1
|
Xie Y, Han X, Yu J, Yuan M, Yan Y, Qin J, Lan L, Wang Y. EGR3 and estrone are involved in the tamoxifen resistance and progression of breast cancer. J Cancer Res Clin Oncol 2023; 149:18103-18117. [PMID: 37999751 DOI: 10.1007/s00432-023-05503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Tamoxifen (Tam) is an effective treatment for estrogen receptor (ER) positive breast cancer. However, a significant proportion of patients develop resistance under treatment, presenting a therapeutic challenge. The study aims to determine the role of early growth response protein (EGR) 3 in tamoxifen resistance (TamR) and elucidate its molecular mechanism. METHODS TamR cell models were established and NGS was used to screening signaling alternation. Western blot and qRT-PCR were used to analysis the expression of ERα, EGR3, MCL1 and factors associated with apoptosis. CCK8, colony formation and apoptosis assay were used to analysis resistance to Tam. Immunofluorescence, chromatin immunoprecipitation, and dual luciferase assays were used to investigate mechanism of regulation. RESULTS We observed that EGR3, a deeply rooted ERα response factor, showed increased upregulation in response to both estrone (E1) and Tam in TamR cells with elevated level of E1 and ERα expression, indicating a potential connection between EGR3 and TamR. Mechanically, manipulating EGR3 expression revealed that it imparted resistance to Tam through increased expression of the downstream molecule MCL1 (apoptosis suppressor gene) that it regulated. Mechanismly, EGR3 directly binds to the promoter of the anti-apoptotic factor MCL1 gene, facilitating its transcription. Furthermore, apoptosis assays revealed that E1 reduces Tam induced apoptosis by upregulating EGR3 expression. Importantly, clinical public database confirmed the high expression of EGR3 in breast cancer tissue and in Tam-treated patients. CONCLUSIONS These findings shed light on the novel estrogen/EGR3/MCL1 axis and its role in inducing TamR in ER positive breast cancer. EGR3 emerges as a promising target to overcome TamR. The elucidation of this mechanism holds potential for the development of new therapeutic modalities to overcome endocrine therapy resistance in clinical settings.
Collapse
Affiliation(s)
- Yu Xie
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Jing Yu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Mengci Yuan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yan Yan
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin, 300041, China
| | - Junfang Qin
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lan Lan
- Department of Integrated Traditional and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yue Wang
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin, 300041, China.
| |
Collapse
|
2
|
Kawiak A, Kostecka A. Regulation of Bcl-2 Family Proteins in Estrogen Receptor-Positive Breast Cancer and Their Implications in Endocrine Therapy. Cancers (Basel) 2022; 14:279. [PMID: 35053443 PMCID: PMC8773933 DOI: 10.3390/cancers14020279] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
Estrogen receptor (ER)-positive breast cancer accounts for around two-thirds of breast cancer occurrences, with endocrine therapy serving as first-line therapy in most cases. Targeting estrogen signaling pathways, which play a central role in regulating ER+ breast cell proliferation and survival, has proven to improve patient outcomes. However, despite the undeniable advantages of endocrine therapy, a subset of breast cancer patients develop acquired or intrinsic resistance to ER-targeting agents, limiting their efficacy. The activation of downstream ER signaling pathways upregulates pro-survival mechanisms that have been shown to influence the response of cells to endocrine therapy. The Bcl-2 family proteins play a central role in cell death regulation and have been shown to contribute to endocrine therapy resistance, supporting the survival of breast cancer cells and enhancing cell death evasion. Due to the overexpression of anti-apoptotic Bcl-2 proteins in ER-positive breast cancer, the role of these proteins as potential targets in hormone-responsive breast cancer is growing in interest. In particular, recent advances in the development of BH3 mimetics have enabled their evaluation in preclinical studies with ER+ breast cancer models, and BH3 mimetics have entered early ER+ breast cancer clinical trials. This review summarizes the molecular mechanisms underlying the regulation of Bcl-2 family proteins in ER+ breast cancer. Furthermore, an overview of recent advances in research regarding the efficacy of BH3 mimetics in ER+ breast cancer has been provided.
Collapse
Affiliation(s)
- Anna Kawiak
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Anna Kostecka
- Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland;
| |
Collapse
|
3
|
Al-Ajeeli MN, Hubert SM, Leyva-Jimenez H, Hashim MM, Abdaljaleel RA, Alsadwi AM, Athrey G, Bailey CA. Impacts of Dietary Protein and Prebiotic Inclusion on Liver and Spleen Gene Expression in Hy-Line Brown Caged Layers. Animals (Basel) 2020; 10:ani10030453. [PMID: 32182781 PMCID: PMC7142900 DOI: 10.3390/ani10030453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Eggs are one of the most affordable and nutritious animal proteins available, and with increasing human population, there is an increased demand for production. As feed is the main expense in poultry production, novel protein sources and feed additives need to be evaluated for their benefits for poultry health and performance. In this study, we evaluated the standard soybean-based diets against an alternate source—cottonseed meal, in the context of prebiotic addition. Prebiotics putatively improves health and production. We assessed the homeostatic and immune balance by assaying the expression of select marker genes. We find that the inclusion of yeast cell wall products as prebiotic alters homeostatic balance. Particularly, the upregulation of apoptosis—a normal cell process—suggests that these products may promote homeostatic balance. Abstract The ingredients of poultry feeds are chosen based on the least-cost formulation to meet nutritional requirements. However, this approach can lead to the introduction of anti-nutritional ingredients in the feed. The objective of this study was to evaluate the impacts of two diets (with or without prebiotic) on homeostatic genes in the liver and spleen of laying hens. Hy-Line Brown layers were raised either on a soybean meal or cottonseed meal-based diets with and without an added prebiotic (yeast cell wall), totaling four experimental diets. A total of 120, 63-week old layers were housed individually in a wire cage system. We investigated differences in the expression of select homeostatic marker genes in the liver and spleen of hens from each treatment. We then used the ΔΔCT and generalized linear models to assess significance. Results show that the inclusion of prebiotic yeast cell-wall (YCW) increased the expression of the BAK gene in the liver tissue for both the soybean meal (SBM) and cottonseed meal (CSM) diets. For splenic tissue, the combination of YCW with the CSM diet increased the POR gene over six log2 fold. Altogether, our results suggest altered homeostasis, which can have consequences for health and performance.
Collapse
Affiliation(s)
- Morouj N. Al-Ajeeli
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA; (M.N.A.-A.); (S.M.H.); (H.L.-J.); (M.M.H.); (R.A.A.); (A.M.A.); (C.A.B.)
- Calpis America, Inc. 455 Dividend Dr, Peachtree, GA 30269, USA
| | - Shawna M. Hubert
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA; (M.N.A.-A.); (S.M.H.); (H.L.-J.); (M.M.H.); (R.A.A.); (A.M.A.); (C.A.B.)
| | - Hector Leyva-Jimenez
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA; (M.N.A.-A.); (S.M.H.); (H.L.-J.); (M.M.H.); (R.A.A.); (A.M.A.); (C.A.B.)
| | - Mohammed M. Hashim
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA; (M.N.A.-A.); (S.M.H.); (H.L.-J.); (M.M.H.); (R.A.A.); (A.M.A.); (C.A.B.)
| | - Raghad A. Abdaljaleel
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA; (M.N.A.-A.); (S.M.H.); (H.L.-J.); (M.M.H.); (R.A.A.); (A.M.A.); (C.A.B.)
| | - Akhil M. Alsadwi
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA; (M.N.A.-A.); (S.M.H.); (H.L.-J.); (M.M.H.); (R.A.A.); (A.M.A.); (C.A.B.)
| | - Giridhar Athrey
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA; (M.N.A.-A.); (S.M.H.); (H.L.-J.); (M.M.H.); (R.A.A.); (A.M.A.); (C.A.B.)
- Correspondence: ; Tel.: +1-979-458-9921
| | - Christopher A. Bailey
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA; (M.N.A.-A.); (S.M.H.); (H.L.-J.); (M.M.H.); (R.A.A.); (A.M.A.); (C.A.B.)
| |
Collapse
|
4
|
Borst A, Haferkamp S, Grimm J, Rösch M, Zhu G, Guo S, Li C, Gao T, Meierjohann S, Schrama D, Houben R. BIK is involved in BRAF/MEK inhibitor induced apoptosis in melanoma cell lines. Cancer Lett 2017; 404:70-78. [PMID: 28720543 DOI: 10.1016/j.canlet.2017.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/29/2022]
Abstract
In patients with BRAF-mutated melanoma specific inhibitors of BRAFV600E and MEK1/2 frequently induce initial tumor reduction, frequently followed by relapse. As demonstrated previously, BRAFV600E-inhibition induces apoptosis only in a fraction of treated cells, while the remaining arrest and survive providing a source or a niche for relapse. To identify factors contributing to the differential initial response towards BRAF/MEK inhibition, we established M14 melanoma cell line-derived single cell clones responding to treatment with BRAF inhibitor vemurafenib and MEK inhibitor trametinib predominantly with either cell cycle arrest (CCA-cells) or apoptosis (A-cells). Screening for differentially expressed apoptosis-related genes revealed loss of BCL2-Interacting Killer (BIK) mRNA in CCA-cells. Importantly, ectopic expression of BIK in CCA-cells resulted in increased apoptosis rates following vemurafenib/trametinib treatment, while knockdown/knockout of BIK in A-cells attenuated the apoptotic response. Furthermore, we demonstrate reversible epigenetic silencing of BIK mRNA expression in CCA-cells. Importantly, HDAC inhibitor treatment associated with re-expression of BIK augmented sensitivity of CCA-cells towards vemurafenib/trametinib treatment both in vitro and in vivo. In conclusion, our results suggest that BIK can be a critical mediator of melanoma cell fate determination in response to MAPK pathway inhibition.
Collapse
Affiliation(s)
- Andreas Borst
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Johannes Grimm
- Department of Physiological Chemistry I, Biocenter, Wuerzburg, Germany
| | - Manuel Rösch
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Guannan Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
5
|
Star-PAP, a poly(A) polymerase, functions as a tumor suppressor in an orthotopic human breast cancer model. Cell Death Dis 2017; 8:e2582. [PMID: 28151486 PMCID: PMC5386448 DOI: 10.1038/cddis.2016.199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
Star-PAP is a noncanonical poly(A) polymerase and required for the expression of a select set of mRNAs. However, the pathological role of Star-PAP in cancer largely remains unknown. In this study, we observed decreased expression of Star-PAP in breast cancer cell lines and tissues. Ectopic Star-PAP expression inhibited proliferation as well as colony-forming ability of breast cancer cells. In breast cancer patients, high levels of Star-PAP correlated with an improved prognosis. Moreover, by regulating the expression of BIK (BCL2-interacting killer), Star-PAP induced apoptosis of breast cancer cells through the mitochondrial pathway. The growth of breast cancer xenografts in NOD/SCID mice was also inhibited by the doxycycline-induced Star-PAP overexpression. Furthermore, Star-PAP sensitized breast cancer cells to chemotherapy drugs both in vitro and in vivo. In mammary epithelial cells, Star-PAP knockdown partially transformed these cells and induced them to undergo epithelial-mesenchymal transition (EMT). These findings suggested that Star-PAP possesses tumor-suppressing activity and can be a valuable target for developing new cancer therapeutic strategies.
Collapse
|
6
|
Apoptosis-Related Gene Expression Profiling in Hematopoietic Cell Fractions of MDS Patients. PLoS One 2016; 11:e0165582. [PMID: 27902785 PMCID: PMC5130187 DOI: 10.1371/journal.pone.0165582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/16/2016] [Indexed: 11/19/2022] Open
Abstract
Although the vast majority of patients with a myelodysplastic syndrome (MDS) suffer from cytopenias, the bone marrow is usually normocellular or hypercellular. Apoptosis of hematopoietic cells in the bone marrow has been implicated in this phenomenon. However, in MDS it remains only partially elucidated which genes are involved in this process and which hematopoietic cells are mainly affected. We employed sensitive real-time PCR technology to study 93 apoptosis-related genes and gene families in sorted immature CD34+ and the differentiating erythroid (CD71+) and monomyeloid (CD13/33+) bone marrow cells. Unsupervised cluster analysis of the expression signature readily distinguished the different cellular bone marrow fractions (CD34+, CD71+ and CD13/33+) from each other, but did not discriminate patients from healthy controls. When individual genes were regarded, several were found to be differentially expressed between patients and controls. Particularly, strong over-expression of BIK (BCL2-interacting killer) was observed in erythroid progenitor cells of low- and high-risk MDS patients (both p = 0.001) and TNFRSF4 (tumor necrosis factor receptor superfamily 4) was down-regulated in immature hematopoietic cells (p = 0.0023) of low-risk MDS patients compared to healthy bone marrow.
Collapse
|
7
|
Wang Y, Liu Y, Hu C, Ni X, Huang X. Tumor necrosis factor α-induced protein 8-like 1 promotes apoptosis by regulating B-cell leukemia/lymphoma-2 family proteins in RAW264.7 cells. Oncol Lett 2016; 12:3506-3512. [PMID: 27900028 DOI: 10.3892/ol.2016.5090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/19/2016] [Indexed: 01/18/2023] Open
Abstract
Although the newly identified protein tumor necrosis factor α-induced protein 8-like 1 (TNFAIP8L1), also known as TIPE1, has been reported to be able to induce apoptosis in human hepatocellular carcinoma cells, the involvement of TIPE1 in apoptosis remains to be elucidated. The present study investigated the pro-apoptotic effect of TIPE1 in an murine macrophage cell line, RAW264.7. The cell apoptosis rate was detected by flow cytometry. The results revealed that overexpressed TIPE1 could directly enhance the apoptosis and the cisplatin-induced cell death of RAW264.7 cells in vitro. Meanwhile, TIPE1 overexpression could suppress tumor growth in vivo. Furthermore, western blotting revealed that overexpressed TIPE1 could upregulate the expression of B-cell leukemia/lymphoma (Bcl)-2 associated X protein (Bax), Bcl-2 interacting killer (Bik) and p53 upregulated modulator of apoptosis (Puma), and activate the mitogen activated protein kinases (MAPKs) signaling pathway. However, western blotting demonstrated that inhibitors of the MAPKs pathway could not decrease the expression of Bax, Bik or Puma. These results indicated that TIPE1 could promote the apoptosis of RAW264.7 cells by upregulating the pro-apoptotic members of the Bcl-2 family of proteins, and that the MAPKs signaling pathway was not involved in the pro-apoptotic effect of TIPE1.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yao Liu
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Chunfang Hu
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Xiaoyan Ni
- Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Xiaobo Huang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
8
|
Stavraka C, Blagden S. The La-Related Proteins, a Family with Connections to Cancer. Biomolecules 2015; 5:2701-22. [PMID: 26501340 PMCID: PMC4693254 DOI: 10.3390/biom5042701] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/21/2015] [Accepted: 10/07/2015] [Indexed: 01/09/2023] Open
Abstract
The evolutionarily-conserved La-related protein (LARP) family currently comprises Genuine La, LARP1, LARP1b, LARP4, LARP4b, LARP6 and LARP7. Emerging evidence suggests each LARP has a distinct role in transcription and/or mRNA translation that is attributable to subtle sequence variations within their La modules and specific C-terminal domains. As emerging research uncovers the function of each LARP, it is evident that La, LARP1, LARP6, LARP7 and possibly LARP4a and 4b are dysregulated in cancer. Of these, LARP1 is the first to be demonstrated to drive oncogenesis. Here, we review the role of each LARP and the evidence linking it to malignancy. We discuss a future strategy of targeting members of this protein family as cancer therapy.
Collapse
Affiliation(s)
- Chara Stavraka
- Ovarian Cancer Research Centre, Institute for Reproductive and Developmental Biology, Imperial College, Du Cane Road, London W12 0HS, UK.
| | - Sarah Blagden
- Ovarian Cancer Research Centre, Institute for Reproductive and Developmental Biology, Imperial College, Du Cane Road, London W12 0HS, UK.
- Department of Oncology, University of Oxford, Churchill Hospital, Old Road, Oxford OX3 7LE, UK.
| |
Collapse
|
9
|
Viedma-Rodríguez R, Ruiz Esparza-Garrido R, Baiza-Gutman LA, Velázquez-Flores MÁ, García-Carrancá A, Salamanca-Gómez F, Arenas-Aranda D. Involvement of multiple cellular pathways in regulating resistance to tamoxifen in BIK-suppressed MCF-7 cells. Tumour Biol 2015; 36:6991-7005. [PMID: 25861752 DOI: 10.1007/s13277-015-3374-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/24/2015] [Indexed: 11/25/2022] Open
Abstract
Majority of women with estrogen receptor (ER)-positive breast cancers initially respond to hormone therapies such as tamoxifen (TAM; antagonist of estrogen). However, many tumors eventually become resistant to TAM. Therefore, understanding the various cellular components involved in causing resistance to TAM is of paramount importance in designing novel entities for efficacious hormone therapy. Previously, we found that suppression of BIK gene expression induced TAM resistance in MCF-7 breast cancer cells. In order to understand the response of these cells to TAM and its association with resistance, a microarray analysis of gene expression was performed in the BIK-suppressed MCF-7 cells and compared it to the TAM-only-treated cells (controls). Several genes participating in various cellular pathways were identified. Molecules identified in the drug resistance pathway were 14-3-3z or YWHAZ, WEE1, PRKACA, NADK, and HSP90AA 1. Further, genes involved in cell cycle control, apoptosis, and cell proliferation were also found differentially expressed in these cells. Transcriptional and translational analysis of key molecules such as STAT2, AKT 3, and 14-3-3z revealed similar changes at the messenger RNA (mRNA) as well as at the protein level. Importantly, there was no cytotoxic effect of TAM on BIK-suppressed MCF-7 cells. Further, these cells were not arrested at the G0-G1 phase of the cell cycle although 30 % of BIK-suppressed cells were arrested at the G2 phase of the cycle on TAM treatment. Furthermore, we found a relevant interaction between 14-3-3z and WEE1, suggesting that the cytotoxic effect of TAM was prevented in BIK-suppressed cells because this interaction leads to transitory arrest in the G2 phase leading to the repair of damaged DNA and allowing the cells to proliferate.
Collapse
Affiliation(s)
- Rubí Viedma-Rodríguez
- Laboratorio de Genómica Funcional y Proteómica, Unidad de Investigación Médica en Genética Humana (UIMGH), Hospital, 06720, México, DF, México.
- Laboratorio de Biología del Desarrollo, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM-México), Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala Tlalnepantla, 54090, México, Estado de México, México.
| | - Ruth Ruiz Esparza-Garrido
- Laboratorio de Genómica Funcional y Proteómica, Unidad de Investigación Médica en Genética Humana (UIMGH), Hospital, 06720, México, DF, México
- Consejo Nacional de Ciencia y Tecnología, Cátedras CONACYT, Av. Insurgentes Sur 1582, Col. Crédito Constructor Del. Benito Juárez C, 03940, México, DF, México
| | - Luis Arturo Baiza-Gutman
- Laboratorio de Biología del Desarrollo, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM-México), Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala Tlalnepantla, 54090, México, Estado de México, México
| | - Miguel Ángel Velázquez-Flores
- Laboratorio de Genómica Funcional y Proteómica, Unidad de Investigación Médica en Genética Humana (UIMGH), Hospital, 06720, México, DF, México
| | - Alejandro García-Carrancá
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, 14080, México, DF, México
| | - Fabio Salamanca-Gómez
- Laboratorio de Genómica Funcional y Proteómica, Unidad de Investigación Médica en Genética Humana (UIMGH), Hospital, 06720, México, DF, México
| | - Diego Arenas-Aranda
- Laboratorio de Genómica Funcional y Proteómica, Unidad de Investigación Médica en Genética Humana (UIMGH), Hospital, 06720, México, DF, México
| |
Collapse
|
10
|
Aweya JJ, Sze CW, Bayega A, Mohd-Ismail NK, Deng L, Hotta H, Tan YJ. NS5B induces up-regulation of the BH3-only protein, BIK, essential for the hepatitis C virus RNA replication and viral release. Virology 2014; 474:41-51. [PMID: 25463603 PMCID: PMC7127593 DOI: 10.1016/j.virol.2014.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) induces cytopathic effects in the form of hepatocytes apoptosis thought to be resulted from the interaction between viral proteins and host factors. Using pathway specific PCR array, we identified 9 apoptosis-related genes that are dysregulated during HCV infection, of which the BH3-only pro-apoptotic Bcl-2 family protein, BIK, was consistently up-regulated at the mRNA and protein levels. Depletion of BIK protected host cells from HCV-induced caspase-3/7 activation but not the inhibitory effect of HCV on cell viability. Furthermore, viral RNA replication and release were significantly suppressed in BIK-depleted cells and over-expression of the RNA-dependent RNA polymerase, NS5B, was able to induce BIK expression. Immunofluorescence and co-immunoprecipitation assays showed co-localization and interaction of BIK and NS5B, suggesting that BIK may be interacting with the HCV replication complex through NS5B. These results imply that BIK is essential for HCV replication and that NS5B is able to induce BIK expression.
Collapse
Affiliation(s)
- Jude Juventus Aweya
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Ching Wooen Sze
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Anthony Bayega
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A⁎STAR), Singapore 138673, Singapore
| | - Nur Khairiah Mohd-Ismail
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A⁎STAR), Singapore 138673, Singapore
| | - Lin Deng
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Hak Hotta
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yee-Joo Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A⁎STAR), Singapore 138673, Singapore.
| |
Collapse
|
11
|
ZHANG JIAN, WANG JU, JIANG JIUYANG, LIU SHANGDIAN, FU KAI, LIU HONGYU. Tanshinone IIA induces cytochrome c-mediated caspase cascade apoptosis in A549 human lung cancer cells via the JNK pathway. Int J Oncol 2014; 45:683-90. [DOI: 10.3892/ijo.2014.2471] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/14/2014] [Indexed: 11/05/2022] Open
|
12
|
Viedma-Rodríguez R, Baiza-Gutman L, Salamanca-Gómez F, Diaz-Zaragoza M, Martínez-Hernández G, Ruiz Esparza-Garrido R, Velázquez-Flores MA, Arenas-Aranda D. Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (review). Oncol Rep 2014; 32:3-15. [PMID: 24841429 DOI: 10.3892/or.2014.3190] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/03/2014] [Indexed: 11/06/2022] Open
Abstract
Anti-estrogens such as tamoxifen are widely used in the clinic to treat estrogen receptor-positive breast tumors. Patients with estrogen receptor-positive breast cancer initially respond to treatment with anti-hormonal agents such as tamoxifen, but remissions are often followed by the acquisition of resistance and, ultimately, disease relapse. The development of a rationale for the effective treatment of tamoxifen-resistant breast cancer requires an understanding of the complex signal transduction mechanisms. In the present study, we explored some mechanisms associated with resistance to tamoxifen, such as pharmacologic mechanisms, loss or modification in estrogen receptor expression, alterations in co-regulatory proteins and the regulation of the different signaling pathways that participate in different cellular processes such as survival, proliferation, stress, cell cycle, inhibition of apoptosis regulated by the Bcl-2 family, autophagy, altered expression of microRNA, and signaling pathways that regulate the epithelial-mesenchymal transition in the tumor microenvironment. Delineation of the molecular mechanisms underlying the development of resistance may aid in the development of treatment strategies to enhance response and compromise resistance.
Collapse
Affiliation(s)
- Rubí Viedma-Rodríguez
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Luis Baiza-Gutman
- Unit of Morphology and Function, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Los Reyes Iztacala, State of Mexico, Mexico
| | - Fabio Salamanca-Gómez
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | | | - Guadalupe Martínez-Hernández
- Unit of Morphology and Function, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Los Reyes Iztacala, State of Mexico, Mexico
| | - Ruth Ruiz Esparza-Garrido
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Miguel Angel Velázquez-Flores
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Diego Arenas-Aranda
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| |
Collapse
|