1
|
Xia W, Shen Y, Chen F, Liu X, Cao Y, Shi Z. Sennoside A represses the malignant phenotype and tumor immune microenvironment of non-small cell lung cancer cells by inhibiting the TRAF6/NF-κB pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5405-5415. [PMID: 39549059 DOI: 10.1007/s00210-024-03612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a prominent cause of cancer death worldwide. Sennoside A (SA) is the primary anthraquinone active component from Rheum officinale Baill and exerts antitumor functions in multiple human tumors. This research aimed to elucidate the function and mechanism of SA in NSCLC. SA functions in NSCLC were determined using Cell Counting Kit-8 (CCK-8) assay, Terminal deoxynucleotidyl transferase dUTP nick-end labeling analysis, Transwell assay, Enzyme-Linked Immunosorbent Assay (ELISA), and Western blot. Meanwhile, the SA mechanism in NSCLC was examined with Western blot, immunofluorescence assay, CCK-8 assay, Transwell analysis, and ELISA. Furthermore, SA functions in NSCLC growth in vivo were assessed by the establishment of a tumor xenograft model, hematoxylin-eosin staining, analysis of NSCLC tissue apoptosis, and immunohistochemistry assays. Functionally, less than 200 µM SA had no significant effect on normal human bronchial epithelial cell BEAS-2B cell viability. Furthermore, H460 cell viability was decreased when the SA dose was greater than or equal to 25 µM (IC50 = 53.34 µM). A549 cell viability was reduced when the SA dose was greater than or equal to 12.5 µM (IC50 = 48.21 µM). Also, SA repressed NSCLC cell proliferation and boosted cell apoptosis. SA restrained NSCLC cell invasion and tumor microenvironment. Mechanically, SA weakened NSCLC cell proliferation, invasion, and tumor microenvironment, yet this impact was abolished after transfecting pcDNA3.1-TRAF6, which indicated that SA repressed NSCLC cell proliferation, invasion, and tumor microenvironment through inactivating TRAF6/NF-κB. Moreover, SA reduced subcutaneous tumor volume and promoted NSCLC tissue apoptosis in vivo. SA repressed NSCLC cell proliferation, invasion, and tumor microenvironment through inactivating TRAF6/NF-κB.
Collapse
Affiliation(s)
- Wenchao Xia
- Department of Thoracic Surgery, Chest Hospital, Tianjin University, Tai'erzhuang South Road No. 261, Jinnan District, Tianjin, 300000, China.
| | - Yimeng Shen
- Department of Thoracic Surgery, Chest Hospital, Tianjin University, Tai'erzhuang South Road No. 261, Jinnan District, Tianjin, 300000, China
| | - Feng Chen
- Department of Thoracic Surgery, Chest Hospital, Tianjin University, Tai'erzhuang South Road No. 261, Jinnan District, Tianjin, 300000, China
| | - Xin Liu
- Department of Thoracic Surgery, Chest Hospital, Tianjin University, Tai'erzhuang South Road No. 261, Jinnan District, Tianjin, 300000, China
| | - Yuqi Cao
- Department of Thoracic Surgery, Chest Hospital, Tianjin University, Tai'erzhuang South Road No. 261, Jinnan District, Tianjin, 300000, China
| | - Zhenliang Shi
- Department of Thoracic Surgery, Chest Hospital, Tianjin University, Tai'erzhuang South Road No. 261, Jinnan District, Tianjin, 300000, China
| |
Collapse
|
2
|
Peng CW, Ma PL, Dai HT. Schizandrin A promotes apoptosis in prostate cancer by inducing ROS-mediated endoplasmic reticulum stress and JNK MAPK signaling activation. Pathol Res Pract 2025; 269:155889. [PMID: 40081283 DOI: 10.1016/j.prp.2025.155889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignant tumor in males with limited therapies. Schizandrin A (SchA) is a biologically active lignan isolated from the fruit of Schisandra chinensis. This research aimed to evaluate the roles and mechanisms of SchA in the progression of PCa. METHODS PCa cells (VCap and DU145) treated with or without SchA were subjected to MTT assays, colony formation assays, DCFH-DA assays, western blotting, TUNEL staining, and flow cytometry analyses of cell cycle, cell apoptosis, and JC-1. Tumor xenograft model was established in nude mice to assess the in vivo effect of SchA. RESULTS SchA suppressed cell proliferation and induced cell cycle arrest at G2/M and apoptosis in PCa cells. Additionally, SchA enhanced ROS generation and endoplasmic reticulum stress and activated JNK signaling to induce PCa apoptosis. Furthermore, SchA suppressed tumor growth in vivo. CONCLUSION SchA induces cell cycle arrest and apoptosis in PCa cells by activating ROS-mediated ER stress and JNK MAPK signaling.
Collapse
Affiliation(s)
- Chang-Wei Peng
- Department of Urology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China
| | - Pei-Li Ma
- Department of Urology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China
| | - Hai-Tao Dai
- Department of Urology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China.
| |
Collapse
|
3
|
Alaouna M, Molefi T, Khanyile R, Chauke-Malinga N, Chatziioannou A, Luvhengo TE, Raletsena M, Penny C, Hull R, Dlamini Z. The potential of the South African plant Tulbaghia Violacea Harv for the treatment of triple negative breast cancer. Sci Rep 2025; 15:5737. [PMID: 39962120 PMCID: PMC11832780 DOI: 10.1038/s41598-025-88417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is difficult to treat and has a low five-year survival rate. In South Africa, a large percentage of the population still relies on traditional plant-based medicine. To establish the utility of both methanol and water-soluble extracts from the leaves of Tulbaghia violacea, cytotoxicity assays were carried out to establish the IC50 values against a TNBC cell line. Cell cycle and apoptosis assays were carried out using the extracts. To identify the molecular compounds, present in water-soluble leaf extracts, NMR spectroscopy was performed. Compounds of interest were then used in computational docking studies with the anti-apoptotic protein COX-2. The IC50 values for the water- and methanol-soluble extracts were determined to be 400 and 820 µg/mL, respectively. The water-soluble extract induced apoptosis in the TNBC cell line to a greater extent than in the normal cell line. RNAseq indicated that there was an increase in the transcription of pro-apoptotic genes in the TNBC cell line. The crude extract also caused these cells to stall in the S phase. Of the 61 compounds identified in this extract, five demonstrated a high binding affinity for COX-2. Based on these findings, the compounds within the extract show significant potential for further investigation as candidates for the development of cancer therapeutics, particularly for TNBC.
Collapse
Affiliation(s)
- Mohammed Alaouna
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thulo Molefi
- Department of Medical Oncology, Steve Biko Academic Hospital, University of Pretoria, Pretoria, 0001, South Africa
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa
| | - Richard Khanyile
- Department of Medical Oncology, Steve Biko Academic Hospital, University of Pretoria, Pretoria, 0001, South Africa
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa
| | - Nkhensani Chauke-Malinga
- Papillon Aesthetics, Suite 302b Netcare Linksfield Hospital, 24 12th Ave, Linksfield West, Johannesburg, 2192, South Africa
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa
| | - Aristotelis Chatziioannou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa
| | - Thifhelimbilu Emmanuel Luvhengo
- Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand, Parktown, Johannesburg, 2193, South Africa
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maropeng Raletsena
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Chemistry, University of South Africa, Florida Campus, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rodney Hull
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa.
| | - Zodwa Dlamini
- Department of Chemical pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- SA-MRC Precision Oncology Research Unit (PORU), DSTI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
4
|
Parhira S, Simanurak O, Pansooksan K, Somran J, Wangteeraprasert A, Jiang Z, Bai L, Nangngam P, Pekthong D, Srisawang P. Cerbera odollam fruit extracts enhance anti-cancer activity of sorafenib in HCT116 and HepG2 cells. CHINESE HERBAL MEDICINES 2025; 17:108-126. [PMID: 39949813 PMCID: PMC11814254 DOI: 10.1016/j.chmed.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 02/16/2025] Open
Abstract
Objective While higher therapeutic doses of toxic cardiac glycosides derived from Cerbera odollam are frequently employed in cases of suicide or homicide, ongoing research is investigating the potential anticancer properties of low-concentration extracts obtained from the fruits of C. odollam. The present study aimed to determine the enhanced anticancer effects and minimize potential side effects of combining extracts from C. odollam fruits from Thailand with sorafenib against HCT116 and HepG2 cells. Methods The dried powder of fresh green fruits of C. odollam was fractionated, and its phytochemical contents, including total cardiac glycosides, phenolics, flavonoids, and triterpenoids, were quantified. The cytotoxic effects of these fractions were evaluated against HCT116 and HepG2 cells using the MTT assay. The fractions showing the most significant response in HCT116 and HepG2 cells were subsequently combined with sorafenib to examine their synergistic effects. Apoptosis induction, cell cycle progression, and mitochondrial membrane potential (MMP) were then assessed. The underlying mechanism of the apoptotic effect was further investigated by analyzing reactive oxygen species (ROS) generation and the expression levels of antioxidant proteins. Results Phytochemical analysis showed that C. odollam-ethyl acetate fraction (COEtOAc) was rich in cardiac glycosides, phenolics, and flavonoids, while the dichloromethane fraction (CODCM) contained high levels of triterpenoids and saponins. Following 24 h treatment, HCT116 showed the most significant response to COEtOAc, while HepG2 responded well to CODCM with IC50 values of (42.04 ± 16.94) μg/mL and (123.75 ± 14.21) μg/mL, respectively. Consequently, COEtOAc (20 μg/mL) or CODCM (30 μg/mL), both administered at sub-IC50 concentrations, were combined with sorafenib at 6 μmol/L for HCT116 cells and 2 μmol/L for HepG2 cells, incubated for 24 h. This combination resulted in a significant suppression in cell viability by approximately 50%. The combination of treatments markedly enhanced apoptosis, diminished MMP, and triggered G0/G1 phase cell cycle arrest compared to the effects of each treatment administered individually. Concurrently, increased formation of ROS and decreased expression of the antioxidant enzymes superoxide dismutase 2 and catalase supported the proposed mechanism of apoptosis induction by the combination treatment. Importantly, the anticancer effect demonstrated a specific targeted action with a favorable safety profile, as evidenced by HFF-1 cells displaying IC50 values 2-3 times higher than those of the cancer cells. Conclusion Utilizing sub-IC50 concentrations of COEtOAc or CODCM in combination with sorafenib can enhance targeted anticancer effects beyond those achieved with single-agent treatments, while mitigating opposing side effects. Future research will focus on extracting and characterizing active constituents, especially cardiac glycosides, to enhance the therapeutic potential of anticancer compounds derived from toxic plants.
Collapse
Affiliation(s)
- Supawadee Parhira
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Orakot Simanurak
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Khemmachat Pansooksan
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| | | | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Liping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Pranee Nangngam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Dumrongsak Pekthong
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyarat Srisawang
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
5
|
Wang Z, Xie S, Li L, Liu Z, Zhou W. Schisandrin C inhibits AKT1-regulated cell proliferation in A549 cells. Int Immunopharmacol 2024; 142:113110. [PMID: 39260306 DOI: 10.1016/j.intimp.2024.113110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related mortality. Cancer poses a significant challenge to human health and remains a persistent and pressing issue. Schisandrin C is one of the active ingredients of Schisandra chinensis and has various biological and pharmacological activities. This study aimed to investigate the effects of Schisandrin C on lung cancer and the underlying mechanism involved. METHODS A network pharmacology strategy was used to screen the target genes and pathways involved in the relationship between Schisandrin and lung cancer. Next, a single-cell RNA sequencing (scRNA-seq) assay revealed the expression of genes specifically expressed in lung cancer epithelial cells. A549 cells were subsequently treated with Schisandrin C for 24 h or 48 h, cell viability was assessed via MTT and EdU staining experiments, and target gene expression was measured via RT-qPCR and immunofluorescence assays. Moreover, lung cancer patient tissues were observed via multiplex immunofluroscence staining. RESULTS AKT1, CA9, BRAF, EGFR, ERBB2 and PIK3CA were overlapping target genes for network pharmacology and the scRNA-seq strategy. In vitro, the RT-qPCR results indicated that Schisandrin C inhibited the mRNA expression of the AKT1, CA9, FASN, MMP1, EGFR and BRAF genes. In clinical samples from patients with lung cancer, the expression levels of CA9 and AKT1 were found to be significantly higher in lung tumor tissues than in the adjacent normal (TAN) tissues. Moreover, the administration of an AKT kinase inhibitor reversed the inhibitory effect of Schisandrin C on A549 cells proliferation, whereas the administration of a CA9 inhibitor failed to have a similar effect. CONCLUSIONS Schisandrin C effectively suppressed the proliferation and viability of A549 cells. Its mechanism was related to the inhibition of the AKT1 signaling pathway.
Collapse
Affiliation(s)
| | - Shengyang Xie
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Li Li
- Zhejiang Hospital, Hangzhou 310013, China
| | - Zhengcheng Liu
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Wencheng Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China.
| |
Collapse
|
6
|
He L, Lin C, Zhuang L, Sun Y, Li Y, Ye Z. Targeting Hepatocellular Carcinoma: Schisandrin A Triggers Mitochondrial Disruption and Ferroptosis. Chem Biol Drug Des 2024; 104:e70010. [PMID: 39668608 PMCID: PMC11638659 DOI: 10.1111/cbdd.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 12/14/2024]
Abstract
The main focus of this research was to examine SchA's role in the hepatocellular carcinoma (HCC) development. LO2 and Huh7 cell viability were assessed using the MTT assay. The experiments included flow cytometry, colony formation, transwell, wound healing, and immunofluorescence assays to evaluate apoptosis levels, cells colony-forming ability, ROS levels, invasion and migration ability, and mitochondrial membrane potential. Biochemical kits was utilized for checking the ATP, mitochondrial DNA, MDA, GSH, and Fe2+ levels in the Huh7 cells, and western blot for measuring the ferroptosis and AMPK/mTOR related-protein expression levels. The MTT assay demonstrated that SchA significantly reduced the vitality of Huh7 cells ranging from 10 to 50 μM, whereas it exhibited no discernible impact on LO2 cells. Additionally, SchA significantly inhibited colony-forming ability, invasion ability, and migration ability within the concentration range of 10 to 50 μM, with a reduction of 68% in colony formation at 50 μM. SchA also induced apoptosis in a dose-dependent manner. Moreover, SchA was observed to significantly elevate ROS levels dose-dependently, down-regulate mitochondrial membrane potential (JC-1) at 20 and 50 μM, and reduce the levels of ATP and mtDNA dose-dependently. Various concentrations of SchA resulted in a notable elevation in MDA and Fe2+ levels as well as ACSL4 protein expression, accompanied by a reduction in GSH level and the protein expression of GPX4 and SLC7A11. Furthermore, SchA induced the activation of the AMPK/mTOR pathway in Huh7 cells, as evidenced by the increased phosphorylation level of AMPK and decreased phosphorylation level of mTOR. SchA might inhibit the progress of HCC through mitochondrial ferroptosis and dysfunction mediated by AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Lin‐wei He
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Chang‐jie Lin
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Lin‐jun Zhuang
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Yi‐hui Sun
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Ye‐cheng Li
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| | - Zhen‐yu Ye
- Department of General SurgeryThe Second Affiliated Hospital of Soochow UniversitySouzhouJiangsuChina
| |
Collapse
|
7
|
Wang Y, Yuan T, He L, Huang J, Wilfred N, Yang W, Jin M, Huang G, Lu C. Melittin treatment suppressed malignant NSCLC progression through enhancing CTSB-mediated hyperautophagy. Biomed Pharmacother 2024; 180:117573. [PMID: 39426282 DOI: 10.1016/j.biopha.2024.117573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Melittin is preclinically investigated as anticancer agent in multiple tumor types. But its regulation role and regulatory mechanism regarding NSCLC is unknown. In our investigation, Proteomic test was employed to identify proteins that expressed abnormally in cancer cells and that with Melittin treatmented. The results showed CTSB was one of the Top proteins with different expression levels in the lysosomes of Melittin-treatmented cancer cells and showed an up-regulation trend. CTSB expression was increased in NSCLC cancer tissues compared to adjacent normal tissues, as demonstrated in lung cancer tissue chips experiment. However, Melittin treatment increased the CTSB level in lysosomes, which inhibited the malignant progression of NSCLC. We hypothesized that the relative homeostasis of CTSB in cancer cells was destroyed, and CTSB exerts its hydrolytic effect excessively, resulting in excessive autophagy of cancer cells, thus inhibiting the malignant progression of cancer cells. The direct combination of Melittin and CTSB was proposed by molecular docking technique, LiP-SMap was used to analyze the target genes and active components extracted from high-throughput sequencing proteomic data, and successfully verified that melittin was successfully demonstrated to directly target CTSB-binding. In vivo and in vitro studies have shown that Melittin treatment inhibits the malignant progression of A549 and HCC1833 cells and animal tumors, namely non-small cell lung cancer, by promoting CTSB-mediated hyperautophagy. CTSB-specific inhibitor CA-074 Me and autophagy inhibitor 3-MA treatment reversed the inhibit effect of Melittin to the malignant progression of NSCLC. Taken together, Melittin treatment inhibited malignant progression regarding NSCLC through enhancing CTSB-mediated hyperautophagy.
Collapse
Affiliation(s)
- Yuhan Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Tailei Yuan
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; Laboratory Department of Nanjing Jiangbei Hospital Affiliated to Xinglin College, Nantong University, PR China
| | - Longyue He
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Jingjing Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Nodemsahajoel Wilfred
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Wenhui Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Changlian Lu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| |
Collapse
|
8
|
Lin L, Lin Y, Han Z, Wang K, Zhou S, Wang Z, Wang S, Chen H. Understanding the molecular regulatory mechanisms of autophagy in lung disease pathogenesis. Front Immunol 2024; 15:1460023. [PMID: 39544928 PMCID: PMC11560454 DOI: 10.3389/fimmu.2024.1460023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Lung disease development involves multiple cellular processes, including inflammation, cell death, and proliferation. Research increasingly indicates that autophagy and its regulatory proteins can influence inflammation, programmed cell death, cell proliferation, and innate immune responses. Autophagy plays a vital role in the maintenance of homeostasis and the adaptation of eukaryotic cells to stress by enabling the chelation, transport, and degradation of subcellular components, including proteins and organelles. This process is essential for sustaining cellular balance and ensuring the health of the mitochondrial population. Recent studies have begun to explore the connection between autophagy and the development of different lung diseases. This article reviews the latest findings on the molecular regulatory mechanisms of autophagy in lung diseases, with an emphasis on potential targeted therapies for autophagy.
Collapse
Affiliation(s)
- Lin Lin
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medicine, Southeast University, Nanjing, China
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- Department of Science and Education, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Shuwei Zhou
- Department of Radiology, Zhongda Hospital, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, School of Medicine, Southeast University, Nanjing, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Siyu Wang
- Department of Preventive Medicine, Kunshan Hospital of Chinese Medicine, Kunshan, China
| | - Haoran Chen
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
9
|
Fakhri S, Moradi SZ, Moradi SY, Piri S, Shiri Varnamkhasti B, Piri S, Khirehgesh MR, Bishayee A, Casarcia N, Bishayee A. Phytochemicals regulate cancer metabolism through modulation of the AMPK/PGC-1α signaling pathway. BMC Cancer 2024; 24:1079. [PMID: 39223494 PMCID: PMC11368033 DOI: 10.1186/s12885-024-12715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Due to the complex pathophysiological mechanisms involved in cancer progression and metastasis, current therapeutic approaches lack efficacy and have significant adverse effects. Therefore, it is essential to establish novel strategies for combating cancer. Phytochemicals, which possess multiple biological activities, such as antioxidant, anti-inflammatory, antimutagenic, immunomodulatory, antiproliferative, anti-angiogenesis, and antimetastatic properties, can regulate cancer progression and interfere in various stages of cancer development by suppressing various signaling pathways. METHODS The current systematic and comprehensive review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria, using electronic databases, including PubMed, Scopus, and Science Direct, until the end of December 2023. After excluding unrelated articles, 111 related articles were included in this systematic review. RESULTS In this current review, the major signaling pathways of cancer metabolism are highlighted with the promising anticancer role of phytochemicals. This was through their ability to regulate the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) signaling pathway. The AMPK/PGC-1α signaling pathway plays a crucial role in cancer cell metabolism via targeting energy homeostasis and mitochondria biogenesis, glucose oxidation, and fatty acid oxidation, thereby generating ATP for cell growth. As a result, targeting this signaling pathway may represent a novel approach to cancer treatment. Accordingly, alkaloids, phenolic compounds, terpene/terpenoids, and miscellaneous phytochemicals have been introduced as promising anticancer agents by regulating the AMPK/PGC-1α signaling pathway. Novel delivery systems of phytochemicals targeting the AMPK/PGC-1α pathway in combating cancer are also highlighted in this review.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Yahya Moradi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Sarina Piri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | | | - Nicolette Casarcia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
10
|
Lu J, Guo Q, Zhao H, Liu H. Hederagenin promotes lung cancer cell death by activating CHAC1-dependent ferroptosis pathway. Biochem Biophys Res Commun 2024; 718:150085. [PMID: 38735142 DOI: 10.1016/j.bbrc.2024.150085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Lung cancer poses a significant threat globally, especially in China. This puts higher demands on the treatment methods and drugs for lung cancer. Natural plants provide valuable resources for the development of anti-cancer drugs. Hederagenin (Hed) is a triterpenoid compound extracted from ivy leaves and has anti-tumor activity against multifarious cancers, including lung cancer. However, the regulatory mechanism of Hed in lung cancer remains unclear. In this study, we used Hed to treat lung cancer cells, and observed the effect of Hed on cell proliferation (including CCK-8 and colony formation experiments), apoptosis (including flow cytometry and apoptosis gene detection (BAX and Bcl-2)). The results showed that Hed induced lung cancer cell death (inhibiting proliferation and promoting apoptosis). Next, we performed bioinformatics analysis of the expression profile GSE186218 and found that Hed treatment significantly increased the expression of CHAC1 gene. CHAC1 is a ferroptosis-inducing gene. RT-qPCR detection of lung cancer clinical tissues and related cell lines also showed that CHAC1 was lowly expressed in lung cancer. Therefore, we knocked down and overexpressed CHAC1 in lung cancer cells, respectively. Subsequently, cell phenotype experiments showed that down-regulating CHAC1 expression inhibited lung cancer cell death (promoting proliferation and inhibiting apoptosis); on the contrary, up-regulating CHAC1 expression promoted lung cancer cell death. To further verify that Hed exerts anti-tumor effects in lung cancer by promoting CHAC1 expression, we performed functional rescue experiments. The results showed that down-regulating CHAC1 expression reversed the promoting effect of Hed on lung cancer cell death. Mechanistically, in vitro and in vivo experiments jointly demonstrated that Hed exerts anti-cancer effects by promoting CHAC1-induced ferroptosis. In summary, our study further enriches the regulatory mechanism of Hed in lung cancer.
Collapse
Affiliation(s)
- Jiayan Lu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China; Department of Pulmonary and Critical Care Medicine, Rugao Boai Hospital, No. 468 Qingyu Road, Rugao Economic and Technological Development Zone, 226500, Jiangsu Province, People's Republic of China
| | - Qixia Guo
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China; Department of Pulmonary and Critical Care Medicine, Rugao Boai Hospital, No. 468 Qingyu Road, Rugao Economic and Technological Development Zone, 226500, Jiangsu Province, People's Republic of China
| | - Hui Zhao
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Hua Liu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
11
|
Hu L, Zhang Z, Zhu F, Li X, Zou M, Yang R. Schizandrin A enhances the sensitivity of gastric cancer cells to 5-FU by promoting ferroptosis. Cytotechnology 2024; 76:329-340. [PMID: 38736724 PMCID: PMC11082097 DOI: 10.1007/s10616-024-00623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/14/2024] [Indexed: 05/14/2024] Open
Abstract
Schizandrin A (Sch A) exert anticancer and multidrug resistance-reversing effects in a variety of tumors, but its effect on 5-fluorouracil (5-Fu) in gastric cancer (GC) cells remains unclear. The aim of the present study was to examine the resistance-reversing effect of Schizandrin A and assess its mechanisms in 5-Fu-resistant GC cells.5-Fu-sensitive GC cells were treated with 5-Fu and 5-Fu-resistant GC cells AGS/5-Fu and SGC7901/5-Fu were were established. These cells were stimulated with Schizandrin A alone or co-treated with 5-Fu and their effect on tumor cell growth, proliferation, migration, invasion and ferroptosis-related metabolism were investigated both in vitro and in vivo. A number of additional experiments were conducted in an attempt to elucidate the molecular mechanism of increased ferroptosis. The results of our study suggest that Schizandrin A in combination with 5-Fu might be useful in treating GC by reverse drug resistance. It was shown that Schizandrin A coadministration suppressed metastasis and chemotherapy resistance in 5-Fu-resistant GC cells through facilitating the onset of ferroptosis, which is an iron-dependent form of cell death, which was further demonstrated in a xenograft nude mouse model. Mechanistically, Schizandrin A co-administration synergistically increased the expression of transferin receptor, thus iron accumulates within cells, leading to lipid peroxidation, which ultimately results in 5-Fu-resistant GC cells death. The results of this study have provided a novel strategy for increasing GC chemosensitivity, indicating Schizandrin A as a novel ferroptosis regulator. Mechanistically, ferroptosis is induced by Schizandrin A coadministration via increasing transferrin receptor expression.
Collapse
Affiliation(s)
- Liye Hu
- Department of Pharmacy, Affiliated Hospital of Jinggangshan University, Ji’an, 343009 Jiangxi China
| | - Zhongyuan Zhang
- Department of Pharmacy, Wuhan Red Cross Hospital, Wuhan, 430024 Hubei China
| | - Feng Zhu
- Department of Endocrinology, Affiliated Hospital of Jinggangshan University, Ji’an, 343009 Jiangxi China
| | - Xin Li
- Computer Center, Ezhou Central Hospital, Ezhou, 436099 Hubei China
| | - Min Zou
- Department of Endocrinology, Affiliated Hospital of Jinggangshan University, Ji’an, 343009 Jiangxi China
| | - Rui Yang
- Department of Pharmacy, Huazhong University of Science and Technology Hospital, Wuhan, 430074 Hubei China
| |
Collapse
|
12
|
Yang C, Rubin L, Yu X, Lazarovici P, Zheng W. Preclinical evidence using synthetic compounds and natural products indicates that AMPK represents a potential pharmacological target for the therapy of pulmonary diseases. Med Res Rev 2024; 44:1326-1369. [PMID: 38229486 DOI: 10.1002/med.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024]
Abstract
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is a highly conserved eukaryotic enzyme discovered as a key regulator of cellular energy homeostasis, with anti-inflammation, antioxidative stress, anticancer, and antifibrosis beneficial effects. AMPK is dysregulated in human pulmonary diseases such as acute lung injury, nonsmall cell lung cancer, pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. This review provides an overview of the beneficial role of natural, synthetic, and Chinese traditional medicines AMPK modulators in pulmonary diseases, and highlights the role of the AMPK signaling pathway in the lung, emphasizing the importance of finding lead compounds and drugs that can target and modulate AMPK to treat the lung diseases.
Collapse
Affiliation(s)
- Chao Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Jerusalem, Israel
| | - Xiyong Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
13
|
Liu BN, Chen J, Piao Y. Global research and emerging trends in autophagy in lung cancer: a bibliometric and visualized study from 2013 to 2022. Front Pharmacol 2024; 15:1352422. [PMID: 38476332 PMCID: PMC10927969 DOI: 10.3389/fphar.2024.1352422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose: To highlight the knowledge structure and evolutionary trends in research on autophagy in lung cancer. Methods: Research publications on autophagy in lung cancer were retrieved from the Web of Science Core Collection database. VOSviewer and CiteSpace data analysis software were used for the bibliometric and visualization analysis of countries, institutions, authors, journals, and keywords related to this field. Results: From 2013 to 2022, research on autophagy in lung cancer developed rapidly, showing rising trends in annual publications and citations. China (1,986 papers; 48,913 citations), Shandong University (77 publications; 1,460 citations), and Wei Zhang (20 publications; 342 citations) were the most productive and influential country, institution, and author, respectively. The journal with the most publications and citations on autophagy in lung cancer was the International Journal of Molecular Sciences (93 publications; 3,948 citations). An analysis of keyword co-occurrence showed that related research topics were divided into five clusters: 1) Mechanisms influencing autophagy in lung cancer and the role of autophagy in lung cancer; 2) Effect of autophagy on the biological behavior of lung cancer; 3) Regulatory mechanisms of 2 cell death processes: autophagy and apoptosis in lung cancer cells; 4) Role of autophagy in lung cancer treatment and drug resistance; and 5) Role of autophagy-related genes in the occurrence and development of lung cancer. Cell proliferation, migration, epithelial-mesenchymal transition, and tumor microenvironment were the latest high-frequency keywords that represented promising future research directions. Conclusion: This is the first comprehensive study describing the knowledge structure and emerging frontiers of research on autophagy in lung cancer from 2013 to 2022 by means of a bibliometric analysis. The study points to promising future research directions focusing on in-depth autophagy mechanisms, clinical applications, and potential therapeutic strategies, providing a valuable reference for researchers in the field. Systematic Review Registration: [https://systematicreview.gov/], identifier [registration number].
Collapse
Affiliation(s)
| | | | - Ying Piao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
14
|
Xiao Y, Zhou H, Cui Y, Zhu X, Li S, Yu C, Jiang N, Liu L, Liu F. Schisandrin A enhances pathogens resistance by targeting a conserved p38 MAPK pathway. Int Immunopharmacol 2024; 128:111472. [PMID: 38176342 DOI: 10.1016/j.intimp.2023.111472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Schizandrin A (SA), also known as deoxyschizandrin, is one of the most biologically active lignans isolated from the traditional Chinese medicine Fructus schisandrae chinensis. Schisandrin A has proven benefits for anti-cancer, anti-inflammation, hepatoprotection, anti-oxidation, neuroprotection, anti-diabetes. But the influence of Schisandrin A to the innate immune response and its molecular mechanisms remain obscure. In this study, we found that Schisandrin A increased resistance to not only the Gram-negative pathogens Pseudomonas aeruginosa and Salmonella enterica but also the Gram-positive pathogen Listeria monocytogenes. Meanwhile, Schisandrin A protected the animals from the infection by enhancing the tolerance to the pathogens infection rather than by reducing the bacterial burden. Through the screening of the conserved immune pathways in Caenorhabditis elegans, we found that Schisandrin A enhanced innate immunity via p38 MAPK pathway. Furthermore, Schisandrin A increased the expression of antibacterial peptide genes, such as K08D8.5, lys-2, F35E12.5, T24B8.5, and C32H11.12 by activation PMK-1/p38 MAPK. Importantly, Schisandrin A-treated mice also enhanced resistance to P. aeruginosa PA14 infection and significantly increased the levels of active PMK-1. Thus, promoted PMK-1/p38 MAPK-mediated innate immunity by Schisandrin A is conserved from worms to mammals. Our work provides a conserved mechanism by which Schisandrin A enhances innate immune response and boosts its therapeutic application in the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Hanlin Zhou
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yingwen Cui
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Sanhua Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Changyan Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nian Jiang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Liu Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Fang Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
15
|
Hou J, Huang H, Xie J, Yu W, Hao H, Li H. KLHDC7B as a novel diagnostic biomarker in urine exosomal mRNA promotes bladder urothelial carcinoma cell proliferation and migration, inhibits apoptosis. Mol Carcinog 2024; 63:286-300. [PMID: 37888201 DOI: 10.1002/mc.23652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Bladder cancer is a common kind of urinary system cancer, in which bladder urothelial carcinoma (BLCA) comprises approximately 90% of all bladder cancer types. In our previous study, we discovered KLHDC7B in urine exosomal messenger RNA (mRNA) as a prospective molecular marker for bladder cancer detection. To systematically study the role and mechanism of KLHDC7B in BLCA, we focused on the most common type of BLCA in this study. First, we used RNA sequencing to discover that KLHDC7B was considerably increased in BLCA patients' urine exosomes compared to healthy controls. Then, we validated this result in an independent cohort and identified it as an effective tool for diagnosing and distinguishing high-grade and low-grade BLCA. Finally, we studied the role and mechanism of KLHDC7B in BLCA at the cellular level, providing a functional basis for its expression as a novel laboratory diagnostic biomarker for BLCA exosomal mRNA, which has important theoretical and clinical significance.
Collapse
Affiliation(s)
- Jiayin Hou
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Haiming Huang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Junyi Xie
- Department of Urology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Han Hao
- Department of Urology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Haixia Li
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| |
Collapse
|
16
|
Xiao B, Jiang Y, Yuan S, Cai L, Xu T, Jia L. Silibinin, a potential fasting mimetic, inhibits hepatocellular carcinoma by triggering extrinsic apoptosis. MedComm (Beijing) 2024; 5:e457. [PMID: 38222315 PMCID: PMC10784426 DOI: 10.1002/mco2.457] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024] Open
Abstract
Fasting, without inducing malnutrition, has been shown to have various beneficial effects, including the inhibition of tumor initiation and progression. However, prolonged fasting poses challenges for many cancer patients, particularly those in intermediate and terminal stages. Thus, there is an urgent need for the development of fasting mimetics which harness the protective effects of fasting but more suitable for patients. In this study, we first highlighted the pivotal role of silibinin in AMP-activated protein kinase (AMPK) pathway and may serve, as a potential fasting mimetic via screening hepatoprotective drugs. Further metabolic analysis showed that silibinin inhibited the adenosine triphosphate (ATP) levels, glucose uptake and diminished glycolysis process, which further confirmed that silibinin served as a fasting mimetic. In addition, fasting synergized with silibinin, or used independently, to suppress the growth of hepatocellular carcinoma (HCC) in vivo. Mechanistically, silibinin upregulated death receptor 5 (DR5) through AMPK activation, and thus promoting extrinsic apoptosis and inhibiting HCC growth both in vitro and in vivo. Inhibition of AMPK using small interfering RNA (siRNA) or compound C, an AMPK inhibitor, significantly attenuated the upregulation of DR5 and the apoptotic response induced by silibinin. These findings suggest that silibinin holds promise as a fasting mimetic and may serve as an adjuvant drug for HCC treatment.
Collapse
Affiliation(s)
- Biying Xiao
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yanyu Jiang
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shuying Yuan
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lili Cai
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Tong Xu
- Departmnent of OncologyAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Lijun Jia
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
17
|
Zhu L, Wang Y, Huang X, Liu X, Ye B, He Y, Yu H, Lv W, Wang L, Hu J. Schizandrin A induces non-small cell lung cancer apoptosis by suppressing the epidermal growth factor receptor activation. Cancer Med 2024; 13:e6942. [PMID: 38376003 PMCID: PMC10877655 DOI: 10.1002/cam4.6942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 02/21/2024] Open
Abstract
OBJECTIVE The purpose of this study is to explore the biological mechanism of Schizandrin A (SchA) inducing non-small cell lung cancer (NSCLC) apoptosis. METHODS The reverse molecular docking tool "Swiss Target Prediction" was used to predict the targets of SchA. Protein-protein interaction analysis was performed on potential targets using the String database. Functional enrichment analyses of potential targets were performed with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. The conformation of SchA binding to target was simulated by chemical-protein interactomics and molecular docking. The effect of SchA on the expression and phosphorylation level of EGFR was detected by Western blot. Lipofectamine 3000 and EGFR plasmids were used to overexpress EGFR. Apoptosis was tested with Annexin V-FITC and propidium iodide staining, and cell cycle was detected by propidium iodide staining. RESULTS The "Swiss Target Prediction" database predicted 112 and 111 targets based on the 2D and 3D structures of SchA, respectively, of which kinases accounted for the most, accounting for 24%. Protein interaction network analyses showed that molecular targets such as ERBB family and SRC were at the center of the network. Functional enrichment analyses indicated that ERBB-related signaling pathways were enriched. Compound-protein interactomics and molecular docking revealed that SchA could bind to the ATP-active pocket of the EGFR tyrosine kinase domain. Laboratory results showed that SchA inhibited the phosphorylation of EGFR. Insulin could counteract the cytotoxic effect of SchA. EGFR overexpression and excess EGF or IGF-1 had limited impacts on the cytotoxicity of SchA. CONCLUSIONS Network pharmacology analyses suggested that ERBB family members may be the targets of SchA. SchA can inhibit NSCLC at least in part by inhibiting EGFR phosphorylation, and activating the EGFR bypass can neutralize the cytotoxicity of SchA.
Collapse
Affiliation(s)
- Linhai Zhu
- Department of Thoracic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yanye Wang
- Department of Thoracic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xuhua Huang
- Department of Thoracic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xide Liu
- Department of ArthropathyZhejiang University of Traditional Chinese Medicine Affiliated Integrated Chinese and Western Medicine HospitalHangzhouChina
| | - Bo Ye
- Department of Thoracic SurgeryHangzhou Red Cross HospitalHangzhouChina
| | - Yi He
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Luming Wang
- Department of Thoracic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical device of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
18
|
Arumugam T, Ramalingam A, Guerroudj AR, Sambandam S, Boukabcha N, Chouaih A. Conformation and vibrational spectroscopic analysis of 2,6-bis(4-fluorophenyl)-3,3-dimethylpiperidin-4-one (BFDP) by DFT method: A potent anti-Parkinson's, anti-lung cancer, and anti-human infectious agent. Heliyon 2023; 9:e21315. [PMID: 37954314 PMCID: PMC10637958 DOI: 10.1016/j.heliyon.2023.e21315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
The potential of 2,6-bis(4-fluorophenyl)-3,3-dimethylpiperidin-4-one (BFDP) as an anti-Parkinson's, anti-lung cancer, and anti-human infectious agent was extensively assessed in the current study. To accomplish this, the compound BFDP was synthesised and analysed using several spectroscopic approaches, such as NMR, mass and FT-IR spectral studies. The computational calculations for the molecule were carried out using density functional theory (DFT) at the B3LYP/6-311G++ (d,p) level of theory. A X-ray diffraction (XRD) study allows us to analyse the crystalline structure of our BFDP molecule. Intermolecular interactions were assessed using 3D Hirshfeld surfaces (3D-HS) and 2D fingerprint plots. AIM and NCI-RDG were done using quantum calculations and the DFT technique, and topological ELF and LOL, as well as vibrational parameters, have been obtained. The thermodynamic and thermal properties of the BFDP compound were determined. To investigate the pharmacokinetic characteristics of BFDP, a molecular docking study and an in silico ADMET study were done.
Collapse
Affiliation(s)
- Thangamani Arumugam
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
- Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Arulraj Ramalingam
- Department of Electrical and Computer Engineering, National University of Singapore, 117 583, Singapore
| | - Ahlam Roufieda Guerroudj
- Laboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University of Mostaganem, 27000 Mostaganem, Algeria
| | - Sivakumar Sambandam
- Research and Development Centre, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
- BPJ College of Arts and Science, Kozhai, Srimushnam, Cuddalore 608703, Tamil Nadu, India
| | - Nourdine Boukabcha
- Laboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University of Mostaganem, 27000 Mostaganem, Algeria
- Chemistry Department, Faculty of Exact Sciences and Informatic, Hassiba Benbouali University, Chlef, 02000, Algeria
| | - Abdelkader Chouaih
- Laboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University of Mostaganem, 27000 Mostaganem, Algeria
| |
Collapse
|
19
|
Jia M, Zhou L, Lou Y, Yang X, Zhao H, Ouyang X, Huang Y. An analysis of the nutritional effects of Schisandra chinensis components based on mass spectrometry technology. Front Nutr 2023; 10:1227027. [PMID: 37560060 PMCID: PMC10408133 DOI: 10.3389/fnut.2023.1227027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
OBJECTIVE Schisandra chinensis (Turcz.) Baill. (S. chinensis) is a Traditional Chinese medicinal herb that can be used both for medicinal purposes and as a food ingredient due to its beneficial properties, and it is enriched with a wide of natural plant nutrients, including flavonoids, phenolic acids, anthocyanins, lignans, triterpenes, organic acids, and sugars. At present, there is lack of comprehensive study or systemic characterization of nutritional and active ingredients of S. chinensis using innovative mass spectrometry techniques. METHODS The comprehensive review was conducted by searching the PubMed databases for relevant literature of various mass spectrometry techniques employed in the analysis of nutritional components in S. chinensis, as well as their main nutritional effects. The literature search covered the past 5 years until March 15, 2023. RESULTS The potential nutritional effects of S. chinensis are discussed, including its ability to enhance immunity, function as an antioxidant, anti-allergen, antidepressant, and anti-anxiety agent, as well as its ability to act as a sedative-hypnotic and improve memory, cognitive function, and metabolic imbalances. Meanwhile, the use of advanced mass spectrometry detection technologies have the potential to enable the discovery of new nutritional components of S. chinensis, and to verify the effects of different extraction methods on these components. The contents of anthocyanins, lignans, organic acids, and polysaccharides, the main nutritional components in S. chinensis, are also closely associated to its quality. CONCLUSION This review will provide guidelines for an in-depth study on the nutritional value of S. chinensis and for the development of healthy food products with effective components.
Collapse
Affiliation(s)
- Mengzhen Jia
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Li Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanyuan Lou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Hangyu Zhao
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Digestive Disease Section, Yale University, New Haven, CT, United States
| | - Yanjie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Bian Y, Xue M, Guo X, Jiang W, Zhao Y, Zhang Z, Wang X, Hu Y, Zhang Q, Dun W, Zhang L. Cinobufagin induces acute promyelocytic leukaemia cell apoptosis and PML-RARA degradation in a caspase-dependent manner by inhibiting the β-catenin signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:1801-1811. [PMID: 36121296 PMCID: PMC9518602 DOI: 10.1080/13880209.2022.2118792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Acute promyelocytic leukaemia (APL) is a malignant hematological tumour characterized by the presence of promyelocytic leukaemia-retinoic acid receptor A (PML-RARA) fusion protein. Cinobufagin (CBG) is one of the main effective components of toad venom with antitumor properties. However, only a few reports regarding the CBG treatment of APL are available. OBJECTIVE We explored the effect and mechanism of action of CBG on NB4 and NB4-R1 cells. MATERIALS AND METHODS We evaluated the viability of NB4 and NB4-R1 cells treated with 0, 20, 40, and 60 nM CBG for 12, 24, and 48 h. After treatment with CBG for 24 h, Bcl-2 associated X (Bax), B-cell lymphoma 2 (Bcl-2), β-catenin, cyclin D1, and c-myc expression was detected using western blotting and real-time polymerase chain reaction. Caspase-3 and PML-RARA expression levels were detected using western blotting. RESULTS CBG inhibited the viability of NB4 and NB4-R1 cells. The IC50 values of NB4 and NB4-R1 cells treated with CBG for 24 h were 45.2 nM and 37.9 nM, respectively. CBG induced NB4 and NB4-R1 cell apoptosis and PML-RARA degradation in a caspase-dependent manner and inhibited the β-catenin signalling pathway. DISCUSSION AND CONCLUSION CBG induced NB4 and NB4-R1 cell apoptosis and PML-RARA degradation in a caspase-dependent manner by inhibiting the β-catenin signalling pathway. This study proposes a novel treatment strategy for patients with APL, particularly those with ATRA-resistant APL.
Collapse
MESH Headings
- Humans
- Amphibian Venoms/pharmacology
- Apoptosis
- bcl-2-Associated X Protein
- beta Catenin
- Bufanolides
- Caspase 3
- Caspases
- Cyclin D1
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/pharmacology
- Receptors, Retinoic Acid
Collapse
Affiliation(s)
- Yaoyao Bian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Xue
- College of Basic Medical Sciences, Institute of TCM-related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinlong Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjuan Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaofeng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongkang Hu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenliang Dun
- Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
21
|
Yi BS, Ma BQ, Li BZ, Xing YJ. Schizandrin A enhances killing effect of oxaliplatin on colorectal cancer cells. Shijie Huaren Xiaohua Zazhi 2022; 30:956-963. [DOI: 10.11569/wcjd.v30.i21.956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Schizandrin A (SchA) has anticancer and multidrug resistance-reversing effects in a variety of tumors, but its effect on oxaliplatin (L-OHP) in colorectal cancer cells is not clear.
AIM To investigate whether SchA can enhance the killing effect of L-OHP on colorectal cancer cells, and to analyze the possible mechanism involved.
METHODS Colorectal cancer cells were divided into control group, SchA treatment group, L-OHP treatment group, and SchA + L-OHP treatment group. Cell viability was detected by MTT assay. Cell apoptosis was detected by flow cytometry. The contents of reactive oxygen species (ROS) in cells was detected using a ROS probe. Mitochondrial membrane potential was evaluated by using the 1,1',3,3'-tetraethyl-5,5',6,6'-tetrachloroimidacarbocyanine iodide (JC-1) probe. Western blot was used to detect the expression of B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax), cytochrome c (Cyt c), and cleaved cysteine proteinase-3 (caspase-3) in the cells.
RESULTS Compared with the L-OHP treatment group, the viability of colorectal cancer cells in the SchA + L-OHP treatment group was significantly decreased, while apoptosis was significantly increased. SchA could enhance ROS accumulation, Bax and cleaved caspase-3 expression, and mitochondrial Cyt c release, and decrease Bcl-2 expression in colorectal cancer cells induced by L-OHP.
CONCLUSION SchA enhances the killing effect of L-OHP on colorectal cancer cells, and the mechanism may be related to the enhancement of intracellular ROS accumulation and the expression of apoptosis-related proteins.
Collapse
Affiliation(s)
- Bi-Shun Yi
- Department of Trauma, Acute Abdomen, Hernia Surgery and Abdominal Surgery, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Bai-Qiang Ma
- Department of Trauma, Acute Abdomen, Hernia Surgery and Abdominal Surgery, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Bing-Zhen Li
- Department of Trauma, Acute Abdomen, Hernia Surgery and Abdominal Surgery, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Yong-Jun Xing
- Department of Trauma, Acute Abdomen, Hernia Surgery and Abdominal Surgery, Lishui City People's Hospital, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
22
|
Su Y, Sai Y, Zhou L, Liu Z, Du P, Wu J, Zhang J. Current insights into the regulation of programmed cell death by TP53 mutation in cancer. Front Oncol 2022; 12:1023427. [PMID: 36313700 PMCID: PMC9608511 DOI: 10.3389/fonc.2022.1023427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gene mutation is a complicated process that influences the onset and progression of cancer, and the most prevalent mutation involves the TP53 gene. One of the ways in which the body maintains homeostasis is programmed cell death, which includes apoptosis, autophagic cell death, pyroptosis, ferroptosis, NETosis, and the more recently identified process of cuprotosis. Evasion of these cell deaths is a hallmark of cancer cells, and our elucidation of the way these cells die helps us better understands the mechanisms by which cancer arises and provides us with more ways to treat it.Studies have shown that programmed cell death requires wild-type p53 protein and that mutations of TP53 can affect these modes of programmed cell death. For example, mutant p53 promotes iron-dependent cell death in ferroptosis and inhibits apoptotic and autophagic cell death. It is clear that TP53 mutations act on more than one pathway to death, and these pathways to death do not operate in isolation. They interact with each other and together determine cell death. This review focuses on the mechanisms via which TP53 mutation affects programmed cell death. Clinical investigations of TP53 mutation and the potential for targeted pharmacological agents that can be used to treat cancer are discussed.
Collapse
Affiliation(s)
- Yali Su
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Yingying Sai
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Linfeng Zhou
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Zeliang Liu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Panyan Du
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Jinghua Wu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| | - Jinghua Zhang
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| |
Collapse
|
23
|
An mTOR and DNA-PK dual inhibitor CC-115 hinders non-small cell lung cancer cell growth. Cell Death Dis 2022; 8:293. [PMID: 35717530 PMCID: PMC9206683 DOI: 10.1038/s41420-022-01082-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Molecularly-targeted agents are still urgently needed for better non-small cell lung cancer (NSCLC) therapy. CC-115 is a potent DNA-dependent protein kinase (DNA-PK) and mammalian target of rapamycin (mTOR) dual blocker. We evaluated its activity in different human NSCLC cells. In various primary human NSCLC cells and A549 cells, CC-115 potently inhibited viability, cell proliferation, cell cycle progression, and hindered cell migration/invasion. Apoptosis was provoked in CC-115-stimulated NSCLC cells. The dual inhibitor, however, was unable to induce significant cytotoxic and pro-apoptotic activity in the lung epithelial cells. In primary NSCLC cells, CC-115 blocked activation of mTORC1/2 and DNA-PK. Yet, CC-115-induced primary NSCLC cell death was more potent than combined inhibition of DNA-PK plus mTOR. Further studies found that CC-115 provoked robust oxidative injury in primary NSCLC cells, which appeared independent of mTOR-DNA-PK dual blockage. In vivo studies showed that CC-115 oral administration in nude mice remarkably suppressed primary NSCLC cell xenograft growth. In CC-115-treated NSCLC xenograft tissues, mTOR-DNA-PK dual inhibition and oxidative injury were detected. Together, CC-115 potently inhibits NSCLC cell growth.
Collapse
|
24
|
Identification of Candidate lncRNA and Pseudogene Biomarkers Associated with Carbon-Nanotube-Induced Malignant Transformation of Lung Cells and Prediction of Potential Preventive Drugs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052936. [PMID: 35270630 PMCID: PMC8910615 DOI: 10.3390/ijerph19052936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023]
Abstract
Mounting evidence has linked carbon nanotube (CNT) exposure with malignant transformation of lungs. Long non-coding RNAs (lncRNAs) and pseudogenes are important regulators to mediate the pathogenesis of diseases, representing potential biomarkers for surveillance of lung carcinogenesis in workers exposed to CNTs and possible targets to develop preventive strategies. The aim of this study was to screen crucial lncRNAs and pseudogenes and predict preventive drugs. GSE41178 (small airway epithelial cells exposed to single- or multi-walled CNTs or dispersant control) and GSE56104 (lung epithelial cells exposed to single-walled CNTs or dispersant control) datasets were downloaded from the Gene Expression Omnibus database. Weighted correlation network analysis was performed for these two datasets, and the turquoise module was preserved and associated with CNT-induced malignant phenotypes. In total, 24 lncRNAs and 112 pseudogenes in this module were identified as differentially expressed in CNT-exposed cells compared with controls. Four lncRNAs (MEG3, ARHGAP5-AS1, LINC00174 and PVT1) and five pseudogenes (MT1JP, MT1L, RPL23AP64, ZNF826P and TMEM198B) were predicted to function by competing endogenous RNA (MEG3/RPL23AP64-hsa-miR-942-5p-CPEB2/PHF21A/BAMBI; ZNF826P-hsa-miR-23a-3p-SYNGAP1, TMEM198B-hsa-miR-15b-5p-SYNGAP1/CLU; PVT1-hsa-miR-423-5p-PSME3) or co-expression (MEG3/MT1L/ZNF826P/MT1JP-ATM; ARHGAP5-AS1-TMED10, LINC00174-NEDD4L, ARHGAP5-AS1/PVT1-NIP7; MT1L/MT1JP-SYNGAP1; MT1L/MT1JP-CLU) mechanisms. The expression levels and prognosis of all genes in the above interaction pairs were validated using lung cancer patient samples. The receiver operating characteristic curve analysis showed the combination of four lncRNAs, five pseudogenes or lncRNAs + pseudogenes were all effective for predicting lung cancer (accuracy >0.8). The comparative toxicogenomics database suggested schizandrin A, folic acid, zinc or gamma-linolenic acid may be preventive drugs by reversing the expression levels of lncRNAs or pseudogenes. In conclusion, this study highlights lncRNAs and pseudogenes as candidate diagnostic biomarkers and drug targets for CNT-induced lung cancer.
Collapse
|