1
|
Rai P, Dutta A, Kumar A, Sinha B. "Synthesis and characterization of a novel pyridinium iodide-tagged Schiff base and its metal complexes as potential ACHN inhibitors". Heliyon 2024; 10:e25246. [PMID: 38322950 PMCID: PMC10845909 DOI: 10.1016/j.heliyon.2024.e25246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
In quest of developing an efficient and effective drug against the ACHN human renal adenocarcinoma cell line herein, we report the synthesis and characterization of a novel Pyridinium iodide-tagged Schiff base (5) and its Cu (II)/Zn (II)/Cd (II)-complexes (6). The synthesized compounds are well characterized by Elemental analysis, UV-Visible, FTIR, Magnetic Susceptibility, NMR, HRMS, MALDI, and PXRD techniques. They were then subsequently tested on the ACHN cell lines using MTT assays and their IC50 values were determined, followed by their ROS production capacity. Among the tested compounds Zn (II)-complex 6(b) was found to be the most potent one with a minimum IC50 value while the ligand (5) was the least.
Collapse
Affiliation(s)
- Pranesh Rai
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Ankita Dutta
- Department of Biotechnology, University of North Bengal, Darjeeling, 734013, India
| | - Anoop Kumar
- Department of Biotechnology, University of North Bengal, Darjeeling, 734013, India
| | - Biswajit Sinha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| |
Collapse
|
2
|
Obaid G, Hasan T. Subcutaneous Xenograft Models for Studying PDT In Vivo. Methods Mol Biol 2022; 2451:127-149. [PMID: 35505015 PMCID: PMC10516195 DOI: 10.1007/978-1-0716-2099-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The most facile, reproducible, and robust in vivo models for evaluating the anticancer efficacy of photodynamic therapy (PDT) are subcutaneous xenograft models of human tumors. The accessibility and practicality of light irradiation protocols for treating subcutaneous xenograft models also increase their value as relatively rapid tools to expedite the testing of novel photosensitizers, respective formulations, and treatment regimens for PDT. This chapter summarizes the methods used in the literature to prepare various types of subcutaneous xenograft models of human cancers and syngeneic models to explore the role of PDT in immuno-oncology. This chapter also summarizes the PDT treatment protocols tested on the subcutaneous models, and the procedures used to evaluate the efficacy at the molecular, macromolecular, and host organism levels.
Collapse
Affiliation(s)
- Girgis Obaid
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Jelovica M, Grbčić P, Mušković M, Sedić M, Pavelić SK, Lončarić M, Malatesti N. In Vitro Photodynamic Activity of N-Methylated and N-Oxidised Tripyridyl Porphyrins with Long Alkyl Chains and Their Inhibitory Activity in Sphingolipid Metabolism. ChemMedChem 2018; 13:360-372. [PMID: 29381258 DOI: 10.1002/cmdc.201700748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/31/2017] [Indexed: 02/04/2023]
Abstract
A series of N-methylated and N-oxidised tripyridyl porphyrins were synthesised, characterised, and their PDT activity was studied with six cell lines. All the tested porphyrins with a long alkyl chain, except one, were more efficient for PDT than an N-methylated hydrophilic porphyrin and N-oxidised porphyrin without the long alkyl chain. Generally, N-methylated tripyridyl porphyrins were more active than those N-oxidised, but IC50 values for phototoxicity of two N-oxides, named TOPyP3-C17 H33 O and TOPyP3-C17 H35 , were still in the nanomolar concentration range for most of the tested cell lines. However, TOPyP3-C17 H35 did not show phototoxicity on human foreskin fibroblast cells. Two methylated amphiphilic porphyrins, named TMPyP3-C17 H33 and TMPyP4-C17 H35, showed significant dark toxicity, whereas none of the oxidopyridyl porphyrins were toxic without light activation. The selected photosensitisers were shown to be apoptosis inducers, and had inhibitory effects on the clonogenic growth of HCT116 and HeLa cells. All three N-methylated amphiphilic porphyrins significantly reduced the migratory potential of HCT116 cells. Porphyrins TMPyP3-C17 H35 and TOPyP3-C17 H35 reduced the activity of acid ceramidase, whereas TOPyP3-C17 H33 O had a significant inhibitory effect on sphingosine kinase 1 activity in HeLa cells. Compounds with this dual activity were shown to be the most promising photosensitisers, with potential to treat invasive cancers.
Collapse
Affiliation(s)
- Mateo Jelovica
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Petra Grbčić
- Department of Biotechnology and Centre for High-Throughput Technologies, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Martina Mušković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Mirela Sedić
- Department of Biotechnology and Centre for High-Throughput Technologies, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Sandra Kraljević Pavelić
- Department of Biotechnology and Centre for High-Throughput Technologies, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Martin Lončarić
- Photonics and Quantum Optics Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička cesta 54, 10002, Zagreb, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| |
Collapse
|
4
|
Boppana NB, Kraveka JM, Rahmaniyan M, Li LI, Bielawska A, Bielawski J, Pierce JS, Delor JS, Zhang K, Korbelik M, Separovic D. Fumonisin B1 Inhibits Endoplasmic Reticulum Stress Associated-apoptosis After FoscanPDT Combined with C6-Pyridinium Ceramide or Fenretinide. Anticancer Res 2017; 37:455-463. [PMID: 28179290 DOI: 10.21873/anticanres.11337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Combining an anticancer agent fenretinide (HPR) or C6-pyridinium ceramide (LCL29) with Foscan-mediated photodynamic therapy (FoscanPDT) is expected to augment anticancer benefits of each substance. We showed that treatment with FoscanPDT+HPR enhanced accumulation of C16-dihydroceramide, and that fumonisin B1 (FB), an inhibitor of ceramide synthase, counteracted caspase-3 activation and colony-forming ability of head and neck squamous cell carcinoma (HNSCC) cells. Because cancer cells appear to be more susceptible to increased levels of the endoplasmic reticulum (ER) stress than normal cells, herein we tested the hypothesis that FoscanPDT combined with HPR or LCL29 induces FB-sensitive ER stress-associated apoptosis that affects cell survival. MATERIALS AND METHODS Using an HNSCC cell line, we determined: cell survival by clonogenic assay, caspase-3 activity by spectrofluorometry, the expression of the ER markers BiP and CHOP by quantitative real-time polymerase chain reaction and western immunoblotting, and sphingolipid levels by mass spectrometry. RESULTS Similar to HPR+FoscanPDT, LCL29+FoscanPDT induced enhanced loss of clonogenicity and caspase-3 activation, that were both inhibited by FB. Our additional pharmacological evidence showed that the enhanced loss of clonogenicity after the combined treatments was singlet oxygen-, ER stress- and apoptosis-dependent. The combined treatments induced enhanced, FB-sensitive, up-regulation of BiP and CHOP, as well as enhanced accumulation of sphingolipids. CONCLUSION Our data suggest that enhanced clonogenic cell killing after the combined treatments is dependent on oxidative- and ER-stress, apoptosis, and FB-sensitive sphingolipid production, and should help develop more effective mechanism-based therapeutic strategies.
Collapse
Affiliation(s)
- Nithin B Boppana
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, U.S.A
| | - Jacqueline M Kraveka
- Department of Pediatrics Division of Hematology-Oncology, Charles Darby Children's Research Institute, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Mehrdad Rahmaniyan
- Department of Pediatrics Division of Hematology-Oncology, Charles Darby Children's Research Institute, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, U.S.A
| | - L I Li
- Department of Pediatrics Division of Hematology-Oncology, Charles Darby Children's Research Institute, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Jason S Pierce
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Jeremy S Delor
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, U.S.A
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics and Department of Immunology and Microbiology, Wayne State University School of Medicine, Wayne State University, Detroit, MI, U.S.A
| | | | - Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, U.S.A. .,Karmanos Cancer Institute, Wayne State University, Detroit, MI, U.S.A
| |
Collapse
|
5
|
Ma YY, Mou XZ, Ding YH, Zou H, Huang DS. Delivery systems of ceramide in targeted cancer therapy: ceramide alone or in combination with other anti-tumor agents. Expert Opin Drug Deliv 2016; 13:1397-406. [PMID: 27168034 DOI: 10.1080/17425247.2016.1188803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ying-Yu Ma
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Medical School and Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Ya-Hui Ding
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Hai Zou
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Dong-Sheng Huang
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Department of Hepatobiliary Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
| |
Collapse
|
6
|
Korbelik M, Banáth J, Zhang W, Saw KM, Szulc ZM, Bielawska A, Separovic D. Interaction of acid ceramidase inhibitor LCL521 with tumor response to photodynamic therapy and photodynamic therapy-generated vaccine. Int J Cancer 2016; 139:1372-8. [PMID: 27136745 DOI: 10.1002/ijc.30171] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 01/03/2023]
Abstract
Acid ceramidase has been identified as a promising target for cancer therapy. One of its most effective inhibitors, LCL521, was examined as adjuvant to photodynamic therapy (PDT) using mouse squamous cell carcinoma SCCVII model of head and neck cancer. Lethal effects of PDT, assessed by colony forming ability of in vitro treated SCCVII cells, were greatly enhanced when combined with 10 µM LCL521 treatment particularly when preceding PDT. When PDT-treated SCCVII cells are used to vaccinate SCCVII tumor-bearing mice (PDT vaccine protocol), adjuvant LCL521 treatment (75 mg/kg) resulted in a marked retardation of tumor growth. This effect can be attributed to the capacity of LCL521 to effectively restrict the activity of two main immunoregulatory cell populations (Tregs and myeloid-derived suppressor cells, MDSCs) that are known to hinder the efficacy of PDT vaccines. The therapeutic benefit with adjuvant LCL521 was also achieved with SCCVII tumors treated with standard PDT when using immunocompetent mice but not with immunodeficient hosts. The interaction of LCL521 with PDT-based antitumor mechanisms is dominated by immune system contribution that includes overriding the effects of immunoregulatory cells, but could also include a tacit contribution from boosting direct tumor cell kill.
Collapse
Affiliation(s)
- Mladen Korbelik
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Judit Banáth
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Wei Zhang
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Kyi Min Saw
- Integrative Oncology Department, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Zdzislaw M Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
| | - Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI
| |
Collapse
|
7
|
Abstract
Studies over the past two decades have identified ceramide as a multifunctional central molecule in the sphingolipid biosynthetic pathway. Given its diverse tumor suppressive activities, molecular understanding of ceramide action will produce fundamental insights into processes that limit tumorigenesis and may identify key molecular targets for therapeutic intervention. Ceramide can be activated by a diverse array of stresses such as heat shock, genotoxic damage, oxidative stress and anticancer drugs. Ceramide triggers a variety of tumor suppressive and anti-proliferative cellular programs such as apoptosis, autophagy, senescence, and necroptosis by activating or repressing key effector molecules. Defects in ceramide generation and metabolism in cancer contribute to tumor cell survival and resistance to chemotherapy. The potent and versatile anticancer activity profile of ceramide has motivated drug development efforts to (re-)activate ceramide in established tumors. This review focuses on our current understanding of the tumor suppressive functions of ceramide and highlights the potential downstream targets of ceramide which are involved in its tumor suppressive action.
Collapse
|
8
|
Abstract
Photodynamic therapy (PDT) combines visible light and photosensitizing dyes. Different animal models have been used to test PDT for cancer, infectious disease and cardiovascular disease. Mouse models of tumours include subcutaneous, orthotopic, syngeneic, xenograft, autochthonous and genetically modified. Photodynamic therapy (PDT) employs non-toxic dyes called photosensitizers (PSs), which absorb visible light to give the excited singlet state, followed by the long-lived triplet state that can undergo photochemistry. In the presence of ambient oxygen, reactive oxygen species (ROS), such as singlet oxygen and hydroxyl radicals are formed that are able to kill cancer cells, inactivate microbial pathogens and destroy unwanted tissue. Although there are already several clinically approved PSs for various disease indications, many studies around the world are using animal models to investigate the further utility of PDT. The present review will cover the main groups of animal models that have been described in the literature. Cancer comprises the single biggest group of models including syngeneic mouse/rat tumours that can either be subcutaneous or orthotopic and allow the study of anti-tumour immune response; human tumours that need to be implanted in immunosuppressed hosts; carcinogen-induced tumours; and mice that have been genetically engineered to develop cancer (often by pathways similar to those in patients). Infections are the second biggest class of animal models and the anatomical sites include wounds, burns, oral cavity, ears, eyes, nose etc. Responsible pathogens can include Gram-positive and Gram-negative bacteria, fungi, viruses and parasites. A smaller and diverse group of miscellaneous animal models have been reported that allow PDT to be tested in ophthalmology, atherosclerosis, atrial fibrillation, dermatology and wound healing. Successful studies using animal models of PDT are blazing the trail for tomorrow's clinical approvals.
Collapse
|
9
|
Boppana NB, Stochaj U, Kodiha M, Bielawska A, Bielawski J, Pierce JS, Korbelik M, Separovic D. C6-pyridinium ceramide sensitizes SCC17B human head and neck squamous cell carcinoma cells to photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 143:163-8. [PMID: 25635908 DOI: 10.1016/j.jphotobiol.2015.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 11/17/2022]
Abstract
Combining photodynamic therapy (PDT) with another anticancer treatment modality is an important strategy for improved efficacy. PDT with Pc4, a silicon phthalocyanine photosensitizer, was combined with C6-pyridinium ceramide (LCL29) to determine their potential to promote death of SCC17B human head and neck squamous cell carcinoma cells. PDT+LCL29-induced enhanced cell death was inhibited by zVAD-fmk, a pan-caspase inhibitor, and fumonisin B1 (FB), a ceramide synthase inhibitor. Quantitative confocal microscopy showed that combining PDT with LCL29 enhanced FB-sensitive ceramide accumulation in the mitochondria. Furthermore, PDT+LCL29 induced enhanced FB-sensitive redistribution of cytochrome c and caspase-3 activation. Overall, the data indicate that PDT+LCL29 enhanced cell death via FB-sensitive, mitochondrial ceramide accumulation and apoptosis.
Collapse
Affiliation(s)
- Nithin B Boppana
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA
| | - Ursula Stochaj
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1YC, Canada
| | - Mohamed Kodiha
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1YC, Canada
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Jason S Pierce
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Mladen Korbelik
- British Columbia Cancer Agency, 675 West 10th Ave., Vancouver, BC V5Z 1L3, Canada
| | - Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA; Karmanos Cancer Institute, Wayne State University, 4100 John R, Detroit, MI 48201, USA.
| |
Collapse
|
10
|
Two combined photosensitizers: a goal for more effective photodynamic therapy of cancer. Cell Death Dis 2014; 5:e1122. [PMID: 24625981 PMCID: PMC3973236 DOI: 10.1038/cddis.2014.77] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) is a clinically approved therapeutic modality for the treatment of diseases characterized by uncontrolled cell proliferation, mainly cancer. It involves the selective uptake of a photosensitizer (PS) by neoplastic tissue, which is able to produce reactive oxygen species upon irradiation with light, leading to tumor regression. Here a synergistic cell photoinactivation is reported based on the simultaneous administration of two PSs, zinc(II)-phthalocyanine (ZnPc) and the cationic porphyrin meso-tetrakis(4-N-methylpyridyl)porphine (TMPyP) in three cell lines (HeLa, HaCaT and MCF-7), using very low doses of PDT. We detected changes from predominant apoptosis (without cell detachment) to predominant necrosis, depending on the light dose used (2.4 and 3.6 J/cm2, respectively). Analysis of changes in cytoskeleton components (microtubules and F-actin), FAK protein, as well as time-lapse video microscopy evidenced that HeLa cells were induced to undergo apoptosis, without losing adhesion to the substrate. Moreover, 24 h after intravenous injection into tumor-bearing mice, ZnPc and TMPyP were preferentially accumulated in the tumor area. PDT with combined treatment produced significant retardation of tumor growth. We believe that this combined and highly efficient strategy (two PSs) may provide synergistic curative rates regarding conventional photodynamic treatments (with one PS alone).
Collapse
|
11
|
Korbelik M, Zhang W, Saw KM, Szulc ZM, Bielawska A, Separovic D. Cationic ceramides and analogues, LCL30 and LCL85, as adjuvants to photodynamic therapy of tumors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 126:72-7. [PMID: 23911762 DOI: 10.1016/j.jphotobiol.2013.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/01/2013] [Accepted: 06/22/2013] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT) is known to alter the expression of various genes in treated cells. This prompted us to examine the activity of genes encoding two important enzymes in sphingolipid (SL) metabolism, dihydroceramide desaturase (DES) and sphingosine kinase (SPHK), in mouse SCCVII tumor cells treated by PDT using either the porphyrin-based photosensitizer Photofrin or silicon phthalocyanine Pc4. The results revealed that PDT induced an upregulation in the expression of two major isoforms of both genes (DES1 and DES2 as well as SPHK1 and SPHK2). While the changes were generally moderate (2-3-fold gains), the increase in DES2 expression was more pronounced and it was much greater with Photofrin-PDT than with Pc4-PDT (over 23-fold vs. less than 5-fold). Combining either Photofrin-PDT or Pc4-PDT with the cationic C16-ceramide LCL30 (20mg/kg i.p.) for treatment of subcutaneously growing SCCVII tumors rendered important differences in the therapy outcome. Photofrin-PDT, used at a dose that attained good initial response but no tumor cures, produced 50% cures when combined with a single LCL30 treatment. In contrast, the same LCL30 treatment combined with Pc4-PDT had no significant effect on tumor response. The optimal timing of LCL30 injection was immediately after Photofrin-PDT. The therapeutic benefit was lost when LCL30 was given in two 20mg/kg injections encompassing intervals before and after PDT. LCL85, the cationic B13 ceramide analogue and SL-modulating agent, also increased cure rates of Photofrin-PDT treated tumors, but the therapeutic benefit was less pronounced than with LCL30. These results with LCL30 and LCL85, and our previous findings for LCL29 (another SL analogue), assert the potential of SLs for use as adjuvants to augment the efficacy of PDT-mediated tumor destruction.
Collapse
|
12
|
Yoo JO, Ha KS. New insights into the mechanisms for photodynamic therapy-induced cancer cell death. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:139-74. [PMID: 22449489 DOI: 10.1016/b978-0-12-394306-4.00010-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) is a promising therapeutic modality for cancer treatment; however, a more detailed understanding is needed to improve the clinical use of this therapy. PDT induces cancer cell death by apoptosis, necrosis, and autophagy, and these mechanisms can be concurrently occurred. PDT destroys cancer cells by inducing apoptosis through diverse signaling pathways coupled with Bcl-2 family members, caspases, and apopotosis-inducing factor. When the apoptotic pathway is unavailable, PDT can cause cancer cell death through induction of a necrotic or autophagic mechanism. Autophagy is occurred in a Bax-independent manner and can be stimulated in parallel with apoptosis. PDT directly destroys cancer cells by inducing either apoptotic or necrotic death. PDT also can induce autophagy as a death or a survival mechanism. These mechanisms are dependent on a variety of parameters including the nature of the photosensitizer, PDT dose, and cell genotype. Understanding the complex cross talk between these pathways may improve the effectiveness of PDT. Here, we discuss the interplay between these mechanisms based on recent evidence and suggest prospects with regard to advances in PDT.
Collapse
Affiliation(s)
- Je-Ok Yoo
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, South Korea
| | | |
Collapse
|
13
|
Anand S, Ortel BJ, Pereira SP, Hasan T, Maytin EV. Biomodulatory approaches to photodynamic therapy for solid tumors. Cancer Lett 2012; 326:8-16. [PMID: 22842096 DOI: 10.1016/j.canlet.2012.07.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 12/12/2022]
Abstract
Photodynamic Therapy (PDT) uses a photosensitizing drug in combination with visible light to kill cancer cells. PDT has an advantage over surgery or ionizing radiation because PDT can eliminate tumors without causing fibrosis or scarring. Disadvantages include the dual need for drug and light, and a generally lower efficacy for PDT vs. surgery. This minireview describes basic principles of PDT, photosensitizers available, and aspects of tumor biology that may provide further opportunities for treatment optimization. An emerging biomodulatory approach, using methotrexate or Vitamin D in combination with aminolevulinate-based PDT, is described. Finally, current clinical uses of PDT for solid malignancies are reviewed.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Dermatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
14
|
Korbelik M, Zhang W, Separovic D. Monitoring ceramide and sphingosine-1-phosphate levels in cancer cells and macrophages from tumours treated by photodynamic therapy. Photochem Photobiol Sci 2012; 11:779-84. [PMID: 22354109 DOI: 10.1039/c2pp05384e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eradication of tumours by photodynamic therapy (PDT) is accompanied by marked changes in local sphingolipid (SL) engagement. Because of the heterogeneity of cellular composition, analysis of tumour tissue homogenates to quantify SL species is inadequate for evaluating their levels in parenchymal cancer cell population. By staining tumour-derived single cell suspensions with antibodies specific to ceramide and sphingosine 1-phosphate (S1P) followed by flow cytometry, we were able to document changes in the levels of these two key SLs in cancer cells and tumour-associated macrophages (TAMs) of mouse SCCVII tumours following PDT. The results confirm previously obtained indications that tumour treatment by PDT induces a marked rise in ceramide levels in cancer cells within these lesions. Cancer cells from PDT-treated SCCVII tumours undergoing apoptosis were found to have much higher ceramide levels and substantially lower S1P levels than their viable counterparts. Compared to cancer cells, considerably higher ceramide and S1P levels were consistently found in TAMs. Treatment of SCCVII tumour-bearing mice with ceramide analog LCL29 induced a rise in ceramide levels in TAMs but not in cancer cells. When combined with PDT, LCL29 treatment produced a further increase in ceramide levels in TAMs while having no evident impact on ceramide content in cancer cells within same tumours. The results highlight SLs as important participants in tumour response to PDT and potential adjuvant therapeutic targets to PDT.
Collapse
|
15
|
Sumanasekera C, Kelemen O, Beullens M, Aubol BE, Adams JA, Sunkara M, Morris A, Bollen M, Andreadis A, Stamm S. C6 pyridinium ceramide influences alternative pre-mRNA splicing by inhibiting protein phosphatase-1. Nucleic Acids Res 2011; 40:4025-39. [PMID: 22210893 PMCID: PMC3351148 DOI: 10.1093/nar/gkr1289] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Alternative pre-mRNA processing is a central element of eukaryotic gene regulation. The cell frequently alters the use of alternative exons in response to physiological stimuli. Ceramides are lipid-signaling molecules composed of sphingosine and a fatty acid. Previously, water-insoluble ceramides were shown to change alternative splicing and decrease SR-protein phosphorylation by activating protein phosphatase-1 (PP1). To gain further mechanistical insight into ceramide-mediated alternative splicing, we analyzed the effect of C6 pyridinium ceramide (PyrCer) on alternative splice site selection. PyrCer is a water-soluble ceramide analog that is under investigation as a cancer drug. We found that PyrCer binds to the PP1 catalytic subunit and inhibits the dephosphorylation of several splicing regulatory proteins containing the evolutionarily conserved RVxF PP1-binding motif (including PSF/SFPQ, Tra2-beta1 and SF2/ASF). In contrast to natural ceramides, PyrCer promotes phosphorylation of splicing factors. Exons that are regulated by PyrCer have in common suboptimal splice sites, are unusually short and share two 4-nt motifs, GAAR and CAAG. They are dependent on PSF/SFPQ, whose phosphorylation is regulated by PyrCer. Our results indicate that lipids can influence pre-mRNA processing by regulating the phosphorylation status of specific regulatory factors, which is mediated by protein phosphatase activity.
Collapse
Affiliation(s)
- Chiranthani Sumanasekera
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Senge MO, Brandt JC. Temoporfin (Foscan®, 5,10,15,20-tetra(m-hydroxyphenyl)chlorin)--a second-generation photosensitizer. Photochem Photobiol 2011; 87:1240-96. [PMID: 21848905 DOI: 10.1111/j.1751-1097.2011.00986.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review traces the development and study of the second-generation photosensitizer 5,10,15,20-tetra(m-hydroxyphenyl)chlorin through to its acceptance and clinical use in modern photodynamic (cancer) therapy. The literature has been covered up to early 2011.
Collapse
Affiliation(s)
- Mathias O Senge
- Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.
| | | |
Collapse
|
17
|
Korbelik M, Zhang W, Separovic D. Amplification of cancer cell apoptosis in photodynamic therapy-treated tumors by adjuvant ceramide analog LCL29. Lasers Surg Med 2011; 43:614-20. [DOI: 10.1002/lsm.21068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Enhancing photodynamyc therapy efficacy by combination therapy: dated, current and oncoming strategies. Cancers (Basel) 2011; 3:2597-629. [PMID: 24212824 PMCID: PMC3757433 DOI: 10.3390/cancers3022597] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/02/2011] [Accepted: 05/31/2011] [Indexed: 11/17/2022] Open
Abstract
Combination therapy is a common practice in many medical disciplines. It is defined as the use of more than one drug to treat the same disease. Sometimes this expression describes the simultaneous use of therapeutic approaches that target different cellular/molecular pathways, increasing the chances of killing the diseased cell. This short review is concerned with therapeutic combinations in which PDT (Photodynamyc Therapy) is the core therapeutic partner. Besides the description of the principal methods used to assess the efficacy attained by combinations in respect to monotherapy, this review describes experimental results in which PDT was combined with conventional drugs in different experimental conditions. This inventory is far from exhaustive, as the number of photosensitizers used in combination with different drugs is very large. Reports cited in this work have been selected because considered representative. The combinations we have reviewed include the association of PDT with anti-oxidants, chemotherapeutics, drugs targeting topoisomerases I and II, antimetabolites and others. Some paragraphs are dedicated to PDT and immuno-modulation, others to associations of PDT with angiogenesis inhibitors, receptor inhibitors, radiotherapy and more. Finally, a look is dedicated to combinations involving the use of natural compounds and, as new entries, drugs that act as proteasome inhibitors.
Collapse
|
19
|
Separovic D, Joseph N, Breen P, Bielawski J, Pierce JS, Buren EV, Bhatti G, Saad ZH, Bai A, Bielawska A. Combining anticancer agents photodynamic therapy and LCL85 leads to distinct changes in the sphingolipid profile, autophagy, caspase-3 activation in the absence of cell death, and long-term sensitization. Biochem Biophys Res Commun 2011; 409:372-7. [PMID: 21545791 DOI: 10.1016/j.bbrc.2011.04.091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 04/19/2011] [Indexed: 11/18/2022]
Abstract
Two anticancer agents, LCL85 and photodynamic therapy (PDT) were combined to test whether the combination PDT/LCL85 evokes changes in the sphingolipid (SL) profile and promotes cell death. Treatment of SCCVII mouse squamous carcinoma cells using the silicone phthalocyanine Pc 4 for PDT induced increases in the prodeath global ceramides/dihydroceramides (DHceramides), and no changes in the prosurvival sphingosine-1-phosphate (S1P). In contrast, after LCL85, the levels of most ceramides and DHceramides were reduced, whereas the levels of S1P were increased. After PDT/LCL85 the levels of global ceramides and DHceramides, and of S1P, were restored to resting levels. PDT/LCL85 also enhanced the levels of C18-, C20-, and C20:1-ceramide, and C18-DHceramide. Treatment with PDT, with or without LCL85, led to substantial reductions in sphingosine levels. PDT/LCL85 induced enhanced autophagy and caspase-3 activation. None of the treatments affected short-term viability of cells. In contrast, long-term clonogenic survival was reduced not only after PDT or LCL85, but even more after PDT/LCL85. Overall, our data show that short-term exposure to PDT/LCL85 led to distinct signature effects on the SL profile, enhanced autophagy, and caspase-3 activation without cell death. Long-term exposure to PDT/LCL85 enhanced overall cell killing, supporting translational potential of PDT/LCL85.
Collapse
Affiliation(s)
- Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|