chinese Medical Sciences, and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China
| | - Xiao-Jia Chen
- Institute of Chinese Medical Sciences, and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR 999078, China; Zhuhai UM Science & Technology Research Institute, Zhuhai 519031, China.
| |
Collapse
|
10
|
Zu L, Li X, He J, Zhou N, Meng F, Li X, Xu S, Zhang L. Establishment and characterization of a novel highly malignant lung cancer cell line ZX2021H derived from a metastatic lymph node lesion. Thorac Cancer 2022; 13:1199-1210. [PMID: 35297208 PMCID: PMC9013652 DOI: 10.1111/1759-7714.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Lung cancer is a highly malignant tumor with a poor prognosis. The establishment of faithful ex vivo cell models is essential for investigating the metastatic mechanisms and developing new anticancer agents. In this study, we established and characterized a novel lung cancer cell line derived from metastatic lymph node tissue from a Chinese patient. Methods A primary culture of metastatic lymph node tissue from a patient with lung cancer was used to establish a cell line. The phenotypic characteristics of the cell line were characterized by colony‐formation, CCK8, and Transwell assays, and xenografting. The genetic characteristics were evaluated by chromosome analysis, short tandem repeat (STR) profiling, and quantitative real time‐polymerase chain reaction (qRT‐PCR). Results A novel lung cancer cell line, named ZX2021H, was successfully established from a metastatic lymph node lesion from a lung cancer patient. The cell line exhibited high capacities for proliferation and invasion, as validated by its phenotypic and genetic characteristics. This cell line had a unique STR profile and karyotype analysis revealed numerical and structural chromosome abnormalities. The growth rate of in vivo xenografted tumors established using ZX2021H cells was higher than that using H1299 cells. The cell stemness‐related gene SOX2 was overexpressed in ZX2021 compared with H1299 cells, as determined by qRT‐PCR. Conclusion We successfully established a novel, highly malignant lung cancer cell line, ZX2021H, derived from metastatic lymph node tissue from a Chinese lung cancer patient. This cell line may provide an ideal cell model for further studies of the molecular mechanisms underlying lung cancer metastasis and for the development of new anticancer agents.
Collapse
Affiliation(s)
- Lingling Zu
- School of Life Sciences, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinling He
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanrong Meng
- Department of Obstetrics & Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaozhou Li
- Department of Obstetrics & Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Song Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Yapasert R, Khaw-on P, Banjerdpongchai R. Coronavirus Infection-Associated Cell Death Signaling and Potential Therapeutic Targets. Molecules 2021; 26:7459. [PMID: 34946543 PMCID: PMC8706825 DOI: 10.3390/molecules26247459] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is the name of the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that occurred in 2019. The virus-host-specific interactions, molecular targets on host cell deaths, and the involved signaling are crucial issues, which become potential targets for treatment. Spike protein, angiotensin-converting enzyme 2 (ACE2), cathepsin L-cysteine peptidase, transmembrane protease serine 2 (TMPRSS2), nonstructural protein 1 (Nsp1), open reading frame 7a (ORF7a), viral main protease (3C-like protease (3CLpro) or Mpro), RNA dependent RNA polymerase (RdRp) (Nsp12), non-structural protein 13 (Nsp13) helicase, and papain-like proteinase (PLpro) are molecules associated with SARS-CoV infection and propagation. SARS-CoV-2 can induce host cell death via five kinds of regulated cell death, i.e., apoptosis, necroptosis, pyroptosis, autophagy, and PANoptosis. The mechanisms of these cell deaths are well established and can be disrupted by synthetic small molecules or natural products. There are a variety of compounds proven to play roles in the cell death inhibition, such as pan-caspase inhibitor (z-VAD-fmk) for apoptosis, necrostatin-1 for necroptosis, MCC950, a potent and specific inhibitor of the NLRP3 inflammasome in pyroptosis, and chloroquine/hydroxychloroquine, which can mitigate the corresponding cell death pathways. However, NF-κB signaling is another critical anti-apoptotic or survival route mediated by SARS-CoV-2. Such signaling promotes viral survival, proliferation, and inflammation by inducing the expression of apoptosis inhibitors such as Bcl-2 and XIAP, as well as cytokines, e.g., TNF. As a result, tiny natural compounds functioning as proteasome inhibitors such as celastrol and curcumin can be used to modify NF-κB signaling, providing a responsible method for treating SARS-CoV-2-infected patients. The natural constituents that aid in inhibiting viral infection, progression, and amplification of coronaviruses are also emphasized, which are in the groups of alkaloids, flavonoids, terpenoids, diarylheptanoids, and anthraquinones. Natural constituents derived from medicinal herbs have anti-inflammatory and antiviral properties, as well as inhibitory effects, on the viral life cycle, including viral entry, replication, assembly, and release of COVID-19 virions. The phytochemicals contain a high potential for COVID-19 treatment. As a result, SARS-CoV-2-infected cell death processes and signaling might be of high efficacy for therapeutic targeting effects and yielding encouraging outcomes.
Collapse
Affiliation(s)
- Rittibet Yapasert
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Patompong Khaw-on
- Faculty of Nursing, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Ratana Banjerdpongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
12
|
Yang L, Wang Z. Natural Products, Alone or in Combination with FDA-Approved Drugs, to Treat COVID-19 and Lung Cancer. Biomedicines 2021; 9:689. [PMID: 34207313 PMCID: PMC8234041 DOI: 10.3390/biomedicines9060689] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
As a public health emergency of international concern, the highly contagious coronavirus disease 2019 (COVID-19) pandemic has been identified as a severe threat to the lives of billions of individuals. Lung cancer, a malignant tumor with the highest mortality rate, has brought significant challenges to both human health and economic development. Natural products may play a pivotal role in treating lung diseases. We reviewed published studies relating to natural products, used alone or in combination with US Food and Drug Administration-approved drugs, active against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and lung cancer from 1 January 2020 to 31 May 2021. A wide range of natural products can be considered promising anti-COVID-19 or anti-lung cancer agents have gained widespread attention, including natural products as monotherapy for the treatment of SARS-CoV-2 (ginkgolic acid, shiraiachrome A, resveratrol, and baicalein) or lung cancer (daurisoline, graveospene A, deguelin, and erianin) or in combination with FDA-approved anti-SARS-CoV-2 agents (cepharanthine plus nelfinavir, linoleic acid plus remdesivir) and anti-lung cancer agents (curcumin and cisplatin, celastrol and gefitinib). Natural products have demonstrated potential value and with the assistance of nanotechnology, combination drug therapies, and the codrug strategy, this "natural remedy" could serve as a starting point for further drug development in treating these lung diseases.
Collapse
Affiliation(s)
- Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China;
| | - Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Yan QX, Pan Y, Huang HL, Zhao H. Therapeutic Potential of Natural Products in Lung Cancer. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.251.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Han B, He C. Targeting autophagy using saponins as a therapeutic and preventive strategy against human diseases. Pharmacol Res 2021; 166:105428. [PMID: 33540047 DOI: 10.1016/j.phrs.2021.105428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/14/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
Abstract
Autophagy is a ubiquitous mechanism for maintaining cellular homeostasis through the degradation of long-lived proteins, insoluble protein aggregates, and superfluous or damaged organelles. Dysfunctional autophagy is observed in a variety of human diseases. With advanced research into the role that autophagy plays in physiological and pathological conditions, targeting autophagy is becoming a novel tactic for disease management. Saponins are naturally occurring glycosides containing triterpenoids or steroidal sapogenins as aglycones, and some saponins are reported to modulate autophagy. Research suggests that saponins may have therapeutic and preventive efficacy against many autophagy-related diseases. Therefore, this review comprehensively summarizes and discusses the reported saponins that exhibit autophagy regulating activities. In addition, the relevant signaling pathways that the mechanisms involved in regulating autophagy and the targeted diseases were also discussed. By regulating autophagy and related pathways, saponins exhibit bioactivities against cancer, neurodegenerative diseases, atherosclerosis and other cardiac diseases, kidney diseases, liver diseases, acute pancreatitis, and osteoporosis. This review provides an overview of the autophagy-regulating activity of saponins, the underlying mechanisms and potential applications for managing various diseases.
Collapse
Affiliation(s)
- Bing Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China.
| |
Collapse
|