1
|
Wang H, Liao J, Wang W, Zhang J. A crucial role of miR-155 in the pathomechanism of acute kidney injury. Front Pharmacol 2025; 16:1570000. [PMID: 40308762 PMCID: PMC12040948 DOI: 10.3389/fphar.2025.1570000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Acute kidney injury (AKI) is one of the nonnegligible causes of mortality worldwide. It is important to understand the underlying molecular mechanism of AKI to effective therapeutic targets. miR-155 has been found to play a pivotal role in the development of AKI, while a comprehensive review on this topic is currently still lacking. Based on this review, we found that miR-155and is strongly correlated with the pathophysiological development of AKI by modulating cell apoptosis, inflammation, and proliferation. Mechanistically, miR-155 exerts a promoting function in multiple types of AKI by regulating multiple proteins or signaling pathways, such as SOCS-1, ERRFI1, SOCS-1, TRF1, CDK12, and TCF4/Wnt/β-catenin pathway. The inhibition of miR-155 has a renoprotective effect in drug- or substance-induced AKI. Therefore, drugs or biological compounds targeted by miR-155 and its pathways may recover the process of AKI by altering apoptosis, inflammation, and pyroptosis. A miRNA nanocarrier system that has already been developed could offer a novel approach to treat AKI, providing a direction for future research. Further large-scale studies are necessary to elucidate the clinical significance of miR-155 as a potential therapeutic target for multiple types of AKI.
Collapse
Affiliation(s)
- Hui Wang
- Department of Urology, The First People’s Hospital of Linhai, Linhai, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Wei Wang
- Department of Urology, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People’s Hospital), Hangzhou Medical College, Taizhou, Zhejiang, China
| | - Jianhua Zhang
- Department of Urology, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People’s Hospital), Hangzhou Medical College, Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Cao H, Li Z, Ye J, Lv Y, Zhang C, Liang T, Wang Y. Emerging roles of exosomes in the diagnosis and treatment of kidney diseases. Front Pharmacol 2025; 16:1525314. [PMID: 40308771 PMCID: PMC12041035 DOI: 10.3389/fphar.2025.1525314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
The complex etiology and spectrum of kidney diseases necessitate vigilant attention; the focus on early diagnosis and intervention in kidney diseases remains a critical issue in medical research. Recently, with the expanding studies on extracellular vesicles, exosomes have garnered increasing interest as a promising tool for the diagnosis and treatment of kidney diseases. Exosomes are nano-sized extracellular vesicles that transport a diverse array of bioactive substances, which can influence various pathological processes associated with kidney diseases and exhibit detrimental or beneficial effects. Within the kidney, exosomes derived from the glomeruli and renal tubules possess the ability to enter systemic circulation or urine. The biomarkers they carry can reflect alterations in the pathological state of the kidneys, thereby offering novel avenues for early diagnosis. Furthermore, research studies have confirmed that exosomes originating from multiple cell types exhibit therapeutic potential in treating kidney disease; notably, those derived from mesenchymal stem cells (MSCs) have shown significant treatment efficacy. This comprehensive review summarizes the contributions of exosomes from different cell types within the kidneys while exploring their physiological and pathological roles therein. Additionally, we emphasize recent advancements in exosome applications for the diagnosis and treatment of various forms of kidney diseases over the past decades. We not only introduce the urinary and blood biomarkers linked to kidney diseases found within exosomes but also explore their therapeutic effects. Finally, we discuss existing challenges and future directions concerning the clinical applications of exosomes for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Huanhuan Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixi Li
- Department of Clinical Laboratory, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Ye
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Lv
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Wei J, Xie Z, Kuang X. Extracellular Vesicles in Renal Inflammatory Diseases: Revealing Mechanisms of Extracellular Vesicle-Mediated Macrophage Regulation. Int J Mol Sci 2025; 26:3646. [PMID: 40332144 PMCID: PMC12027779 DOI: 10.3390/ijms26083646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Renal inflammatory diseases are a group of severe conditions marked by significant morbidity and mortality. Extracellular vesicles (EVs), as facilitators of intercellular communication, have been recognized as pivotal regulators of renal inflammatory diseases, significantly contributing to these conditions by modulating immune responses among other mechanisms. This review highlights the intricate mechanisms through which EVs modulate macrophage-kidney cell interactions by regulating macrophages, the principal immune cells within the renal milieu. This regulation subsequently influences the pathophysiology of renal inflammatory diseases such as acute kidney injury and chronic kidney disease. Furthermore, understanding these mechanisms offers novel opportunities to alleviate the severe consequences associated with renal inflammatory diseases. In addition, we summarize the therapeutic landscape based on EV-mediated macrophage regulatory mechanisms, highlighting the potential of EVs as biomarkers and therapeutic targets as well as the challenges and limitations of translating therapies into clinical practice.
Collapse
Affiliation(s)
- Jiatai Wei
- The Second Clinical Medical College, Nanchang University, Nanchang 330031, China; (J.W.); (Z.X.)
| | - Zijie Xie
- The Second Clinical Medical College, Nanchang University, Nanchang 330031, China; (J.W.); (Z.X.)
| | - Xiaodong Kuang
- Pathology Teaching and Research Office, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
4
|
Wang W, Wang J, Liao D. Effects and Mechanisms of Extracellular Vesicles in Different Models of Acute Kidney Injury. Stem Cells Int 2025; 2025:1075016. [PMID: 40165854 PMCID: PMC11957863 DOI: 10.1155/sci/1075016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Acute kidney injury (AKI) is a rapid decline in renal function caused by ischemia/reperfusion (I/R), renal toxic injury, and sepsis. While the precise molecular mechanisms underlying AKI are still under investigation, current therapeutic approaches remain insufficient. In recent years, there has been growing evidence that mesenchymal stem cells (MSCs) have great potential in accelerating renal repair after AKI in various preclinical models, while there has been extensive research on extracellular vesicles (EVs) as therapeutic mediators in AKI models, and they are considered to be superior to MSCs as new regenerative therapies. EVs are nanoparticles secreted by various types of cells under physiological and pathological conditions. EVs derived from various sources possess biomarker potential and play crucial roles in mediating cellular communication between kidney cells and other tissue cells by transmitting signal molecules. These vesicles play a direct and indirect role in regulating the pathophysiological mechanisms of AKI and contribute to the occurrence, development, treatment, and repair of AKI. In this review, we briefly outline the essential characteristics of EVs, focus on the multiple molecular mechanisms currently involved in the protection of EVs against different types of AKI, and further discuss the potential targets of EVs from different sources in the treatment of AKI. Finally, we summarized the deficiencies in the production and treatment of EVs and the current strategies for improvement.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Nephrology, Mianyang Central Hospital, Mianyang 621000, China
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Beijing 100080, China
| | - Dan Liao
- Department of Nephrology, Mianyang Central Hospital, Mianyang 621000, China
| |
Collapse
|
5
|
Wang X, Li X, Tan L, Zhang F, Zhang J, Zhao X, Zhang Y, Du G, Liu W. Identification and Validation of Lipid Metabolism Gene FASN-Associated miRNA in Wilms Tumor. Biochem Genet 2025; 63:167-182. [PMID: 38416272 DOI: 10.1007/s10528-024-10703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
miRNA has been a research hotspot in recent years and its scope of action is very wide, involving the regulation of cell proliferation, differentiation, apoptosis, and other biological behaviors. This study intends to explore the role of miRNA in the lipid metabolism and development of Wilms tumor (WT) by detecting and analyzing the differences in the expression profiles of miRNAs between the tumor and adjacent normal tissue. Gene detection was performed in tumor tissues and adjacent normal tissues of three cases of WT to screen differentially expressed miRNAs (DEMs). According to our previous research, FASN, which participates in the lipid metabolism pathway, may be a target of WT. The starBase database was used to predict FASN-targeted miRNAs. The above two groups of miRNAs were intersected to obtain FASN-targeted DEMs and then GO Ontology (GO) functional enrichment analysis of FASN-targeted DEMs was performed. Finally, the FASN-targeted DEMs were compared and further verified by qRT‒PCR. Through gene sequencing and differential analysis, 287 DEMs were obtained, including 132 upregulated and 155 downregulated miRNAs. The top ten DEMs were all downregulated. Fourteen miRNAs targeted by the lipid metabolism-related gene FASN were predicted by starBase. After intersection with the DEMs, three miRNAs were finally obtained, namely, miR-107, miR-27a-3p, and miR-335-5p. GO enrichment analysis was mainly concentrated in the Parkin-FBXW7-Cul1 ubiquitin ligase complex and response to prostaglandin E. Further experimental verification showed that miR-27a-3p was significantly correlated with WT (P = 0.0018). Imbalanced expression of miRNAs may be involved in the occurrence and development of WT through lipid metabolism. The expression of miR-27a-3p is related to the malignant degree of WT, and it may become the target of diagnosis, prognosis, and treatment of WT in the later stage.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, 250021, Shandong, People's Republic of China
- Post-Doctoral Research Station of Clinical Medicine, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, People's Republic of China
| | - Xiao Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, Shandong, People's Republic of China
| | - Lin Tan
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, 412007, Hunan, People's Republic of China
| | - Fengjun Zhang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, People's Republic of China
| | - Jing Zhang
- Department of Pediatrics, Shandong Second Provincial General Hospital, Jinan, 250022, Shandong, People's Republic of China
| | - Xu Zhao
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, People's Republic of China
| | - Yongfei Zhang
- Department of Dermatology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Guoqiang Du
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, 250021, Shandong, People's Republic of China.
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Tan RZ, Bai QX, Jia LH, Wang YB, Li T, Lin JY, Liu J, Su HW, Kantawong F, Wang L. Epigenetic regulation of macrophage function in kidney disease: New perspective on the interaction between epigenetics and immune modulation. Biomed Pharmacother 2025; 183:117842. [PMID: 39809127 DOI: 10.1016/j.biopha.2025.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
The interaction between renal intrinsic cells and macrophages plays a crucial role in the onset and progression of kidney diseases. In recent years, epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA regulation have become essential windows for understanding these processes. This review focuses on how renal intrinsic cells (including tubular epithelial cells, podocytes, and endothelial cells), renal cancer cells, and mesenchymal stem cells influence the function and polarization status of macrophages through their own epigenetic alterations, and how the epigenetic regulation of macrophages themselves responds to kidney damage, thus participating in renal inflammation, fibrosis, and repair. Moreover, therapeutic studies targeting these epigenetic interaction mechanisms have found that the application of histone deacetylase inhibitors, histone methyltransferase inhibitors, various nanomaterials, and locked nucleic acids against non-coding RNA have positive effects on the treatment of multiple kidney diseases. This review summarizes the latest research advancements in these epigenetic regulatory mechanisms and therapies, providing a theoretical foundation for further elucidating the pathogenesis of kidney diseases and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Qiu-Xiang Bai
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long-Hao Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yi-Bing Wang
- Department of Medical Imaging, Southwest Medical University, Luzhou 646000, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Lin
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jian Liu
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hong-Wei Su
- Department of Urology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
7
|
Janosevic D, De Luca T, Melo Ferreira R, Gisch DL, Cheng YH, Hato T, Luo J, Yang Y, Hodgin JB, Phillips CL, Dagher PC, Eadon MT. miRNA and mRNA Signatures in Human Acute Kidney Injury Tissue. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:102-114. [PMID: 39332675 PMCID: PMC11686445 DOI: 10.1016/j.ajpath.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024]
Abstract
Acute kidney injury (AKI) is an important contributor to the development of chronic kidney disease (CKD). There is a need to understand molecular mediators that drive recovery and progression to CKD. In particular, the regulatory role of miRNAs in AKI is poorly understood. Herein, miRNA and mRNA sequencing were performed on biobanked human kidney tissues obtained during the routine care of subjects with a diagnosis of AKI, minimal change disease, or on nephrectomy tissue with no known kidney disease. mRNA analysis revealed that nephrectomy tissues exhibited an injury signature similar to that of AKI which was not identified in minimal change disease samples. The transcriptomic signature of human AKI was enriched in pathways involved in cell adhesion, epithelial-to-mesenchymal transition, and cell cycle arrest (eg, CDH6, ITGB6, CDKN1A). In AKI, up-regulation of miR-146a, miR-155, miR-142, and miR-122 was associated with pathways involved in immune cell recruitment, inflammation, and epithelial-to-mesenchymal transition. miR-122 and miR-146 were associated with down-regulation of DDR2 and IGFBP6, which are genes involved in the recovery and progression of kidney disease. These data provide integrated miRNA signatures that complement mRNA and other epigenetic data available in kidney atlases.
Collapse
Affiliation(s)
- Danielle Janosevic
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Thomas De Luca
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ricardo Melo Ferreira
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Debora L Gisch
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ying-Hua Cheng
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Takashi Hato
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jinghui Luo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Yingbao Yang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Carrie L Phillips
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Pierre C Dagher
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael T Eadon
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana; Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
8
|
Li J, Yan X, Wu Z, Shen J, Li Y, Zhao Y, Du F, Li M, Wu X, Chen Y, Xiao Z, Wang S. Role of miRNAs in macrophage-mediated kidney injury. Pediatr Nephrol 2024; 39:3397-3410. [PMID: 38801452 DOI: 10.1007/s00467-024-06414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Macrophages, crucial components of the human immune system, can be polarized into M1/M2 phenotypes, each with distinct functions and roles. Macrophage polarization has been reported to be significantly involved in the inflammation and fibrosis observed in kidney injury. MicroRNA (miRNA), a type of short RNA lacking protein-coding function, can inhibit specific mRNA by partially binding to its target mRNA. The intricate association between miRNAs and macrophages has been attracting increasing interest in recent years. This review discusses the role of miRNAs in regulating macrophage-mediated kidney injury. It shows how miRNAs can influence macrophage polarization, thereby altering the biological function of macrophages in the kidney. Furthermore, this review highlights the significance of miRNAs derived from exosomes and extracellular vesicles as a crucial mediator in the crosstalk between macrophages and kidney cells. The potential of miRNAs as treatment applications and biomarkers for macrophage-mediated kidney injury is also discussed.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xida Yan
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, China
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yalin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
9
|
Cheng Y, Liu L, Ye Y, He Y, Hu W, Ke H, Guo ZY, Shao G. Roles of macrophages in lupus nephritis. Front Pharmacol 2024; 15:1477708. [PMID: 39611168 PMCID: PMC11602334 DOI: 10.3389/fphar.2024.1477708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
LN is a serious complication of systemic lupus erythematosus (SLE), affecting up to 60% of patients with SLE and may lead to end-stage renal disease (ESRD). Macrophages play multifaceted roles in the pathogenesis of LN, including clearance of immune complexes, antigen presentation, regulation of inflammation, and tissue repair. Macrophages are abundant in the glomeruli and tubulointerstitium of LN patients and are positively correlated with serum creatinine levels and the severity of renal pathology. It has been shown that the infiltration of macrophages is closely associated with several clinical indicators, such as serum creatinine and complement C3 levels, anti-dsDNA antibody titers, Austin score, interstitial fibrosis and renal tubular atrophy. Moreover, cytokines expressed by macrophages were upregulated at LN onset and downregulated after remission, suggesting that macrophages may serve as markers of LN pathogenesis and remission. Therapies targeting macrophages have been shown to alleviate LN. There are two main types of macrophages in the kidney: kidney-resident macrophages (KRMs) and monocyte-derived macrophages (MDMs). KRMs and MDMs play different pathological roles in LN, with KRMs promoting leukocyte recruitment at sites of inflammation by expressing monocyte chemokines, while MDMs may exacerbate autoimmune responses by presenting immune complex antigens. Macrophages exhibit high plasticity and can differentiate into various phenotypes in response to distinct environmental stimuli. M1 (proinflammatory) macrophages are linked to the progression of active SLE, whereas the M2 (anti-inflammatory) phenotype is observed during the remission phase of LN. The polarization of macrophages in LN can be manipulated through multiple pathways, such as the modulation of signaling cascades including TLR 2/1, S1P, ERS, metabolic reprogramming, and HMGB1. This paper provides a comprehensive overview of the role of macrophages in the progression of lupus nephritis (LN), and elucidates how these cells and their secretory products function as indicators and therapeutic targets for the disease in the context of diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Yaqian Cheng
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Lulu Liu
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yufei Ye
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yingxue He
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Wenwen Hu
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Haiyan Ke
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Zhi-Yong Guo
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guojian Shao
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
10
|
Fang Q, Cai Y, Chi J, Yang Y, Chen Q, Chen L, Zhang J, Ke J, Wu Y, He X. Silencing miR-155-5p alleviates hippocampal damage in kainic acid-induced epileptic rats via the Dusp14/MAPK pathway. Brain Res Bull 2024; 217:111057. [PMID: 39209069 DOI: 10.1016/j.brainresbull.2024.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Epilepsy with recurrent seizures is characterized by neuronal damage and glial proliferation induced by brain inflammation. Recurrent seizures can lead to changes in the microRNA (miRNA) spectrum, significantly influencing the inflammatory response of microglia. MiR-155-5p, as a pro-inflammatory miRNA, is increased in the epileptic brain. However, its specific role in acute seizures remains unknown. The study aimed to develop a new strategy for treating epilepsy by investigating how silencing of miR-155-5p initiated its anticonvulsive mechanism. The level of miR-155-5p was up-regulated in the hippocampus of epileptic immature rats induced by kainic acid (KA). The use of antago-miR-155-5p exerted significant beneficial effects on the seizure scores, brain discharges and cognition in immature rats following KA-induced epilepsy. Antago-miR-155-5p also inhibited neuron damage and microglial activation. Moreover, the silencing of miR-155-5p significantly inhibited the Dual-specificity phosphatase 14 (Dusp14)/ mitogen-activated protein kinase (MAPK) axis in vivo. MiR-155-5p interacted with dusp14 to regulate MAPK signaling way expression, verified by a dual-luciferase reporter assay. The results suggested that the silencing of miR-155-5p might reduce hippocampal damage in epileptic immature rats induced by KA via Dusp14/MAPK signaling way. This implied that miR-155-5p could serve as a therapeutic tool to prevent the development of epilepsy.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China.
| | - Yuehao Cai
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Jiali Chi
- Department of Pediatrics, Ningde Normal University, NingDe, Ningde, Fujian 352000, China
| | - Yating Yang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China.
| | - Libin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Jiuyun Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Department of Emergency, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian 350001, China
| | - Jun Ke
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Department of Emergency, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian 350001, China
| | - Yanchen Wu
- Department of Pediatrics, Ningde Maternal and Child Health Hospital, Ningde, Fujian 352000, China
| | - Xiaoshuang He
- Department of Pediatrics, Fuzhou First General Hospital with Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
11
|
Li B, Qi C, Zhang Y, Shi L, Zhang J, Qian H, Ji C. Frontier role of extracellular vesicles in kidney disease. J Nanobiotechnology 2024; 22:583. [PMID: 39304945 DOI: 10.1186/s12951-024-02852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Kidney diseases represent a diverse range of conditions that compromise renal function and structure which characterized by a progressive deterioration of kidney function, may ultimately necessitate dialysis or kidney transplantation as end-stage treatment options. This review explores the complex landscape of kidney diseases, highlighting the limitations of existing treatments and the pressing need for innovative strategies. The paper delves into the role of extracellular vesicles (EVs) as emerging biomarkers and therapeutic agents in the context of kidney pathophysiology. Urinary extracellular vesicles (uEVs), in particular, offer a non-invasive means of assessing renal injury and monitoring disease progression. Additionally, mesenchymal stem cell-derived EVs (MSC-EVs) are examined for their immunomodulatory and tissue repair capabilities, presenting a promising avenue for novel therapeutic interventions. And discusses the potential of engineering EVs to enhance their targeting and therapeutic efficacy. This paper systematically integrates the latest research findings and aims to provide a comprehensive overview of the role of EVs in kidney disease, providing cutting-edge insights into their potential as a diagnostic and therapeutic tool.
Collapse
Affiliation(s)
- Bei Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chen Qi
- Department of Clinical Laboratory, Suzhou Municipal Hospital of Anhui Province, Anhui, 234000, China
| | - Yifan Zhang
- College of Medical Imaging, Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Linru Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
12
|
Shi L, Zeng H, An Z, Chen W, Shan Y, Ji C, Qian H. Extracellular vesicles: Illuminating renal pathophysiology and therapeutic frontiers. Eur J Pharmacol 2024; 978:176720. [PMID: 38880217 DOI: 10.1016/j.ejphar.2024.176720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
Extracellular vesicles (EVs) are minute sacs released by cells into the extracellular milieu, harboring an array of biomolecules including proteins, nucleic acids, and lipids. Notably, a large number of studies have demonstrated the important involvement of EVs in both physiological and pathological aspects of renal function. EVs can facilitate communication between different renal cells, but it is important to recognize their dual role: they can either transmit beneficial information or lead to renal damage and worsening of existing conditions. The composition of EVs in the context of the kidneys offers valuable insights into the intricate mechanisms underlying specific renal functions or disease states. In addition, mesenchymal stem cell-derived EVs have the potential to alleviate acute and chronic kidney diseases. More importantly, the innate nanoparticle properties of EVs, coupled with their engineering potential, make them effective tools for drug delivery and therapeutic intervention. In this review, we focus on the intricate biological functions of EVs in the kidney. In addition, we explore the emerging role of EVs as diagnostic tools and innovative therapeutic agents in a range of renal diseases.
Collapse
Affiliation(s)
- Linru Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Houcheng Zeng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhongwu An
- Department of Laboratory, Lianyungang Oriental Hospital, Lianyungang, 222042, Jiangsu, China
| | - Wenya Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yunjie Shan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
13
|
Zhang Y, Cong R, Lv T, Liu K, Chang X, Li Y, Han X, Zhu Y. Islet-resident macrophage-derived miR-155 promotes β cell decompensation via targeting PDX1. iScience 2024; 27:109540. [PMID: 38577099 PMCID: PMC10993184 DOI: 10.1016/j.isci.2024.109540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/18/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Chronic inflammation is critical for the initiation and progression of type 2 diabetes mellitus via causing both insulin resistance and pancreatic β cell dysfunction. miR-155, highly expressed in macrophages, is a master regulator of chronic inflammation. Here we show that blocking a macrophage-derived exosomal miR-155 (MDE-miR-155) mitigates the insulin resistances and glucose intolerances in high-fat-diet (HFD) feeding and type-2 diabetic db/db mice. Lentivirus-based miR-155 sponge decreases the level of miR-155 in the pancreas and improves glucose-stimulated insulin secretion (GSIS) ability of β cells, thus leading to improvements of insulin sensitivities in the liver and adipose tissues. Mechanistically, miR-155 increases its expression in HFD and db/db islets and is released as exosomes by islet-resident macrophages under metabolic stressed conditions. MDE-miR-155 enters β cells and causes defects in GSIS function and insulin biosynthesis via the miR-155-PDX1 axis. Our findings offer a treatment strategy for inflammation-associated diabetes via targeting miR-155.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Rong Cong
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Tingting Lv
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Kerong Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
14
|
Lundy DJ, Szomolay B, Liao CT. Systems Approaches to Cell Culture-Derived Extracellular Vesicles for Acute Kidney Injury Therapy: Prospects and Challenges. FUNCTION 2024; 5:zqae012. [PMID: 38706963 PMCID: PMC11065115 DOI: 10.1093/function/zqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
Acute kidney injury (AKI) is a heterogeneous syndrome, comprising diverse etiologies of kidney insults that result in high mortality and morbidity if not well managed. Although great efforts have been made to investigate underlying pathogenic mechanisms of AKI, there are limited therapeutic strategies available. Extracellular vesicles (EV) are membrane-bound vesicles secreted by various cell types, which can serve as cell-free therapy through transfer of bioactive molecules. In this review, we first overview the AKI syndrome and EV biology, with a particular focus on the technical aspects and therapeutic application of cell culture-derived EVs. Second, we illustrate how multi-omic approaches to EV miRNA, protein, and genomic cargo analysis can yield new insights into their mechanisms of action and address unresolved questions in the field. We then summarize major experimental evidence regarding the therapeutic potential of EVs in AKI, which we subdivide into stem cell and non-stem cell-derived EVs. Finally, we highlight the challenges and opportunities related to the clinical translation of animal studies into human patients.
Collapse
Affiliation(s)
- David J Lundy
- Graduate Institute of Biomedical Materials & Tissue Engineering, Taipei Medical University, Taipei 235603, Taiwan
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 235603, Taiwan
- Center for Cell Therapy, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Barbara Szomolay
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Chia-Te Liao
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
15
|
Cheng HT, Ngoc Ta YN, Hsia T, Chen Y. A quantitative review of nanotechnology-based therapeutics for kidney diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1953. [PMID: 38500369 DOI: 10.1002/wnan.1953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Kidney-specific nanocarriers offer a targeted approach to enhance therapeutic efficacy and reduce off-target effects in renal treatments. The nanocarriers can achieve organ or cell specificity via passive targeting and active targeting mechanisms. Passive targeting capitalizes on the unique physiological traits of the kidney, with factors like particle size, charge, shape, and material properties enhancing organ specificity. Active targeting, on the other hand, achieves renal specificity through ligand-receptor interactions, modifying nanocarriers with molecules, peptides, or antibodies for receptor-mediated delivery. Nanotechnology-enabled therapy targets diseased kidney tissue by modulating podocytes and immune cells to reduce inflammation and enhance tissue repair, or by inhibiting myofibroblast differentiation to mitigate renal fibrosis. This review summarizes the current reports of the drug delivery systems that have been tested in vivo, identifies the nanocarriers that may preferentially accumulate in the kidney, and quantitatively compares the efficacy of various cargo-carrier combinations to outline optimal strategies and future research directions. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Hui-Teng Cheng
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Zhu Bei City, Taiwan
| | - Yen-Nhi Ngoc Ta
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu, Taiwan
| | - Tiffaney Hsia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
16
|
Shao Y, Jiang Y, Wang J, Li H, Li C, Zhang D. Inhibition of circulating exosomes release with GW4869 mitigates severe acute pancreatitis-stimulated intestinal barrier damage through suppressing NLRP3 inflammasome-mediated pyroptosis. Int Immunopharmacol 2024; 126:111301. [PMID: 38016345 DOI: 10.1016/j.intimp.2023.111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Intestinal barrier dysfunction frequently occurs as a complication in cases of severe acute pancreatitis (SAP); however, no effective therapeutic methods are available because the precise mechanism remains obscure. Recent research has elucidated the role of circulating exosomes in the progression of SAP. Therefore, the present study explored whether inhibiting circulating exosomes release would improve intestinal barrier injury triggered via SAP and investigated the possible underlying mechanism. In vivo, we found that circulating exosomes release exhibited a considerable increase in SAP rats than in SO rats, and GW4869, a suppressor of exosomes release, significantly decreased exosomes release in SAP rats. We also observed that GW4869 suppressed NLRP3 inflammasome-mediated pyroptosis within the intestine and alleviated intestinal barrier injury within SAP. Moreover, the inflammatory response and remote organ (kidney and lung) injury associated with SAP improved after GW4869 treatment. In vitro, we confirmed that depletion of exosomes with GW4869 could partially abolish the destructive effects of SAP rat plasma on the viability and barrier function of IEC-6 cells. In summary, our findings show that the suppression of the release of circulating exosomes effectively inhibits the process of pyroptosis mediated by the NOD-like receptor protein 3 (NLRP3) inflammasome and, therefore, mitigates intestinal barrier dysfunction in SAP, suggesting that circulating exosomes may be a potential target for treating SAP.
Collapse
Affiliation(s)
- Yang Shao
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China; Department of The First General Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Yingjian Jiang
- Department of The First General Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Jiang Wang
- Department of The First General Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Hongbo Li
- Department of The First General Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Chang Li
- Department of The First General Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Dianliang Zhang
- Department of The First General Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
17
|
Zhang X, Wang J, Zhang J, Tan Y, Li Y, Peng Z. Exosomes Highlight Future Directions in the Treatment of Acute Kidney Injury. Int J Mol Sci 2023; 24:15568. [PMID: 37958550 PMCID: PMC10650293 DOI: 10.3390/ijms242115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Acute kidney injury (AKI) is a severe health problem associated with high morbidity and mortality rates. It currently lacks specific therapeutic strategies. This review focuses on the mechanisms underlying the actions of exosomes derived from different cell sources, including red blood cells, macrophages, monocytes, mesenchymal stem cells, and renal tubular cells, in AKI. We also investigate the effects of various exosome contents (such as miRNA, lncRNA, circRNA, mRNA, and proteins) in promoting renal tubular cell regeneration and angiogenesis, regulating autophagy, suppressing inflammatory responses and oxidative stress, and preventing fibrosis to facilitate AKI repair. Moreover, we highlight the interactions between macrophages and renal tubular cells through exosomes, which contribute to the progression of AKI. Additionally, exosomes and their contents show promise as potential biomarkers for diagnosing AKI. The engineering of exosomes has improved their clinical potential by enhancing isolation and enrichment, target delivery to injured renal tissues, and incorporating small molecular modifications for clinical use. However, further research is needed to better understand the specific mechanisms underlying exosome actions, their delivery pathways to renal tubular cells, and the application of multi-omics research in studying AKI.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Jing Wang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Yuwei Tan
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
- Department of Critical Care Medicine, Center of Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
18
|
Janosevic D, De Luca T, Ferreira RM, Gisch DL, Hato T, Luo J, Yang Y, Hodgin JB, Dagher PC, Eadon MT. miRNA and mRNA Signatures in Human Acute Kidney Injury Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557054. [PMID: 37745313 PMCID: PMC10515816 DOI: 10.1101/2023.09.11.557054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Acute kidney injury (AKI) is an important contributor to the development of chronic kidney disease (CKD). There is a need to understand molecular mediators that drive either recovery or progression to CKD. In particular, the role of miRNA and its regulatory role in AKI is poorly understood. We performed miRNA and mRNA sequencing on biobanked human kidney tissues obtained in the routine clinical care of patients with the diagnoses of AKI and minimal change disease (MCD), in addition to nephrectomized (Ref) tissue from individuals without known kidney disease. Transcriptomic analysis of mRNA revealed that Ref tissues exhibited a similar injury signature to AKI, not identified in MCD samples. The transcriptomic signature of human AKI was enriched with genes in pathways involved in cell adhesion and epithelial-to-mesenchymal transition (e.g., CDH6, ITGB6, CDKN1A ). miRNA DE analysis revealed upregulation of miRNA associated with immune cell recruitment and inflammation (e.g., miR-146a, miR-155, miR-142, miR-122). These miRNA (i.e., miR-122, miR-146) are also associated with downregulation of mRNA such as DDR2 and IGFBP6 , respectively. These findings suggest integrated interactions between miRNAs and target mRNAs in AKI-related processes such as inflammation, immune cell activation and epithelial-to-mesenchymal transition. These data contribute several novel findings when describing the epigenetic regulation of AKI by miRNA, and also underscores the importance of utilizing an appropriate reference control tissue to understand canonical pathway alterations in AKI.
Collapse
|
19
|
Tsuji K, Nakanoh H, Fukushima K, Kitamura S, Wada J. MicroRNAs as Biomarkers and Therapeutic Targets for Acute Kidney Injury. Diagnostics (Basel) 2023; 13:2893. [PMID: 37761260 PMCID: PMC10529274 DOI: 10.3390/diagnostics13182893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome where a rapid decrease in kidney function and/or urine output is observed, which may result in the imbalance of water, electrolytes and acid base. It is associated with poor prognosis and prolonged hospitalization. Therefore, an early diagnosis and treatment to avoid the severe AKI stage are important. While several biomarkers, such as urinary L-FABP and NGAL, can be clinically useful, there is still no gold standard for the early detection of AKI and there are limited therapeutic options against AKI. miRNAs are non-coding and single-stranded RNAs that silence their target genes in the post-transcriptional process and are involved in a wide range of biological processes. Recent accumulated evidence has revealed that miRNAs may be potential biomarkers and therapeutic targets for AKI. In this review article, we summarize the current knowledge about miRNAs as promising biomarkers and potential therapeutic targets for AKI, as well as the challenges in their clinical use.
Collapse
Affiliation(s)
- Kenji Tsuji
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroyuki Nakanoh
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuhiko Fukushima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Program in Membrane Biology, Center for Systems Biology, Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Department of Nursing Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
20
|
van Zonneveld AJ, Zhao Q, Rotmans JI, Bijkerk R. Circulating non-coding RNAs in chronic kidney disease and its complications. Nat Rev Nephrol 2023; 19:573-586. [PMID: 37286733 DOI: 10.1038/s41581-023-00725-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/09/2023]
Abstract
Post-transcriptional regulation by non-coding RNAs (ncRNAs) can modulate the expression of genes involved in kidney physiology and disease. A large variety of ncRNA species exist, including microRNAs, long non-coding RNAs, piwi-interacting RNAs, small nucleolar RNAs, circular RNAs and yRNAs. Despite early assumptions that some of these species may exist as by-products of cell or tissue injury, a growing body of literature suggests that these ncRNAs are functional and participate in a variety of processes. Although they function intracellularly, ncRNAs are also present in the circulation, where they are carried by extracellular vesicles, ribonucleoprotein complexes or lipoprotein complexes such as HDL. These systemic, circulating ncRNAs are derived from specific cell types and can be directly transferred to a variety of cells, including endothelial cells of the vasculature and virtually any cell type in the kidney, thereby affecting the function of the host cell and/or its response to injury. Moreover, chronic kidney disease itself, as well as injury states associated with transplantation and allograft dysfunction, is associated with a shift in the distribution of circulating ncRNAs. These findings may provide opportunities for the identification of biomarkers with which to monitor disease progression and/or the development of therapeutic interventions.
Collapse
Affiliation(s)
- Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Qiao Zhao
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands.
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
21
|
Wang Z, Yu Y, Jin L, Tan X, Liu B, Zhang Z, Wang Z, Long C, Shen L, Wei G, He D. HucMSC exosomes attenuate partial bladder outlet obstruction-induced renal injury and cell proliferation via the Wnt/β-catenin pathway. Eur J Pharmacol 2023:175523. [PMID: 36736526 DOI: 10.1016/j.ejphar.2023.175523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/28/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
Bladder outlet obstruction (BOO) can cause serious complications including kidney damage; nevertheless, there are currently no animal models for studying BOO-induced kidney damage. Mesenchymal stem cells (MSCs) are widely used in therapeutic studies of renal fibrosis. However, MSC-derived exosomes show improved safety profile and more controllable characteristics compared with those of MSCs. Herein, we established a kidney injury mouse model of partial bladder outlet obstruction (PBOO) and evaluated the effects of human umbilical cord MSC-derived exosomes (hucMSC-Exos) on PBOO-induced reflux kidney injury in this model. Exosomes were isolated from a hucMSC-conditioned medium, purified by ultracentrifugation, and examined. Living image was performed to indicate the distribution of hucMSC-Exos. The PBOO-treated mice interacted with PBS (phosphate-buffered saline) or hucMSC-Exos. Morphologic changes and expression of interstitial-fibrosis-related, cell proliferation and Wnt/β-catenin signaling-pathway indices were evaluated. At 7 days after induction of PBOO, structural destruction of renal tubules was observed. Expression of the interstitial markers and the cellular-proliferation index increased significantly in the PBOO group compared with the control group (p < 0.05). The isolated exosomes were 30-150 nm in diameter, showing a round shape and bilayer membrane structure with CD63, TSG101, Alix expressed, enriched in the kidney of the PBOO group. Administering hucMSC-Exos to post-PBOO mice reversed renal injury and suppressed expression of Wnt/β-catenin signaling pathway-related proteins. hucMSC-Exos inhibited PBOO-induced kidney injury and cellular proliferation and suppressed the Wnt/β-catenin signaling pathway. Our findings will spur the development of novel hucMSC-Exo-mediated therapies for treating patients with renal fibrosis.
Collapse
Affiliation(s)
- Zhaoying Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Yihang Yu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Liming Jin
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Xiaojun Tan
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Bo Liu
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Zhaoxia Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Zhang Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China.
| |
Collapse
|
22
|
Neres-Santos RS, Armentano GM, da Silva JV, Falconi CA, Carneiro-Ramos MS. Progress and Challenges of Understanding Cardiorenal Syndrome Type 3. Rev Cardiovasc Med 2023; 24:8. [PMID: 39076878 PMCID: PMC11270482 DOI: 10.31083/j.rcm2401008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 07/31/2024] Open
Abstract
The pathologies of the kidney and heart have instigated a large number of researchers around the world to try to better understand what the exact connectors responsible for the emergence and establishment of these diseases are. The classification of these pathologies into different types of cardiorenal syndromes (CRSs) over the last 15 years has greatly contributed to understanding pathophysiological and diagnostic aspects, as well as treatment strategies. However, with the advent of new technologies classified as "Omics", a new range of knowledge and new possibilities have opened up in order to effectively understand the intermediaries between the kidney-heart axis. The universe of micro-RNAs (miRNAs), epigenetic factors, and components present in extracellular vesicles (EVs) have been protagonists in studying different types of CRSs. Thus, the new challenge that is imposed is to select and link the large amount of information generated from the use of large-scale analysis techniques. The present review seeks to present some of the future perspectives related to understanding CRSs, with an emphasis on CRS type 3.
Collapse
Affiliation(s)
- Raquel Silva Neres-Santos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, 09210-170 Santo André, SP, Brazil
| | - Giovana Marchini Armentano
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, 09210-170 Santo André, SP, Brazil
| | - Jéssica Verônica da Silva
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, 09210-170 Santo André, SP, Brazil
| | - Carlos Alexandre Falconi
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, 09210-170 Santo André, SP, Brazil
| | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, 09210-170 Santo André, SP, Brazil
| |
Collapse
|
23
|
Li X, Wang Y, Zhou X, Wang H, Xu J. Electroacupuncture Pretreatment Alleviates Cerebral Ischemia-reperfusion Injury by Down-regulating Mir-155-5p. Curr Neurovasc Res 2023; 20:480-492. [PMID: 37642006 DOI: 10.2174/1567202620666230828092916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Increasing evidence shows that electroacupuncture pretreatment (EP) plays a crucial role in cerebral ischemia-reperfusion (I/R) injury, and cerebral I/R injury is the most serious complication of ischemic stroke treatment. The role of miR-155-5p in cerebral I/R injury has been studied, but the regulation of EP on miR-155-5p has not been reported. METHODS The middle cerebral artery occlusion (MCAO) mice were used to investigate the role of EP in cerebral I/R injury. Longa and modified neurological severity scores (mNSS) were used to evaluate neurological impairment. HE staining and TUNEL staining were used to evaluate brain injury. The expressions of miR-155-5p, Yin Yang 1 (YY1) and p53 were detected by qRT-PCR. The expressions of related proteins were detected by western blot. The binding of YY1 to miR- 155-5p was verified by dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. Mice brain microvascular endothelial cells (BMECs) were isolated and cultured for in vitro experiments. Oxygen-glucose deprivation/reoxygenation (OGD/R) was used to verify the role of YY1, p53 and miR-155-5p in cerebral I/R injury in vitro. RESULTS MCAO modeling induced brain injury, apoptosis, and increased levels of miR-155-5p, YY1, and p53. EP markedly alleviated brain injury and reduced levels of miR-155-5p, p53, and YY1. miR-155 agomir markedly increased the expression of miR-155-5p and p53. miR-155 antagomir decreased the levels of miR-155-5p and p53. Dual-luciferase reporter and ChIP assay verified that YY1 regulated miR-155-5p expression. YY1 shNRA greatly decreased miR-155-5p and p53. Inhibition of p53 decreased miR-155-5p expression. Both miR-155-5p inhibitor and YY1 shRNA promoted proliferation, inhibited apoptosis, and decreased levels of ICAM-1 and Eselectin of OGD/R-treated BMECs. Inhibition of p53 strengthened the effect of miR-155-5p inhibitor and YY1 shNRA on BMECs. CONCLUSION Electroacupuncture pretreatment alleviates cerebral ischemia-reperfusion injury by regulating the YY1/p53/miR-155-5p axis.
Collapse
Affiliation(s)
- Xuejing Li
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Ying Wang
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Xiang Zhou
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Hui Wang
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| |
Collapse
|
24
|
Luo C, Liu H, Shao L, Tang J, He Q, Jin J. The role of small extracellular vesicle non-coding RNAs in kidney diseases. Front Genet 2022; 13:1013637. [PMID: 36303545 PMCID: PMC9593037 DOI: 10.3389/fgene.2022.1013637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Kidney diseases have become an increasingly common public health concern worldwide. The discovery of specific biomarkers is of substantial clinical significance in kidney disease diagnosis, therapy and prognosis. The small extracellular vesicle (sEV) can be secreted by several cell types, like renal tubular epithelial cells, podocytes, collecting duct cells and leap cells, and functions as a communication medium between cells by delivering signaling molecules, including proteins, lipids and nucleic acids. There has been growing evidence that kidney diseases are associated with aberrant expression of sEV-derived non-coding RNAs (sEV-ncRNAs). As a result, sEV-ncRNAs may provide valuable information about kidney diseases. In this paper, a systematic review is presented of what has been done in recent years regarding sEV-ncRNAs in kidney disease diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Chuxuan Luo
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Division of Health Sciences, Hangzhou Normal University, Hangzhou, China
| | - Haojie Liu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lina Shao
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jiyu Tang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- *Correspondence: Juan Jin, ; Qiang He,
| | - Juan Jin
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Juan Jin, ; Qiang He,
| |
Collapse
|