1
|
Carouge E, Burnichon C, Figeac M, Sebda S, Vanpouille N, Vinchent A, Truong M, Duterque‐Coquillaud M, Tulasne D, Chotteau‐Lelièvre A. Functional interaction between receptor tyrosine kinase MET and ETS transcription factors promotes prostate cancer progression. Mol Oncol 2025; 19:474-495. [PMID: 39374163 PMCID: PMC11793009 DOI: 10.1002/1878-0261.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 10/09/2024] Open
Abstract
Prostate cancer, the most common malignancy in men, has a relatively favourable prognosis. However, when it spreads to the bone, the survival rate drops dramatically. The development of bone metastases leaves patients with aggressive prostate cancer, the leading cause of death in men. Moreover, bone metastases are incurable and very painful. Hepatocyte growth factor receptor (MET) and fusion of genes encoding E26 transformation-specific (ETS) transcription factors are both involved in the progression of the disease. ETS gene fusions, in particular, have the ability to induce the migratory and invasive properties of prostate cancer cells, whereas MET receptor, through its signalling cascades, is able to activate transcription factor expression. MET signalling and ETS gene fusions are intimately linked to high-grade prostate cancer. However, the collaboration of these factors in prostate cancer progression has not yet been investigated. Here, we show, using cell models of advanced prostate cancer, that ETS translocation variant 1 (ETV1) and transcriptional regulator ERG (ERG) transcription factors (members of the ETS family) promote tumour properties, and that activation of MET signalling enhances these effects. By using a specific MET tyrosine kinase inhibitor in a humanised hepatocyte growth factor (HGF) mouse model, we also establish that MET activity is required for ETV1/ERG-mediated tumour growth. Finally, by performing a comparative transcriptomic analysis, we identify target genes that could play a relevant role in these cellular processes. Thus, our results demonstrate for the first time in prostate cancer models a functional interaction between ETS transcription factors (ETV1 and ERG) and MET signalling that confers more aggressive properties and highlight a molecular signature characteristic of this combined action.
Collapse
Affiliation(s)
- Elisa Carouge
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Clémence Burnichon
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Martin Figeac
- US 41 – UAR 2014 – PLBSInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Shéhérazade Sebda
- US 41 – UAR 2014 – PLBSInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Nathalie Vanpouille
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Audrey Vinchent
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Marie‐José Truong
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Martine Duterque‐Coquillaud
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - David Tulasne
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Anne Chotteau‐Lelièvre
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| |
Collapse
|
2
|
Wei J, Wang J, Guan W, Li J, Pu T, Corey E, Lin TP, Gao AC, Wu BJ. PlexinD1 is a driver and a therapeutic target in advanced prostate cancer. EMBO Mol Med 2025; 17:336-364. [PMID: 39748059 PMCID: PMC11822115 DOI: 10.1038/s44321-024-00186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Aggressive prostate cancer (PCa) variants associated with androgen receptor signaling inhibitor (ARSI) resistance and metastasis remain poorly understood. Here, we identify the axon guidance semaphorin receptor PlexinD1 as a crucial driver of cancer aggressiveness in metastatic castration-resistant prostate cancer (CRPC). High PlexinD1 expression in human PCa is correlated with adverse clinical outcomes. PlexinD1 critically maintains CRPC aggressive behaviors in vitro and in vivo, and confers stemness and cellular plasticity to promote multilineage differentiation including a neuroendocrine-like phenotype for ARSI resistance. Mechanistically, PlexinD1 is upregulated upon relief of AR-mediated transcriptional repression of PlexinD1 under ARSI treatment, and subsdquently transactivates ErbB3 and cMet via direct interaction, which triggers the ERK/AKT pathways to induce noncanonical Gli1-dictated Hedgehog signaling, facilitating the growth and plasticity of PCa cells. Blockade of PlexinD1 by the protein inhibitor D1SP restricted CRPC growth in multiple preclinical models. Collectively, these findings characterize PlexinD1's contribution to PCa progression and offer a potential PlexinD1-targeted therapy for advanced PCa.
Collapse
Affiliation(s)
- Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Jing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Wen Guan
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Jingjing Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianjie Pu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, 98195, USA
| | - Tzu-Ping Lin
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan, 11217, Republic of China
- Department of Urology, School of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, 11221, Republic of China
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, Sacramento, CA, 95817, USA
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
3
|
Kim WK, Buckley AJ, Lee DH, Hiroto A, Nenninger CH, Olson AW, Wang J, Li Z, Vikram R, Adzavon YM, Yau TY, Bao Y, Kahn M, Geradts J, Xiao GQ, Sun Z. Androgen deprivation induces double-null prostate cancer via aberrant nuclear export and ribosomal biogenesis through HGF and Wnt activation. Nat Commun 2024; 15:1231. [PMID: 38336745 PMCID: PMC10858246 DOI: 10.1038/s41467-024-45489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Androgen deprivation therapy (ADT) targeting androgen/androgen receptor (AR)- signaling pathways is the main therapy for advanced prostate cancer (PCa). However, ADT eventually fails in most patients who consequently develop castration-resistant prostate cancer (CRPC). While more potent AR antagonists and blockers for androgen synthesis were developed to improve clinical outcomes, they also show to induce more diverse CRPC phenotypes. Specifically, the AR- and neuroendocrine-null PCa, DNPC, occurs in abiraterone and enzalutamide-treated patients. Here, we uncover that current ADT induces aberrant HGF/MET signaling activation that further elevates Wnt/β-catenin signaling in human DNPC samples. Co-activation of HGF/MET and Wnt/β-catenin axes in mouse prostates induces DNPC-like lesions. Single-cell RNA sequencing analyses identify increased expression and activity of XPO1 and ribosomal proteins in mouse DNPC-like cells. Elevated expression of XPO1 and ribosomal proteins is also identified in clinical DNPC specimens. Inhibition of XPO1 and ribosomal pathways represses DNPC growth in both in vivo and ex vivo conditions, evidencing future therapeutic targets.
Collapse
Affiliation(s)
- Won Kyung Kim
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alyssa J Buckley
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Dong-Hoon Lee
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alex Hiroto
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christian H Nenninger
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Adam W Olson
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Zhuo Li
- Electronic Microscopy Core, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Rajeev Vikram
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yao Mawulikplimi Adzavon
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Tak-Yu Yau
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yigang Bao
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Michael Kahn
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Joseph Geradts
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, USA
| | - Guang-Qian Xiao
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zijie Sun
- Department of Cancer Biology and Molecular Medicine, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
4
|
Filon MJ, Gillette AA, Yang B, Khemees TA, Skala MC, Jarrard DF. Prostate cancer cells demonstrate unique metabolism and substrate adaptability acutely after androgen deprivation therapy. Prostate 2022; 82:1547-1557. [PMID: 35980831 PMCID: PMC9804183 DOI: 10.1002/pros.24428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) has been the standard of care for advanced hormone-sensitive prostate cancer (PC), yet tumors invariably develop resistance resulting in castrate-resistant PC. The acute response of cancer cells to ADT includes apoptosis and cell death, but a large fraction remains arrested but viable. In this study, we focused on intensively characterizing the early metabolic changes that result after ADT to define potential metabolic targets for treatment. METHODS A combination of mass spectrometry, optical metabolic imaging which noninvasively measures drug responses in cells, oxygen consumption rate, and protein expression analysis was used to characterize and block metabolic pathways over several days in multiple PC cell lines with variable hormone response status including ADT sensitive lines LNCaP and VCaP, and resistant C4-2 and DU145. RESULTS Mass spectrometry analysis of LNCaP pre- and postexposure to ADT revealed an abundance of glycolytic intermediates after ADT. In LNCaP and VCaP, a reduction in the optical redox ratio [NAD(P)H/FAD], extracellular acidification rate, and a downregulation of key regulatory enzymes for fatty acid and glutamine utilization was acutely observed after ADT. Screening several metabolic inhibitors revealed that blocking fatty acid oxidation and synthesis reversed this stress response in the optical redox ratio seen with ADT alone in LNCaP and VCaP. In contrast, both cell lines demonstrated increased sensitivity to the glycolytic inhibitor 2-Deoxy- d-glucose(2-DG) and maintained sensitivity to electron transport chain inhibitor Malonate after ADT exposure. ADT followed by 2-DG results in synergistic cell death, a result not seen with simultaneous administration. CONCLUSIONS Hormone-sensitive PC cells displayed altered metabolic profiles early after ADT including an overall depression in energy metabolism, induction of a quiescent/senescent phenotype, and sensitivity to selected metabolic inhibitors. Glycolytic blocking agents (e.g., 2-DG) as a sequential treatment after ADT may be promising.
Collapse
Affiliation(s)
- Mikolaj J. Filon
- Department of Urology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Amani A. Gillette
- Department of Biomedical EngineeringUniversity of WisconsinMadisonWisconsinUSA
- Morgridge Institute for ResearchMadisonWisconsinUSA
| | - Bing Yang
- Department of Urology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Tariq A. Khemees
- Department of Urology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Melissa C. Skala
- Department of Biomedical EngineeringUniversity of WisconsinMadisonWisconsinUSA
- Morgridge Institute for ResearchMadisonWisconsinUSA
- Carbone Comprehensive Cancer CenterUniversity of WisconsinMadisonWisconsinUSA
| | - David F. Jarrard
- Department of Urology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Carbone Comprehensive Cancer CenterUniversity of WisconsinMadisonWisconsinUSA
- Molecular and Environmental Toxicology ProgramUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
5
|
Evodiamine as the Active Compound of Evodiae fructus to Inhibit Proliferation and Migration of Prostate Cancer through PI3K/AKT/NF-κB Signaling Pathway. DISEASE MARKERS 2022; 2022:4399334. [PMID: 35899176 PMCID: PMC9313987 DOI: 10.1155/2022/4399334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022]
Abstract
Evodiae fructus (EF) is a traditional Chinese medicine which is widely used for the treatment of obesity, inflammation, cardiovascular disease, and diseases of the central nervous system. Recent studies have demonstrated the anticancer property of EF, but the active compounds of EF against prostate cancer and its underlying mechanism remain unknown. In this study, a network pharmacology-based approach was used to explore the multiple ingredients and targets of EF. Through protein-protein interaction (PPI), Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, the potential targets and corresponding ingredients of EF against prostate cancer cells were obtained. CCK8 and colony formation assays were performed to evaluate the antiproliferative effect of the active compounds on DU145 cells. Cell cycle analysis, Annexin V-FITC/PI staining assay, and Hoechst 33258 staining assay were used to explore the way of evodiamine-induced cell death. The capacities of cell migration after evodiamine treatment were evaluated by wound-healing assay. PharmMapper database was used to predict the potential targets of evodiamine against cancer cell migration. Western blot assay was performed to investigate the signaling pathway through which evodiamine inhibits cell proliferation and migration. The binding of evodiamine to PI3K and AKT was verified by molecular docking. As a consequence, 24 active compounds and 141 corresponding targets were obtained through a network pharmacology-based approach. The results of PPI analysis, GO enrichment, and KEGG pathway enrichment indicated that molecules in the PI3K/AKT/NF-κB signaling pathway were the potential targets of EF against prostate cancer, and evodiamine was the potential active compound. In vitro study demonstrated that evodiamine displays antiproliferative effect on DU145 cells obviously. Evodiamine induces G2/M cell cycle arrest by Cdc25c/CDK1/cyclin B1 signaling. Additionally, evodiamine also promotes mitochondrial apoptosis and inhibits cell migration through PI3K/AKT/NF-κB signaling in DU145 cells. In conclusion, evodiamine is the active compound of EF to inhibit proliferation and migration of prostate cancer through PI3K/AKT/NF-κB signaling pathway, indicating that evodiamine may serve as a potential lead drug for prostate cancer treatment.
Collapse
|
6
|
Fu X, Zhang Z, Liu M, Li J, A J, Fu L, Huang C, Dong JT. AR imposes different effects on ZFHX3 transcription depending on androgen status in prostate cancer cells. J Cell Mol Med 2021; 26:800-812. [PMID: 34953044 PMCID: PMC8817138 DOI: 10.1111/jcmm.17125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Both androgen receptor (AR) and the ZFHX3 transcription factor modulate prostate development. While AR drives prostatic carcinogenesis, ZFHX3 is a tumour suppressor whose loss activates the PI3K/AKT signalling in advanced prostate cancer (PCa). However, it is unknown whether ZFHX3 and AR are functionally related in PCa cells and, if so, how. Here, we report that in AR-positive LNCaP and C4-2B PCa cells, androgen upregulates ZFHX3 transcription via androgen-induced AR binding to the androgen-responsive elements (AREs) of the ZFHX3 promoter. Androgen also upregulated ZFHX3 transcription in vivo, as castration dramatically reduced Zfhx3 mRNA and protein levels in mouse prostates, and ZFHX3 mRNA levels correlated with AR activities in human PCa. Interestingly, the binding of AR to one ARE occurred in the absence of androgen, and the binding repressed ZFHX3 transcription as this repressive binding was interrupted by androgen treatment. The enzalutamide antiandrogen prevented androgen from inducing ZFHX3 transcription and caused excess ZFHX3 protein degradation. In human PCa, ZFHX3 was downregulated and the downregulation correlated with worse patient survival. These findings establish a regulatory relationship between AR and ZFHX3, suggest a role of ZFHX3 in AR function and implicate ZFHX3 loss in the antiandrogen therapies of PCa.
Collapse
Affiliation(s)
- Xing Fu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China.,Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiqian Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Mingcheng Liu
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Juan Li
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jun A
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Liya Fu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenyang Huang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jin-Tang Dong
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
7
|
Zhou S, Dai Z, Wang L, Gao X, Yang L, Wang Z, Wang Q, Liu Z. MET inhibition enhances PARP inhibitor efficacy in castration-resistant prostate cancer by suppressing the ATM/ATR and PI3K/AKT pathways. J Cell Mol Med 2021; 25:11157-11169. [PMID: 34761497 PMCID: PMC8650038 DOI: 10.1111/jcmm.17037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Up to 30% of patients with metastatic castration‐resistant prostate cancer (CRPC) patients carry altered DNA damage response genes, enabling the use of poly adenosine diphosphate–ribose polymerase (PARP) inhibitors in advanced CRPC. The proto‐oncogene mesenchymal–epithelial transition (MET) is crucial in the migration, proliferation, and invasion of tumour cells. Aberrant expression of MET and its ligand hepatocyte growth factor is associated with drug resistance in cancer therapy. Here, we found that MET was highly expressed in human CRPC tissues and overexpressed in DU145 and PC3 cells in a drug concentration‐dependent manner and is closely related to sensitivity to PARP inhibitors. Combining the PARP inhibitor olaparib with the MET inhibitor crizotinib synergistically inhibited CRPC cell growth both in vivo and in vitro. Further analysis of the underlying molecular mechanism underlying the MET suppression‐induced drug sensitivity revealed that olaparib and crizotinib could together downregulate the ATM/ATR signaling pathway, inducing apoptosis by inhibiting the phosphoinositide 3‐kinase/protein kinase B (PI3K/AKT) pathway, enhancing the olaparib‐induced antitumour effect in DU145 and PC3 cells. In conclusion, we demonstrated that MET inhibition enhances sensitivity of CRPC to PARP inhibitors by suppressing the ATM/ATR and PI3K/AKT pathways and provides a novel, targeted therapy regimen for CRPC.
Collapse
Affiliation(s)
- Sihai Zhou
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, DaLian, China
| | - Zhihong Dai
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, DaLian, China
| | - Liang Wang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, DaLian, China
| | - Xiang Gao
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, DaLian, China
| | - Liqin Yang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, DaLian, China
| | - Zhenwei Wang
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, DaLian, China
| | - Zhiyu Liu
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, DaLian, China
| |
Collapse
|
8
|
Kohata A, Ueki R, Okuro K, Hashim PK, Sando S, Aida T. Photoreactive Molecular Glue for Enhancing the Efficacy of DNA Aptamers by Temporary-to-Permanent Conjugation with Target Proteins. J Am Chem Soc 2021; 143:13937-13943. [PMID: 34424707 DOI: 10.1021/jacs.1c06816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a photoreactive molecular glue, BPGlue-N3, which can provide a universal strategy to enhance the efficacy of DNA aptamers by temporary-to-permanent stepwise stabilization of their conjugates with target proteins. As a proof-of-concept study, we applied BPGlue-N3 to the SL1 (DNA aptamer)/c-Met (target protein) conjugate system. BPGlue-N3 can adhere to and temporarily stabilize this aptamer/protein conjugate multivalently using its guanidinium ion (Gu+) pendants that form a salt bridge with oxyanionic moieties (e.g., carboxylate and phosphate) and benzophenone (BP) group that is highly affinitive to DNA duplexes. BPGlue-N3 is designed to carry a dual-mode photoreactivity; upon exposure to UV light, the temporarily stabilized aptamer/protein conjugate reacts with the photoexcited BP unit of adhering BPGlue-N3 and also a nitrene species, possibly generated by the BP-to-N3 energy transfer in BPGlue-N3. We confirmed that SL1, covalently conjugated with c-Met, hampered the binding of hepatocyte growth factor (HGF) onto c-Met, even when the SL1/c-Met conjugate was rinsed prior to the treatment with HGF, and suppressed cell migration caused by HGF-induced c-Met phosphorylation.
Collapse
Affiliation(s)
- Ai Kohata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryosuke Ueki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kou Okuro
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - P K Hashim
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Evodiamine Mitigates Cellular Growth and Promotes Apoptosis by Targeting the c-Met Pathway in Prostate Cancer Cells. Molecules 2020; 25:molecules25061320. [PMID: 32183146 PMCID: PMC7144730 DOI: 10.3390/molecules25061320] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
Evodiamine (EVO) is an indoloquinazoline alkaloid that exerts its various anti-oncogenic actions by blocking phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), mitogen-activated protein kinase (MAPK), c-Met, and nuclear factor kappa B (NF-κB) signaling pathways, thus leading to apoptosis of tumor cells. We investigated the ability of EVO to affect hepatocyte growth factor (HGF)-induced c-Met/Src/STAT3 activation cascades in castration-resistant prostate cancer (CRPC). First, we noted that EVO showed cytotoxicity and anti-proliferation activities in PC-3 and DU145 cells. Next, we found that EVO markedly inhibited HGF-induced c-Met/Src/STAT3 phosphorylation and impaired the nuclear translocation of STAT3 protein. Then, we noted that EVO arrested the cell cycle, caused apoptosis, and downregulated the expression of various carcinogenic markers such as B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), cyclin D1, cyclooxygenase 2 (COX-2), survivin, vascular endothelial growth factor (VEGF), and matrix metallopeptidases 9 (MMP-9). Moreover, it was observed that in cPC-3 and DU145 cells transfected with c-Met small interfering RNA (siRNA), Src/STAT3 activation was also mitigated and led to a decrease in EVO-induced apoptotic cell death. According to our results, EVO can abrogate the activation of the c-Met/Src/STAT3 signaling axis and thus plays a role as a robust suppressor of tumor cell survival, proliferation, and angiogenesis.
Collapse
|
10
|
Verhoef EI, Kolijn K, De Herdt MJ, van der Steen B, Hoogland AM, Sleddens HFBM, Looijenga LHJ, van Leenders GJLH. MET expression during prostate cancer progression. Oncotarget 2018; 7:31029-36. [PMID: 27105539 PMCID: PMC5058736 DOI: 10.18632/oncotarget.8829] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/31/2016] [Indexed: 11/25/2022] Open
Abstract
Tyrosine-kinase inhibitors of the hepatocyte growth factor receptor MET are under investigation for the treatment of hormone-refractory prostate cancer (HRPC) metastasis. Analysis of MET protein expression and genetic alterations might contribute to therapeutic stratification of prostate cancer patients. Our objective was to investigate MET on protein, DNA and RNA level in clinical prostate cancer at various stages of progression. Expression of MET was analyzed in hormone-naive primary prostate cancers (N=481), lymph node (N=40) and bone (N=8) metastases, as well as HRPC (N=54) and bone metastases (N=15). MET protein expression was analyzed by immunohistochemistry (D1C2 C-terminal antibody). MET mRNA levels and MET DNA copy numbers were determined by in situ hybridization. None of the hormone-naive primary prostate cancer or lymph node metastases demonstrated MET protein or mRNA expression. In contrast, MET protein was expressed in 12/52 (23%) evaluable HRPC resections. RNA in situ demonstrated cytoplasmic signals in 14/54 (26%) of the HRPC patients, and was associated with MET protein expression (p=0.025, χ2), in absence of MET amplification or polysomy. MET protein expression was present in 7/8 (88%) hormone-naive and 10/15 (67%) HRPC bone metastases, without association of HRPC (p=0.37; χ2), with MET polysomy in 8/13 (61%) evaluable cases. In conclusion, MET was almost exclusively expressed in HRPC and prostate cancer bone metastasis, but was not related to MET amplification or polysomy. Evaluation of MET status could be relevant for therapeutic stratification of late stage prostate cancer.
Collapse
Affiliation(s)
- Esther I Verhoef
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Kimberley Kolijn
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Maria J De Herdt
- Othorhinolaryngology and Head and Neck Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Berdine van der Steen
- Othorhinolaryngology and Head and Neck Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - A Marije Hoogland
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
11
|
Batth I, Yun H, Hussain S, Meng P, Osmulski P, Huang THM, Bedolla R, Profit A, Reddick R, Kumar A. Crosstalk between RON and androgen receptor signaling in the development of castration resistant prostate cancer. Oncotarget 2017; 7:14048-63. [PMID: 26872377 PMCID: PMC4924697 DOI: 10.18632/oncotarget.7287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/29/2016] [Indexed: 12/23/2022] Open
Abstract
Castrate-resistant prostate cancer (CRPC) is the fatal form of prostate cancer. Although reactivation of androgen receptor (AR) occurs following androgen deprivation, the precise mechanism involved is unclear. Here we show that the receptor tyrosine kinase, RON alters mechanical properties of cells to influence epithelial to mesenchymal transition and functions as a transcription factor to differentially regulate AR signaling. RON inhibits AR activation and subset of AR-regulated transcripts in androgen responsive LNCaP cells. However in C4-2B, a castrate-resistant sub-line of LNCaP and AR-negative androgen independent DU145 cells, RON activates subset of AR-regulated transcripts. Expression of AR in PC-3 cells leads to activation of RON under androgen deprivation but not under androgen proficient conditions implicating a role for RON in androgen independence. Consistently, RON expression is significantly elevated in castrate resistant prostate tumors. Taken together our results suggest that RON activation could aid in promoting androgen independence and that inhibition of RON in combination with AR antagonist(s) merits serious consideration as a therapeutic option during hormone deprivation therapy.
Collapse
Affiliation(s)
- Izhar Batth
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX, USA.,Current address: Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huiyoung Yun
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Suleman Hussain
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Peng Meng
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX, USA.,Current address: Life Sciences Division, Lawrence Berkley National Laboratory, Berkley, CA, USA
| | - Pawel Osmulski
- Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Tim Hui-Ming Huang
- Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX, USA.,Cancer Therapy and Research Center, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Roble Bedolla
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Amanda Profit
- Department of Pathology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Robert Reddick
- Department of Pathology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Addanki Kumar
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX, USA.,Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA.,Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX, USA.,Cancer Therapy and Research Center, The University of Texas Health Science Center, San Antonio, TX, USA.,The University of Texas Health Science Center at San Antonio and South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
12
|
Hass R, Jennek S, Yang Y, Friedrich K. c-Met expression and activity in urogenital cancers - novel aspects of signal transduction and medical implications. Cell Commun Signal 2017; 15:10. [PMID: 28212658 PMCID: PMC5316205 DOI: 10.1186/s12964-017-0165-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/13/2017] [Indexed: 11/10/2022] Open
Abstract
C-Met is a receptor tyrosine kinase with multiple functions throughout embryonic development, organogenesis and wound healing and is expressed in various epithelia. The ligand of c-Met is Hepatocyte Growth Factor (HGF) which is secreted among others by mesenchymal stroma/stem (MSC) cells.Physiological c-Met functions are centred around processes that underly cellular motility and invasive growth. Aberrant c-Met expression and activity is observed in numerous cancers and makes major contributions to cell malignancy. Importantly, HGF/c-Met signaling is crucial in the context of communication between cancer cells and the the tumor stroma.Here, we review recent findings on roles of dysregulated c-Met in urogenital tumors such as cancers of the urinary bladder, prostate, and ovary. We put emphasis on novel aspects of cancer-associated c-Met expression regulation on both, HGF-dependent and HGF-independent non-canonical mechanisms. Moreover, this review focusses on c-Met-triggered signalling with potential relevance for urogenital oncogenesis, and on strategies to specifically inhibit c-Met activity.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Gynecology, Hannover Medical School, Hannover, Germany
| | - Susanne Jennek
- Institute of Biochemistry II, University Hospital Jena, Nonnenplan 2-4, D-07743 Jena, Germany
| | - Yuanyuan Yang
- Biochemistry and Tumor Biology Lab, Department of Gynecology, Hannover Medical School, Hannover, Germany
| | - Karlheinz Friedrich
- Institute of Biochemistry II, University Hospital Jena, Nonnenplan 2-4, D-07743 Jena, Germany
| |
Collapse
|
13
|
Leibowitz-Amit R, Pintilie M, Khoja L, Azad AA, Berger R, Laird AD, Aftab DT, Chi KN, Joshua AM. Changes in plasma biomarkers following treatment with cabozantinib in metastatic castration-resistant prostate cancer: a post hoc analysis of an extension cohort of a phase II trial. J Transl Med 2016; 14:12. [PMID: 26762579 PMCID: PMC4712499 DOI: 10.1186/s12967-015-0747-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 12/04/2015] [Indexed: 11/10/2022] Open
Abstract
Background
Cabozantinib is an orally available inhibitor of tyrosine kinases including VEGFR2 and c-MET. We performed a post hoc analysis to find associations between select plasma biomarkers and treatment response in patients (pts) with metastatic castration resistant prostate cancer (mCRPC) who received cabozantinib 100 mg daily as part of a phase 2 non-randomized expansion cohort (NCT00940225). Methods
Plasma samples were collected at baseline, 6 weeks and at time of maximal response from 81 mCRPC pts with bone metastases, of which 33 also had measurable soft-tissue disease. Levels of 27 biomarkers were measured in duplicate using enzyme-linked immunosorbent assay. Spearman correlation coefficients were calculated for the association between biomarker levels or their change on treatment and either bone scan response (BSR) or soft tissue response according to RECIST. Results A BSR and RECIST response were seen in 66/81 pts (81 %) and 6/33 pts (18 %) respectively. No significant associations were found between any biomarker at any time point and either type of response. Plasma concentrations of VEGFA, FLT3L, c-MET, AXL, Gas6A, bone-specific alkaline phosphatase, interleukin-8 and the hypoxia markers CA9 and clusterin significantly increased during treatment with cabozantinib irrespective of response. The plasma concentrations of VEGFR2, Trap5b, Angiopoietin-2, TIMP-2 and TIE-2 significantly decreased during treatment with caboznatinib. Conclusions Our data did not reveal plasma biomarkers associated with response to cabozantinib. The observed alterations in several biomarkers during treatment with cabozantinib may provide insights on the effects of cabozantinib on tumor cells and on tumor micro-environment and may help point to potential co-targeting approaches.
Collapse
Affiliation(s)
| | - Melania Pintilie
- Division of Biostatistics, Princess Margaret Cancer Center, University Health Network, Toronto, Canada.
| | - Leila Khoja
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, 610 University Ave, Toronto, ON, M5G 2M9, Canada.
| | - Arun A Azad
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | - Raanan Berger
- Department of Oncology, Sheba Medical Center, Tel Hashomer, Israel.
| | | | | | - Kim N Chi
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | - Anthony M Joshua
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, 610 University Ave, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
14
|
Qiao Y, Feng FY, Wang Y, Cao X, Han S, Wilder-Romans K, Navone NM, Logothetis C, Taichman RS, Keller ET, Palapattu GS, Alva AS, Smith DC, Tomlins SA, Chinnaiyan AM, Morgan TM. Mechanistic Support for Combined MET and AR Blockade in Castration-Resistant Prostate Cancer. Neoplasia 2016; 18:1-9. [PMID: 26806347 PMCID: PMC4735600 DOI: 10.1016/j.neo.2015.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 10/26/2022]
Abstract
A recent phase III trial of the MET kinase inhibitor cabozantinib in men with castration-resistant prostate cancer (CRPC) failed to meet its primary survival end point; however, most men with CRPC have intact androgen receptor (AR) signaling. As previous work supports negative regulation of MET by AR signaling, we hypothesized that intact AR signaling may have limited the efficacy of cabozantinib in some of these patients. To assess the role of AR signaling on MET inhibition, we first performed an in silico analysis of human CRPC tissue samples stratified by AR signaling status ((+) or (-)), which identified MET expression as markedly increased in AR(-) samples. In vitro, AR signaling inhibition in AR(+) CRPC models increased MET expression and resulted in susceptibility to ligand (HGF) activation. Likewise, MET inhibition was only effective in blocking cancer phenotypes in cells with MET overexpression. Using multiple AR(+) CRPC in vitro and in vivo models, we showed that combined cabozantinib and enzalutamide (AR antagonist) treatment was more efficacious than either inhibitor alone. These data provide a compelling rationale to combine AR and MET inhibition in CRPC and may explain the negative results of the phase III cabozantinib study in CRPC. Similarly, the expression of MET in AR(-) disease, whether due to AR inhibition or loss of AR signaling, suggests potential utility for MET inhibition in select patients with AR therapy resistance and in AR(-) prostate cancer.
Collapse
Affiliation(s)
- Yuanyuan Qiao
- Michigan Center for Translational Pathology; Department of Pathology; Comprehensive Cancer Center
| | - Felix Y Feng
- Michigan Center for Translational Pathology; Department of Radiation Oncology; Comprehensive Cancer Center
| | | | - Xuhong Cao
- Michigan Center for Translational Pathology; Howard Hughes Medical Institute
| | | | | | - Nora M Navone
- Department of Genitourinary Medical Oncology; David H. Koch Center for Applied Research of Genitourinary Cancers
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology; David H. Koch Center for Applied Research of Genitourinary Cancers
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry
| | | | | | | | - David C Smith
- Comprehensive Cancer Center; Department of Internal Medicine
| | - Scott A Tomlins
- Michigan Center for Translational Pathology; Department of Pathology; Department of Urology; Comprehensive Cancer Center
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology; Department of Pathology; Department of Urology; Howard Hughes Medical Institute; Comprehensive Cancer Center.
| | - Todd M Morgan
- Michigan Center for Translational Pathology; Department of Urology; Comprehensive Cancer Center
| |
Collapse
|
15
|
Comhaire F, Mahmoud A. The andrologist's contribution to a better life for ageing men: part 1. Andrologia 2015; 48:87-98. [DOI: 10.1111/and.12485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2015] [Indexed: 11/28/2022] Open
Affiliation(s)
- F. Comhaire
- Department of Endocrinology; University Hospital Gent; Gent Belgium
| | - A. Mahmoud
- Department of Endocrinology; University Hospital Gent; Gent Belgium
| |
Collapse
|
16
|
Hong DS, Rosen P, Lockhart AC, Fu S, Janku F, Kurzrock R, Khan R, Amore B, Caudillo I, Deng H, Hwang YC, Loberg R, Ngarmchamnanrith G, Beaupre DM, Lee P. A first-in-human study of AMG 208, an oral MET inhibitor, in adult patients with advanced solid tumors. Oncotarget 2015; 6:18693-706. [PMID: 26155941 PMCID: PMC4621921 DOI: 10.18632/oncotarget.4472] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/30/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This first-in-human study evaluated AMG 208, a small-molecule MET inhibitor, in patients with advanced solid tumors. METHODS Three to nine patients were enrolled into one of seven AMG 208 dose cohorts (25, 50, 100, 150, 200, 300, and 400 mg). Patients received AMG 208 orally on days 1 and days 4-28 once daily. The primary objectives were to evaluate the safety, tolerability, pharmacokinetics, and maximum tolerated dose (MTD) of AMG 208. RESULTS Fifty-four patients were enrolled. Six dose-limiting toxicities were observed: grade 3 increased aspartate aminotransferase (200 mg), grade 3 thrombocytopenia (200 mg), grade 4 acute myocardial infarction (300 mg), grade 3 prolonged QT (300 mg), and two cases of grade 3 hypertension (400 mg). The MTD was not reached. The most frequent grade ≥3 treatment-related adverse event was anemia (n = 3) followed by hypertension, prolonged QT, and thrombocytopenia (two patients each). AMG 208 exposure increased linearly with dose; mean plasma half-life estimates were 21.4-68.7 hours. One complete response (prostate cancer) and three partial responses (two in prostate cancer, one in kidney cancer) were observed. CONCLUSIONS In this study, AMG 208 had manageable toxicities and showed evidence of antitumor activity, particularly in prostate cancer.
Collapse
Affiliation(s)
| | - Peter Rosen
- Tower Cancer Research Foundation, Beverly Hills, CA, USA
| | | | - Siqing Fu
- MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Rabia Khan
- MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | - Peter Lee
- Tower Cancer Research Foundation, Beverly Hills, CA, USA
| |
Collapse
|
17
|
Katzenwadel A, Wolf P. Androgen deprivation of prostate cancer: Leading to a therapeutic dead end. Cancer Lett 2015; 367:12-7. [PMID: 26185001 DOI: 10.1016/j.canlet.2015.06.021] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/16/2015] [Accepted: 06/29/2015] [Indexed: 11/19/2022]
Abstract
Androgen deprivation therapy (ADT) is considered as the standard therapy for men with de novo or recurrent metastatic prostate cancer. ADT commonly leads to initial biochemical and clinical responses. However, several months after the beginning of treatment, tumors become castration-resistant and virtually all patients show disease progression. At this stage, tumors are no longer curable and cancer treatment options are only palliative. In this review, we describe molecular alterations in tumor cells during ADT, which lead to deregulation of different signaling pathways and castration-resistance, and how they might interfere with the clinical outcome of different second-line therapeutics. A recent breakthrough finding that early chemotherapy is associated with a significant survival benefit in metastatic hormone-sensitive disease highlights the fact that there is time for a fundamental paradigm shift in the treatment of advanced prostate cancer. Therapeutic intervention seems to be indicated before a castration-resistant stage is reached to improve therapeutic outcome and to reduce undesirable side effects.
Collapse
Affiliation(s)
- Arndt Katzenwadel
- Department of Urology, Medical Center, University of Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center, University of Freiburg, Engesser Strasse 4b, D-79108 Freiburg, Germany.
| |
Collapse
|
18
|
Miyata Y, Asai A, Mitsunari K, Matsuo T, Ohba K, Mochizuki Y, Sakai H. Met in urological cancers. Cancers (Basel) 2014; 6:2387-403. [PMID: 25521854 PMCID: PMC4276973 DOI: 10.3390/cancers6042387] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/18/2022] Open
Abstract
Met is a tyrosine kinase receptor that is considered to be a proto-oncogene. The hepatocyte growth factor (HGF)-Met signaling system plays an important role in tumor growth, invasion, and metastasis in many types of malignancies. Furthermore, Met expression has been reported to be a useful predictive biomarker for disease progression and patient survival in these malignancies. Many studies have focused on the clinical significance and prognostic role of Met in urological cancers, including prostate cancer (PCa), renal cell carcinoma (RCC), and urothelial cancer. Several preclinical studies and clinical trials are in progress. In this review, the current understanding of the pathological role of Met in cancer cell lines, its clinical significance in cancer tissues, and its predictive value in patients with urological cancers are summarized. In particular, Met-related malignant behavior in castration-resistant PCa and the different pathological roles Met plays in papillary RCC and other histological types of RCC are the subjects of focus. In addition, the pathological significance of phosphorylated Met in these cancers is shown. In recent years, Met has been recognized as a potential therapeutic target in various types of cancer; therapeutic strategies used by Met-targeted agents in urological cancers are summarized in this review.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Akihiro Asai
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kensuke Mitsunari
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Yasushi Mochizuki
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Hideki Sakai
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| |
Collapse
|
19
|
Understanding the mechanisms of androgen deprivation resistance in prostate cancer at the molecular level. Eur Urol 2014; 67:470-9. [PMID: 25306226 DOI: 10.1016/j.eururo.2014.09.049] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/25/2014] [Indexed: 01/22/2023]
Abstract
CONTEXT Various molecular mechanisms play a role in the development of resistance to androgen deprivation therapy in castration-resistant prostate cancer (CRPC). OBJECTIVE To understand the mechanisms and biological pathways associated with the progression of prostate cancer (PCa) under systemic androgen depletion or administration of the novel antiandrogens abiraterone, enzalutamide, and ARN-509. This review also examines the introduction of novel combinational approaches for patients with CRPC. EVIDENCE ACQUISITION PubMed was the data source. Keywords for the search were castrate resistant prostate cancer, abiraterone, enzalutamide resistance mechanisms, resistance to androgen deprivation, AR mutations, amplifications, splice variants, and AR alterations. Papers published before 1990 were excluded from the review, and only English-language papers were included. EVIDENCE SYNTHESIS This review summarizes the current literature regarding the mechanisms implicated in the development of CRPC and the acquisition of resistance to novel antiandrogen axis agents. The review focuses on androgen biosynthesis in the tumor microenvironment, androgen receptor (AR) alterations and post-transcriptional modifications, the role of glucocorticoid receptor, and alternative oncogenic signaling that is derepressed on maximum AR inhibition and thus promotes cancer survival and progression. CONCLUSIONS The mechanisms implicated in the development of resistance to AR inhibition in PCa are multiple and complex, involving virtually all classes of genomic alteration and leading to a host of selective/adaptive responses. Combinational therapeutic approaches targeting both AR signaling and alternative oncogenic pathways may be reasonable for patients with CRPC. PATIENT SUMMARY We looked for mechanisms related to the progression of PCa in patients undergoing hormonal therapy and treatment with novel drugs targeting the AR. Based on recent data, combining maximal AR inhibition with novel agents targeting other tumor-compensatory, non-AR-related pathways may improve the survival and quality of life of patients with castration-resistant PCa.
Collapse
|
20
|
Valcamonico F, Ferrari L, Consoli F, Amoroso V, Berruti A. Testosterone serum levels and prostate cancer prognosis: the double face of Janus. Future Oncol 2014; 10:1113-5. [DOI: 10.2217/fon.14.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Francesca Valcamonico
- Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, Medical Oncology, University of Brescia, Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Laura Ferrari
- Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, Medical Oncology, University of Brescia, Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Francesca Consoli
- Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, Medical Oncology, University of Brescia, Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Vito Amoroso
- Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, Medical Oncology, University of Brescia, Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Alfredo Berruti
- Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, Medical Oncology, University of Brescia, Spedali Civili Hospital, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| |
Collapse
|
21
|
Liu T, Mendes DE, Berkman CE. Functional prostate-specific membrane antigen is enriched in exosomes from prostate cancer cells. Int J Oncol 2014; 44:918-22. [PMID: 24424840 PMCID: PMC3928468 DOI: 10.3892/ijo.2014.2256] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/04/2013] [Indexed: 12/14/2022] Open
Abstract
Developing simple and effective approaches to detect tumor markers will be critical for early diagnosis or prognostic evaluation of prostate cancer treatment. Prostate-specific membrane antigen (PSMA) has been validated as an important tumor marker for prostate cancer progression including angiogenesis and metastasis. As a type II membrane protein, PSMA can be constitutively internalized from the cell surface into endosomes. Early endosomes can fuse with multivesicular bodies (MVB) to form and secrete exosomes (40–100 nm) into the extracellular environment. Herein, we tested whether some of the endosomal PSMA could be transferred to exosomes as an extracellular resource for PSMA. Using PSMA-positive LNCaP cells, the secreted exosomes were collected and isolated from the cultured media. The vesicular structures of exosomes were identified by electron microscopy, and exosomal marker protein CD9 and tumor susceptibility gene (TSG 101) were confirmed by western blot analysis. Our present data demonstrate that PSMA can be enriched in exosomes, exhibiting a higher content of glycosylation and partial proteolysis in comparison to cellular PSMA. An in vitro enzyme assay further confirmed that exosomal PSMA retains functional enzymatic activity. Therefore, our data may suggest a new role for PSMA in prostate cancer progression, and provide opportunities for developing non-invasive approaches for diagnosis or prognosis of prostate cancer.
Collapse
Affiliation(s)
- Tiancheng Liu
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Desiree E Mendes
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Clifford E Berkman
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
22
|
Liu T, Mendes DE, Berkman CE. Prolonged androgen deprivation leads to overexpression of calpain 2: implications for prostate cancer progression. Int J Oncol 2013; 44:467-72. [PMID: 24297527 PMCID: PMC3898865 DOI: 10.3892/ijo.2013.2196] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 10/18/2013] [Indexed: 11/30/2022] Open
Abstract
Understanding the molecular mechanism of prostate cancer progression from androgen dependence to independence may lead to developing more effective treatments against prostate cancer. Herein, our previous in vitro model was employed to assess the effects of continuous androgen-deprivation on developing the metastatic phenotype from androgen-dependent prostate cancer cells (LNCaP). The results indicated that long-term androgen deprivation resulted in overexpression of calpain 2 and increased expression of filamin A (FlnA), but not for calpain 1. The enhanced activity of calpain 2 was confirmed by the accumulation of cleaved FlnA fragments, which could be effectively blocked by calpeptin (an inhibitor of calpain 2). Therefore, the combination of calpain 2 inhibitor and androgen deprivation may provide new therapeutic strategy for patients to prevent or postpone prostate cancer progression.
Collapse
Affiliation(s)
- Tiancheng Liu
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Desiree E Mendes
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Clifford E Berkman
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|