1
|
Ghorab RA, Fouad SH, Sherief AF, Taha RM, Hamdy M, Darwish MM, El-Sehsah EM, Taha SI. Circulating MiR-126 as a potential biomarker in Egyptian colorectal cancer patients: A case-control study. Innate Immun 2024:17534259241308661. [PMID: 39711476 DOI: 10.1177/17534259241308661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Globally, colorectal cancer (CRC) is among the most prevalent malignant tumors. It is characterized by unlimited proliferation, invasion, and metastasis. MicroRNA-126 (miR-126) has been shown in many studies to play a significant role in CRC, but data regarding its role in CRC Egyptian patients are limited. OBJECTIVES This case-control study aimed to investigate the miR-126 as a potential marker in CRC Egyptian patients and to correlate its expression levels with CRC tumor, node, metastasis (TNM) stage, distant metastasis, and tumor size. METHODS The study included 50 adult Egyptian participants (30 patients with CRC, 10 patients with colorectal adenoma as a pathological control, and 10 healthy controls). MiR-126 expression levels were detected using Real-Time Quantitative PCR (qPCR) along with the endogenous reference gene hsa-miR-103a in all participants. RESULTS MiR-126 expression was significantly decreased in CRC patients than both control groups. It was associated with advanced TNM stage (p = 0.001) and distant metastasis (p = 0.002). However, it was not correlated with tumor size (p = 0.980), carcinoembryonic antigen (CEA) (p = 0.397), and cancer antigen 19-9 (CA19-9) (p = 0.236). The best cut-off point of miR-126 to discriminate CRC from both controls was 0.7 and to discriminate metastatic CRC from non-metastatic CRC was 0.3. CONCLUSIONS Our results suggest that miR-126 could be used as an early marker for CRC detection among Egyptian patients and a good prognostic indicator associated with metastasis.
Collapse
Affiliation(s)
- Rasha Ahmed Ghorab
- Department of Clinical Pathology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Shaimaa H Fouad
- Department of Internal Medicine/Allergy and Clinical Immunology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Ahmed F Sherief
- Department of Tropical Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Rana M Taha
- Department of Geriatrics Medicine and Gerontology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Hamdy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohammad M Darwish
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman M El-Sehsah
- Department of Medical Microbiology and Immunology, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Sara I Taha
- Department of Clinical Pathology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Wright K, Han DJ, Song R, de Silva K, Plain KM, Purdie AC, Shepherd A, Chin M, Hortle E, Wong JJL, Britton WJ, Oehlers SH. Zebrafish tsc1 and cxcl12a increase susceptibility to mycobacterial infection. Life Sci Alliance 2024; 7:e202302523. [PMID: 38307625 PMCID: PMC10837051 DOI: 10.26508/lsa.202302523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024] Open
Abstract
Regulation of host miRNA expression is a contested node that controls the host immune response to mycobacterial infection. The host must counter subversive efforts of pathogenic mycobacteria to launch a protective immune response. Here, we examine the role of miR-126 in the zebrafish-Mycobacterium marinum infection model and identify a protective role for infection-induced miR-126 through multiple effector pathways. We identified a putative link between miR-126 and the tsc1a and cxcl12a/ccl2/ccr2 signalling axes resulting in the suppression of non-tnfa expressing macrophage accumulation at early M. marinum granulomas. Mechanistically, we found a detrimental effect of tsc1a expression that renders zebrafish embryos susceptible to higher bacterial burden and increased cell death via mTOR inhibition. We found that macrophage recruitment driven by the cxcl12a/ccl2/ccr2 signalling axis was at the expense of the recruitment of classically activated tnfa-expressing macrophages and increased cell death around granulomas. Together, our results delineate putative pathways by which infection-induced miR-126 may shape an effective immune response to M. marinum infection in zebrafish embryos.
Collapse
Affiliation(s)
- Kathryn Wright
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
- Directed Evolution Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Darryl Jy Han
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Renhua Song
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Epigenetics and RNA Biology Laboratory, Charles Perkins Centre, The University of Sydney, Camperdown, Australia
| | - Kumudika de Silva
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Karren M Plain
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Auriol C Purdie
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Ava Shepherd
- Directed Evolution Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Maegan Chin
- Directed Evolution Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Elinor Hortle
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Faculty of Science, School of Life Sciences, Centre for Inflammation and University of Technology Sydney, Sydney, Australia
| | - Justin J-L Wong
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Epigenetics and RNA Biology Laboratory, Charles Perkins Centre, The University of Sydney, Camperdown, Australia
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
3
|
Shekhar R, Kumari S, Vergish S, Tripathi P. The crosstalk between miRNAs and signaling pathways in human cancers: Potential therapeutic implications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:133-165. [PMID: 38782498 DOI: 10.1016/bs.ircmb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
MicroRNAs (miRNAs) are increasingly recognized as central players in the regulation of eukaryotic physiological processes. These small double stranded RNA molecules have emerged as pivotal regulators in the intricate network of cellular signaling pathways, playing significant roles in the development and progression of human cancers. The central theme in miRNA-mediated regulation of signaling pathways involves their ability to target and modulate the expression of pathway components. Aberrant expression of miRNAs can either promote or suppress key signaling events, influencing critical cellular processes such as proliferation, apoptosis, angiogenesis, and metastasis. For example, oncogenic miRNAs often promote cancer progression by targeting tumor suppressors or negative regulators of signaling pathways, thereby enhancing pathway activity. Conversely, tumor-suppressive miRNAs frequently inhibit oncogenic signaling by targeting key components within these pathways. This complex regulatory crosstalk underscores the significance of miRNAs as central players in shaping the signaling landscape of cancer cells. Furthermore, the therapeutic implications of targeting miRNAs in cancer are substantial. miRNAs can be manipulated to restore normal signaling pathway activity, offering a potential avenue for precision medicine. The development of miRNA-based therapeutics, including synthetic miRNA mimics and miRNA inhibitors, has shown promise in preclinical and clinical studies. These strategies aim to either enhance the activity of tumor-suppressive miRNAs or inhibit the function of oncogenic miRNAs, thereby restoring balanced signaling and impeding cancer progression. In conclusion, the crosstalk between miRNAs and signaling pathways in human cancers is a dynamic and influential aspect of cancer biology. Understanding this interplay provides valuable insights into cancer development and progression. Harnessing the therapeutic potential of miRNAs as regulators of signaling pathways opens up exciting opportunities for the development of innovative cancer treatments with the potential to improve patient outcomes. In this chapter, we provide an overview of the crosstalk between miRNAs and signaling pathways in the context of cancer and highlight the potential therapeutic implications of targeting this regulatory interplay.
Collapse
Affiliation(s)
- Ritu Shekhar
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
| | - Sujata Kumari
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - Satyam Vergish
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
4
|
Li Y, Cai T, Liu H, Liu J, Chen SY, Fan H. Exosome-shuttled miR-126 mediates ethanol-induced disruption of neural crest cell-placode cell interaction by targeting SDF1. Toxicol Sci 2023; 195:184-201. [PMID: 37490477 PMCID: PMC10801442 DOI: 10.1093/toxsci/kfad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
During embryonic development, 2 populations of multipotent stem cells, cranial neural crest cells (NCCs) and epibranchial placode cells (PCs), are anatomically adjacent to each other. The coordinated migration of NCCs and PCs plays a major role in the morphogenesis of craniofacial skeletons and cranial nerves. It is known that ethanol-induced dysfunction of NCCs and PCs is a key contributor to the defects of craniofacial skeletons and cranial nerves implicated in fetal alcohol spectrum disorder (FASD). However, how ethanol disrupts the coordinated interaction between NCCs and PCs was not elucidated. To fill in this gap, we established a well-designed cell coculture system to investigate the reciprocal interaction between human NCCs (hNCCs) and human PCs (hPCs), and also monitored the migration behavior of NCCs and PCs in zebrafish embryos. We found that ethanol exposure resulted in a disruption of coordinated hNCCs-hPCs interaction, as well as in zebrafish embryos. Treating hNCCs-hPCs with exosomes derived from ethanol-exposed hNCCs (ExoEtOH) mimicked ethanol-induced impairment of hNCCs-hPCs interaction. We also observed that SDF1, a chemoattractant, was downregulated in ethanol-treated hPCs and zebrafish embryos. Meanwhile, miR-126 level in ExoEtOH was significantly higher than that in control exosomes (ExoCon). We further validated that ExoEtOH-encapsulated miR-126 from hNCCs can be transferred to hPCs to suppress SDF1 expression in hPCs. Knockdown of SDF1 replicated ethanol-induced abnormalities either in vitro or in zebrafish embryos. On the contrary, overexpression of SDF1 or inhibiting miR-126 strongly rescued ethanol-induced impairment of hNCCs-hPCs interaction and developmental defects.
Collapse
Affiliation(s)
- Yihong Li
- Ningbo No.2 Hospital, Ningbo 315099, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
- Lab of Nanopharmacology Research for Neurodegeneration, Department of Research and Development of Science and Technology, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province 315000, China
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky 40292, USA
| | - Ting Cai
- Ningbo No.2 Hospital, Ningbo 315099, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Huina Liu
- Ningbo No.2 Hospital, Ningbo 315099, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Jie Liu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky 40292, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky 40292, USA
| | - Huadong Fan
- Ningbo No.2 Hospital, Ningbo 315099, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky 40292, USA
- Lab of Dementia and Neurorehabilitation Research, Department of Research and Development of Science and Technology, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang Province 315000, China
| |
Collapse
|
5
|
Tariq L, Arafah A, Sehar N, Ali A, Khan A, Rasool I, Rashid SM, Ahmad SB, Beigh S, Dar TUH, Rehman MU. Novel insights on perils and promises of miRNA in understanding colon cancer metastasis and progression. Med Oncol 2023; 40:282. [PMID: 37639075 DOI: 10.1007/s12032-023-02099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 08/29/2023]
Abstract
Colorectal cancer (CRC) is the third highest frequent malignancy and ultimate critical source of cancer-associated mortality around the world. Regardless of latest advances in molecular and surgical targeted medicines that have increased remedial effects in CRC patients, the 5-year mortality rate for CRC patients remains dismally low. Evidence suggests that microRNAs (miRNAs) execute an essential part in the development and spread of CRC. The miRNAs are a type of short non-coding RNA that exhibited to control the appearance of tumor suppressor genes and oncogenes. miRNA expression profiling is already being utilized in clinical practice as analytical and prognostic biomarkers to evaluate cancer patients' tumor genesis, advancement, and counteraction to drugs. By modulating their target genes, dysregulated miRNAs are linked to malignant characteristics (e.g., improved proliferative and invasive capabilities, cell cycle aberration, evasion of apoptosis, and promotion of angiogenesis). This review presents an updated summary of circulatory miRNAs, tumor-suppressive and oncogenic miRNAs, and the potential reasons for dysregulated miRNAs in CRC. Further we will explore the critical role of miRNAs in CRC drug resistance.
Collapse
Affiliation(s)
- Lubna Tariq
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 183254, India
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Aarif Ali
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Iyman Rasool
- Department of Pathology, Government Medical College (GMC-Srinagar), Karanagar, Srinagar, Jammu and Kashmir, 190006, India
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Saba Beigh
- Department of Public Health, Faculty of Applied Medical Science, Al Baha University, 65431, Al Baha, Saudi Arabia
| | - Tanveer Ul Hassan Dar
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 183254, India
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Hjazi A, Nasir F, Noor R, Alsalamy A, Zabibah RS, Romero-Parra RM, Ullah MI, Mustafa YF, Qasim MT, Akram SV. The pathological role of C-X-C chemokine receptor type 4 (CXCR4) in colorectal cancer (CRC) progression; special focus on molecular mechanisms and possible therapeutics. Pathol Res Pract 2023; 248:154616. [PMID: 37379710 DOI: 10.1016/j.prp.2023.154616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/30/2023]
Abstract
Colorectal cancer (CRC) is comprised of transformed cells and non-malignant cells including cancer-associated fibroblasts (CAF), endothelial vasculature cells, and tumor-infiltrating cells. These nonmalignant cells, as well as soluble factors (e.g., cytokines), and the extracellular matrix (ECM), form the tumor microenvironment (TME). In general, the cancer cells and their surrounding TME can crosstalk by direct cell-to-cell contact and via soluble factors, such as cytokines (e.g., chemokines). TME not only promotes cancer progression through growth-promoting cytokines but also provides resistance to chemotherapy. Understanding the mechanisms of tumor growth and progression and the roles of chemokines in CRC will likely suggest new therapeutic targets. In this line, a plethora of reports has evidenced the critical role of chemokine receptor type 4 (CXCR4)/C-X-C motif chemokine ligand 12 (CXCL12 or SDF-1) axis in CRC pathogenesis. In the current review, we take a glimpse into the role of the CXCR4/CXCL12 axis in CRC growth, metastasis, angiogenesis, drug resistance, and immune escape. Also, a summary of recent reports concerning targeting CXCR4/CXCL12 axis for CRC management and therapy has been delivered.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Rabia Noor
- Amna Inayat Medical College, Lahore, Pakistan
| | - Ali Alsalamy
- College of Medical Technique, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Aljouf, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Shaik Vaseem Akram
- Uttaranchal Institute of Technology, Division of Research & Innovation, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
7
|
Lee KH, Hwang HJ, Im YJ, Nam AR, Lee JW, Cho JY. New oncogenic functions of LINE1 retroelement as a ceRNA for tumor suppressive microRNA miR-126 on ENPP5. PLoS One 2023; 18:e0286814. [PMID: 37352273 PMCID: PMC10289412 DOI: 10.1371/journal.pone.0286814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
Retroelements (REs) had been considered 'Junk' until the encyclopedia of DNA elements (ENCODE) project demonstrated that most genome is functional. Although the function of retroelements has been reported in diverse cancers including human breast cancer (HBC) and subtypes, only a few studies have suggested the putative functions of REs via their random genome integration. A canine mammary tumor (CMT) has been highlighted due to the similarities in molecular and pathophysiology with HBC. This study investigated the putative roles of REs common in both HBC and CMT. The human LINE and HERV-K sequences harbor many miRNAs responsive elements (MREs) for tumor-suppressive miRNA such as let-7. We also observed that various MREs are exist in the ERV and LINE highly expressed in the transcriptome data of CMT as well as HBC sets. MREs against miR-126 were highly expressed in both HBC and CMT while the levels of miR-126 were down-regulated. Oppositely, the expression of miR-126 target genes was significantly up-regulated in the cancers. Moreover, cancer patients with an increased level of miR-126 showed better overall survival. The expression of ENPP5, a putative miR-126 target gene, was downregulated by miR-126 mimic. Importantly, overexpression of LINE fragment significantly suppressed miR-126 function on the target gene expression. We propose the functional role of REs expression in tumorigenesis as competing endogenous RNAs (ceRNA) against tumor-suppressive miRNAs. This study provided pieces of evidence that LINE expression, even partial and fragmented, have a regulatory function in ENPP5 gene expression via the competition with miR-126.
Collapse
Affiliation(s)
- Kang-Hoon Lee
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Hyeon-Ji Hwang
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Yeo-Jin Im
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - A-Reum Nam
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Woon Lee
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
miRNA Profiles of Canine Intestinal Carcinomas, Lymphomas and Enteritis Analysed by Digital Droplet PCR from FFPE Material. Vet Sci 2023; 10:vetsci10020125. [PMID: 36851429 PMCID: PMC9966613 DOI: 10.3390/vetsci10020125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Most canine intestinal tumours are B-cell or T-cell lymphomas or carcinomas. They have to be distinguished from cases of enteritis. Non-invasive biomarkers such as miRNAs would be a step towards faster diagnosis. The aim of this study was to investigate shifts in miRNA expression in tissue samples collected from cases of enteritis, carcinoma and lymphoma of the small and large intestine to better understand the potential of miRNA as biomarkers for tumour diagnosis and classification. We selected two oncogenic miRNAs (miR-18b and 20b), two tumour suppressive miRNAs (miR-192 and 194) and two potential biomarkers for neoplasms (miR-126 and 214). They were isolated from FFPE material, quantified by ddPCR, normalised with RNU6B and compared with normal tissue values. Our results confirmed that ddPCR is a suitable method for quantifying miRNA from FFPE material. Expression of miR-18b and miR-192 was higher in carcinomas of the small intestine than in those of the large intestine. Specific miRNA patterns were observed in cases of enteritis, B-cell and T-cell lymphoma and carcinoma. However, oncogenic miR-18b and 20b were not elevated in any group and miR-126 and 214 were down-regulated in T-cell and B-cell lymphoma, as well as in carcinomas and lymphoplasmacytic enteritis of the small intestine.
Collapse
|
9
|
Stuckel AJ, Khare T, Bissonnette M, Khare S. Aberrant regulation of CXCR4 in cancer via deviant microRNA-targeted interactions. Epigenetics 2022; 17:2318-2331. [PMID: 36047714 PMCID: PMC9665135 DOI: 10.1080/15592294.2022.2118947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022] Open
Abstract
CXCR4 is involved in many facets of cancer, including being a major player in establishing metastasis. This is in part due to the deregulation of CXCR4, which can be attributed to many genetic and epigenetic mechanisms, including aberrant microRNA-CXCR4 interaction. MicroRNAs (miRNAs) are a type of small non-coding RNA that primarily targets the 3' UTR of mRNA transcripts, which in turn suppresses mRNA and subsequent protein expression. In this review, we reported and characterized the many aberrant miRNA-CXCR4 interactions that occur throughout human cancers. In particular, we reported known target sequences located on the 3' UTR of CXCR4 transcripts that tumour suppressor miRNAs bind and therefore regulate expression by. From these aberrant interactions, we also documented affected downstream genes/pathways and whether a particular tumour suppressor miRNA was reported as a prognostic marker in its respected cancer type. In addition, a limited number of cancer-causing miRNAs coined 'oncomirs' were reported and described in relation to CXCR4 regulation. Moreover, the mechanisms underlying both tumour suppressor and oncomir deregulations concerning CXCR4 expression were also explored. Furthermore, the miR-146a-CXCR4 axis was delineated in oncoviral infected endothelial cells in the context of virus-causing cancers. Lastly, miRNA-driven therapies and CXCR4 antagonist drugs were discussed as potential future treatment options in reported cancers pertaining to deregulated miRNA-CXCR4 interactions.
Collapse
Affiliation(s)
- Alexei J. Stuckel
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri65212, USA
| | - Tripti Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri65212, USA
| | - Marc Bissonnette
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Il60637, USA
| | - Sharad Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri65212, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri65201, USA
| |
Collapse
|
10
|
Glass SE, Coffey RJ. Recent Advances in the Study of Extracellular Vesicles in Colorectal Cancer. Gastroenterology 2022; 163:1188-1197. [PMID: 35724732 PMCID: PMC9613516 DOI: 10.1053/j.gastro.2022.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 12/15/2022]
Abstract
There has been significant progress in the study of extracellular vesicles (EVs) since the 2017 American Gastroenterological Association-sponsored Freston Conference "Extracellular Vesicles: Biology, Translation and Clinical Application in GI Disorders." The burgeoning interest in this field stems from the increasing recognition that EVs represent an understudied form of cell-to-cell communication and contain cargo replete with biomarkers and therapeutic targets. This short review will highlight recent advances in the field, with an emphasis on colorectal cancer. After a brief introduction to secreted particles, we will describe how our laboratory became interested in EVs, which led to refined methods of isolation and identification of 2 secreted nanoparticles. We will then summarize the cargo found in small EVs released from colorectal cancer cells and other cells in the tumor microenvironment, as well as those found in the circulation of patients with colorectal cancer. Finally, we will consider the continuing challenges and future opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Sarah E Glass
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
11
|
Liang L, Cen H, Huang J, Qin A, Xu W, Wang S, Chen Z, Tan L, Zhang Q, Yu X, Yang X, Zhang L. The reversion of DNA methylation-induced miRNA silence via biomimetic nanoparticles-mediated gene delivery for efficient lung adenocarcinoma therapy. Mol Cancer 2022; 21:186. [PMID: 36171576 PMCID: PMC9516831 DOI: 10.1186/s12943-022-01651-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Background Lung cancer is one of the fatal cancers worldwide, and over 60% of patients are lung adenocarcinoma (LUAD). Our clinical data demonstrated that DNA methylation of the promoter region of miR-126-3p was upregulated, which led to the decreased expression of miR-126-3p in 67 cases of lung cancer tissues, implying that miR-126-3p acted as a tumor suppressor. Transduction of miR-126-3p is a potential therapeutic strategy for treating LUAD, yet the physiological environment and properties of miRNA challenge current transduction approaches. Methods We evaluated the expression of miR-126-3p in 67 pairs of lung cancer tissues and the corresponding adjacent non-tumorous tissues by Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The relationship between the overall survival of lung cancer patients and miR-126-3p was analyzed by the Cancer Genome Atlas cohort database (Oncolnc, http://www.oncolnc.org). We analyzed DNA methylation Methylation-specific PCR (MSP) analysis. To determine whether ADAM9 is the direct target of miR-126-3p, we performed the 3′-UTR luciferase reporter assay. The protein levels in the cells or tissues were evaluated with western blotting (WB) analysis. The biodistribution of nanoparticles were monitored by in vivo tracking system. Results We describe the development of novel stealth and matrix metalloproteinase 2 (MMP2)-activated biomimetic nanoparticles, which are constructed using MMP2-responsive peptides to bind the miR-126-3p (known as MAIN), and further camouflaged with red blood cell (RBC) membranes (hence named REMAIN). REMAIN was able to effectively transduce miRNA into lung cancer cells and release them via MMP2 responsiveness. Additionally, REMAIN possessed the advantages of the natural RBC membrane, including extended circulation time, lower toxicity, better biocompatibility, and immune escape. Moreover, in vitro and in vivo results demonstrated that REMAIN effectively induced apoptosis of lung cancer cells and inhibited LUAD development and progression by targeting ADAM9. Conclusion The novel style of stealth and MMP2-activated biomimetic nanoparticles show great potential in miRNA delivery. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01651-4.
Collapse
Affiliation(s)
- Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiyu Cen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jionghua Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.,Department of Cardiovascular Disease, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Aiping Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenyan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Siran Wang
- Department of Preventive Dentistry, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, 510182, Guangzhou, China
| | - Zhijun Chen
- Department of Medical Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Lin Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiqi Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xin Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Lingmin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
12
|
Goïta AA, Guenot D. Colorectal Cancer: The Contribution of CXCL12 and Its Receptors CXCR4 and CXCR7. Cancers (Basel) 2022; 14:1810. [PMID: 35406582 PMCID: PMC8997717 DOI: 10.3390/cancers14071810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common cancers, and diagnosis at late metastatic stages is the main cause of death related to this cancer. This progression to metastasis is complex and involves different molecules such as the chemokine CXCL12 and its two receptors CXCR4 and CXCR7. The high expression of receptors in CRC is often associated with a poor prognosis and aggressiveness of the tumor. The interaction of CXCL12 and its receptors activates signaling pathways that induce chemotaxis, proliferation, migration, and cell invasion. To this end, receptor inhibitors were developed, and their use in preclinical and clinical studies is ongoing. This review provides an overview of studies involving CXCR4 and CXCR7 in CRC with an update on their targeting in anti-cancer therapies.
Collapse
Affiliation(s)
| | - Dominique Guenot
- INSERM U1113/Unistra, IRFAC—Interface de Recherche Fondamentale et Appliquée en Cancérologie, 67200 Strasbourg, France;
| |
Collapse
|
13
|
Wu S, Yuan W, Luo W, Nie K, Wu X, Meng X, Shen Z, Wang X. MiR-126 downregulates CXCL12 expression in intestinal epithelial cells to suppress the recruitment and function of macrophages and tumorigenesis in a murine model of colitis-associated colorectal cancer. Mol Oncol 2022; 16:3465-3489. [PMID: 35363937 PMCID: PMC9533691 DOI: 10.1002/1878-0261.13218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel disease, characterised by chronic relapsing‐remitting colitis, is a significant risk factor for colorectal cancer (CRC). Previously, we showed that miR‐126 functions as a tumour suppressor in CRC and is inversely correlated with tumour proliferation, metastasis and patient prognosis. In the current study, we documented a protective role for miR‐126 in colitis‐associated CRC (CAC) and its underlying mechanism. We detected downregulated miR‐126 expression during colorectal tumorigenesis in the mouse CAC model and in specimens from patients with CRC. The deficiency of miR‐126 in intestinal epithelial cells (IECs) exacerbated tumorigenesis in mice. We identified CXCL12 as a direct target of miR‐126 in inhibiting the development of colitis and CAC. Moreover, miR‐126 regulated the recruitment of macrophages via CXCL12 and decreased the levels of proinflammatory cytokines (IL‐6, IL‐12 and IL‐23). In addition, IL‐6 secreted by macrophages, which were regulated by cocultured transfected CRC cells, altered the proliferation and migration of colon cells. Our data suggest that miR‐126 exerts an antitumour effect on CAC by regulating the crosstalk between IECs and macrophages via CXCL12‐IL‐6 signalling. Our study contributes to the understanding of cancer progression and suggests miR‐126 as a potential therapy for CRC.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Gastroenterology, The Central South University, Changsha, Hunan, China.,Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Wei Yuan
- Department of Gastroenterology, The Central South University, Changsha, Hunan, China.,Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, Hunan, China.,Department of Hepatology, The First Affiliated Hospital, The Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Weiwei Luo
- Department of Gastroenterology, The Central South University, Changsha, Hunan, China.,Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Kai Nie
- Department of Gastroenterology, The Central South University, Changsha, Hunan, China.,Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Xing Wu
- Department of Gastroenterology, The Central South University, Changsha, Hunan, China.,Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Xiangrui Meng
- Department of Gastroenterology, The Central South University, Changsha, Hunan, China.,Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Zhaohua Shen
- Department of Gastroenterology, The Central South University, Changsha, Hunan, China.,Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Central South University, Changsha, Hunan, China.,Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Gharib AF, Elsawy WH, Alrehaili AA, Amin HS, Alhuthali HM, Bakhuraysah MM, El Askary A. The Application of Molecular Techniques for Assessment of SOX2 and miR126 Expression as Prognostic Markers in Esophageal Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1514412. [PMID: 39290848 PMCID: PMC11407893 DOI: 10.1155/2022/1514412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 09/19/2024]
Abstract
Objective To study the problem in esophageal cancer, the function of SOX2 and miR-126 has not been completely explored. The objective of this study was to find out how SOX2 and miR-126 act in esophageal cancer and their relation to the clinical and prognostic features. Methods The expression of SOX2 and miR-126 was properly assessed in the carcinoma of the esophagus, and the nearby healthy tissues surgically excised from 35 included patients. Results SOX2 was elevated in esophageal cancer relative to normal tissues contrary to the miR-126 levels. This inverse relationship was linked to adverse clinical features. Background SOX2 has been involved as an oncogene in various types of malignant tumors; microRNA-126 (miR-126) is extensively expressed in vascular endothelial cells, which control angiogenesis. Furthermore, many published reports reasonably concluded that based on the prime characteristic of malignant cells, miR-126 may act appropriately as a promotor or a suppressor for the malignant growth. Conclusion In esophageal cancer, SOX2 works as an oncogene, whereas miR-126 acts as a tumor suppressor gene. SOX2 overexpression and miR-126 downregulation were shown to be linked to a poor prognosis.
Collapse
Affiliation(s)
- Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Wael H Elsawy
- Department of Clinical Oncology, Faculty of Medicine, Zagazig University, Egypt
| | - Amani A Alrehaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Hanan S Amin
- Department of Clinical Chemistry, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Maha M Bakhuraysah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
15
|
microRNA-21 Regulates Stemness in Pancreatic Ductal Adenocarcinoma Cells. Int J Mol Sci 2022; 23:ijms23031275. [PMID: 35163198 PMCID: PMC8835847 DOI: 10.3390/ijms23031275] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer (PCa) with a low survival rate. microRNAs (miRs) are endogenous, non-coding RNAs that moderate numerous biological processes. miRs have been associated with the chemoresistance and metastasis of PDAC and the presence of a subpopulation of highly plastic "stem"-like cells within the tumor, known as cancer stem cells (CSCs). In this study, we investigated the role of miR-21, which is highly expressed in Panc-1 and MiaPaCa-2 PDAC cells in association with CSCs. Following miR-21 knockouts (KO) from both MiaPaCa-2 and Panc-1 cell lines, reversed expressions of epithelial-mesenchymal transition (EMT) and CSCs markers were observed. The expression patterns of key CSC markers, including CD44, CD133, CX-C chemokine receptor type 4 (CXCR4), and aldehyde dehydrogenase-1 (ALDH1), were changed depending on miR-21 status. miR-21 (KO) suppressed cellular invasion of Panc-1 and MiaPaCa-2 cells, as well as the cellular proliferation of MiaPaCa-2 cells. Our data suggest that miR-21 is involved in the stemness of PDAC cells, may play roles in mesenchymal transition, and that miR-21 poses as a novel, functional biomarker for PDAC aggressiveness.
Collapse
|
16
|
Yang KD, Wang Y, Zhang F, Luo BH, Feng DY, Zeng ZJ. CircN4BP2L2 promotes colorectal cancer growth and metastasis through regulation of the miR-340-5p/CXCR4 axis. J Transl Med 2022; 102:38-47. [PMID: 34326457 DOI: 10.1038/s41374-021-00632-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide. Dysregulation of circular RNAs (circRNAs) appears to be a critical factor in CRC progression. However, mechanistic studies delineating the role of circRNAs in CRC remain limited. In this study, qRT-PCR and western blot assays were used to measure the expression of genes and proteins. Migration, invasion, proliferation, and apoptosis were examined by wound-healing, transwell, CCK-8, colony formation, and flow cytometry assays, respectively. Molecular interactions were validated by a dual-luciferase report system. A xenograft animal model was established to examine in vivo tumor growth and lung metastasis. Our data indicated that circN4BP2L2 expression was increased in CRC tissues and cell lines. Notably, inhibition of circN4BP2L2 effectively inhibited proliferation, migration, and invasion of LoVo cells, and inhibited tumor growth and metastasis in vivo, whereas the forced expression of circN4BP2L2 facilitated the proliferation, migration, and invasion of HT-29 cells. Mechanistic studies revealed that circN4BP2L2 acted as a molecular sponge of miR-340-5p to competitively promote CXCR4 expression. Furthermore, inhibition of miR-340-5p reversed the anti-cancer effects of circN4BP2L2 or CXCR4 silencing. Our data indicated an oncogenic role of circN4BP2L2 in CRC via regulation of the miR-340-5p/CXCR4 axis, which may be a promising biomarker and target for CRC treatment.
Collapse
Affiliation(s)
- Ke-Da Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Ying Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Bai-Hua Luo
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - De-Yun Feng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Zhi-Jun Zeng
- Department of Geriatric Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
17
|
Khare T, Bissonnette M, Khare S. CXCL12-CXCR4/CXCR7 Axis in Colorectal Cancer: Therapeutic Target in Preclinical and Clinical Studies. Int J Mol Sci 2021; 22:7371. [PMID: 34298991 PMCID: PMC8305488 DOI: 10.3390/ijms22147371] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Chemokines are chemotactic cytokines that promote cancer growth, metastasis, and regulate resistance to chemotherapy. Stromal cell-derived factor 1 (SDF1) also known as C-X-C motif chemokine 12 (CXCL12), a prognostic factor, is an extracellular homeostatic chemokine that is the natural ligand for chemokine receptors C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or cluster of differentiation 184 (CD184) and chemokine receptor type 7 (CXCR7). CXCR4 is the most widely expressed rhodopsin-like G protein coupled chemokine receptor (GPCR). The CXCL12-CXCR4 axis is involved in tumor growth, invasion, angiogenesis, and metastasis in colorectal cancer (CRC). CXCR7, recently termed as atypical chemokine receptor 3 (ACKR3), is amongst the G protein coupled cell surface receptor family that is also commonly expressed in a large variety of cancer cells. CXCR7, like CXCR4, regulates immunity, angiogenesis, stem cell trafficking, cell growth and organ-specific metastases. CXCR4 and CXCR7 are expressed individually or together, depending on the tumor type. When expressed together, CXCR4 and CXCR7 can form homo- or hetero-dimers. Homo- and hetero-dimerization of CXCL12 and its receptors CXCR4 and CXCR7 alter their signaling activity. Only few drugs have been approved for clinical use targeting CXCL12-CXCR4/CXCR7 axis. Several CXCR4 inhibitors are in clinical trials for solid tumor treatment with limited success whereas CXCR7-specific inhibitors are still in preclinical studies for CRC. This review focuses on current knowledge of chemokine CXCL12 and its receptors CXCR4 and CXCR7, with emphasis on targeting the CXCL12-CXCR4/CXCR7 axis as a treatment strategy for CRC.
Collapse
Affiliation(s)
- Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Marc Bissonnette
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
18
|
Moafian Z, Maghrouni A, Soltani A, Hashemy SI. Cross-talk between non-coding RNAs and PI3K/AKT/mTOR pathway in colorectal cancer. Mol Biol Rep 2021; 48:4797-4811. [PMID: 34057685 DOI: 10.1007/s11033-021-06458-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the third commonest cancer globally, with metastasis being the reason for cancer-associated mortality. Much is still unknown biochemically about CRC, and with current treatments that are not wholly effective over time, new therapeutics are urgently needed. Emerging evidence has shown the importance of non-coding RNAs such as lncRNAs and miRNAs functions in the development and progression of CRC. However, the exact underlying mechanism of these types of RNAs in CRC is still mostly unknown. PI3K/AKT/mTOR pathway contributes to many cellular processes, and dysregulation of this pathway frequently occurs in cancers. In this review, the authors have mostly focused on the significant non-coding RNAs regulators of the PI3K/AKT/mTOR pathway and their contribution to the development or inhibition of CRC and their potential as diagnostic or therapeutic targets in CRC treatment.
Collapse
Affiliation(s)
- Zeinab Moafian
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Maghrouni
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Soltani
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Ishikawa M, Iwasaki M, Sakamoto A, Ma D. Anesthetics may modulate cancer surgical outcome: a possible role of miRNAs regulation. BMC Anesthesiol 2021; 21:71. [PMID: 33750303 PMCID: PMC7941705 DOI: 10.1186/s12871-021-01294-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Background microRNAs (miRNAs) are single-stranded and noncoding RNA molecules that control post-transcriptional gene regulation. miRNAs can be tumor suppressors or oncogenes through various mechanism including cancer cell biology, cell-to-cell communication, and anti-cancer immunity. Main Body Anesthetics can affect cell biology through miRNA-mediated regulation of messenger RNA (mRNA). Indeed, sevoflurane was reported to upregulate miR-203 and suppresses breast cancer cell proliferation. Propofol reduces matrix metalloproteinase expression through its impact on miRNAs, leading to anti-cancer microenvironmental changes. Propofol also modifies miRNA expression profile in circulating extracellular vesicles with their subsequent anti-cancer effects via modulating cell-to-cell communication. Conclusion Inhalational and intravenous anesthetics can alter cancer cell biology through various cellular signaling pathways induced by miRNAs’ modification. However, this area of research is insufficient and further study is needed to figure out optimal anesthesia regimens for cancer patients.
Collapse
Affiliation(s)
- Masashi Ishikawa
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo, Tokyo, 113-8603, Japan. .,Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 369 Fulham Rd, London, SW10 9NH, UK.
| | - Masae Iwasaki
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo, Tokyo, 113-8603, Japan.,Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 369 Fulham Rd, London, SW10 9NH, UK
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo, Tokyo, 113-8603, Japan
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 369 Fulham Rd, London, SW10 9NH, UK
| |
Collapse
|
20
|
Lin S, Liu Q, Wen J, Bai K, Guo Y, Wang J. Mir-124 Attenuates STAT3-Mediated TH17 Differentiation in Colitis-Driven Colon Cancer. Front Oncol 2020; 10:570128. [PMID: 33392070 PMCID: PMC7773897 DOI: 10.3389/fonc.2020.570128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/09/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Inflammation often induces regeneration to repair the tissue damage. However, chronic inflammation can transform temporary hyperplasia into a fertile ground for tumorigenesis. Here, we demonstrate that the miR-124 acts as a safeguard to inhibit the pro-inflammatory production and reparative regeneration. METHODS The expression levels of miR-124 and IL-17, IFN-γ were detected by qRT-PCR. TH17 or TH1 cells were detected by flow cytometer, respectively. The binding of STAT3 to the promoter region of IL-17 gene was analyzed by Chip assay. miR-124 binding to the 3'UTR of STAT3 gene was detected by reported plasmid construction and luciferase assay. Furthermore, DSS-induced colitis mice model and T cell transfer model were used to confirm the function of miR-124 in vivo. The related gene expression was analyzed by ELISA and western blot experiments. RESULTS The results indicated that miR-124 decrease promotes colon tumorigenesis after Citrobacter rodentium infection and AOM/DSS induced colon cancer murine model. In molecular mechanism, miR-124 targets STAT3 to inhibit TH17 cell polarization and keep TH17 polarization in colonic microenvironment. CONCLUSIONS Our study strengthened the important role of miR-124 in the regulation of adaptive immune responses and blocking the development of colitis-related cancer.
Collapse
Affiliation(s)
- Shiyong Lin
- Department of Endoscopy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qianwen Liu
- Department of Endoscopy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing Wen
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangzhou, China
| | - Kunhao Bai
- Department of Endoscopy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yandong Guo
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangzhou, China
| | - Jing Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangzhou, China
| |
Collapse
|
21
|
Buckley H, Dumville J, Hodgkinson M, Wearmouth D, Barlow G, van der Woude M, Cullum N, Chetter I, Lagos D. Characterisation of baseline microbiological and host factors in an inception cohort of people with surgical wounds healing by secondary intention reveals circulating IL-6 levels as a potential predictive biomarker of healing. Wellcome Open Res 2020; 5:80. [PMID: 34104801 PMCID: PMC8160585 DOI: 10.12688/wellcomeopenres.15688.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 11/20/2022] Open
Abstract
Background: More than 2 million people per year are treated for surgical wounds in the UK. Over a quarter of these wounds are estimated to heal by secondary intention (from the "bottom up") resulting in further complications and requiring increased healthcare resources. Identification of microbiological or host biomarkers that can predict healing outcomes may help to optimize the management of surgical wounds healing by secondary intention. However, the microbial and host factor heterogeneity amongst this diverse population is completely unexplored. Methods: We demonstrate feasibility of determining presence and levels of wound microbes and systemic host factors in an inception cohort of 54 people presenting with surgical wounds healing by secondary intention, who were subsequently followed-up for a period of 12-21 months. We present descriptive statistics for plasma levels of inflammatory, angiogenic cytokines and microRNAs, and we identify a range of wound colonizing microbes. We tentatively explore association with healing aiming to generate hypotheses for future research. Results: We report a potential correlation between poor healing outcomes and elevated interleukin (IL)-6 plasma levels at presentation (ρ=0.13) which requires confirmation. Conclusions: This study demonstrates the degree of biological heterogeneity amongst people with surgical wounds healing by secondary intention and proves the feasibility of embedding a biomarker discovery study in a cohort study in surgical wounds. Our results are essential for designing large biomarker discovery studies to further investigate the potential validity of circulating IL-6 or other factors as novel predictive biomarkers of healing for surgical wounds healing by secondary intention.
Collapse
Affiliation(s)
- Hannah Buckley
- York Trials Unit, Department of Health Sciences, University of York, York, YO10 5DD, UK
| | - Jo Dumville
- Division of Nursing, Midwifery and Social Work, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Michael Hodgkinson
- York Biomedical Research Institute, Hull York Medical School, University of York, York, YO10 5DD, UK
| | - Debbie Wearmouth
- Department of Infection, Hull and East Yorkshire Hospitals NHS Trust, Hull, HU3 2JZ, UK
| | - Gavin Barlow
- York Biomedical Research Institute, Hull York Medical School, University of York, York, YO10 5DD, UK
| | - Marjan van der Woude
- York Biomedical Research Institute, Hull York Medical School, University of York, York, YO10 5DD, UK
| | - Nicky Cullum
- Division of Nursing, Midwifery and Social Work, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK.,Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9PL, UK
| | - Ian Chetter
- Academic Vascular Surgical Unit, Hull York Medical School / Hull University Teaching Hospital NHS Trust, Hull, HU3 2JZ, UK
| | - Dimitris Lagos
- York Biomedical Research Institute, Hull York Medical School, University of York, York, YO10 5DD, UK
| |
Collapse
|
22
|
Bianchi ME, Mezzapelle R. The Chemokine Receptor CXCR4 in Cell Proliferation and Tissue Regeneration. Front Immunol 2020; 11:2109. [PMID: 32983169 PMCID: PMC7484992 DOI: 10.3389/fimmu.2020.02109] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
The CXCR4 receptor upon binding its ligands triggers multiple signaling pathways that orchestrate cell migration, hematopoiesis and cell homing, and retention in the bone marrow. However, CXCR4 also directly controls cell proliferation of non-hematopoietic cells. This review focuses on recent reports pointing to its pivotal role in tissue regeneration and stem cell activation, and discusses the connection to the known role of CXCR4 in promoting tumor growth. The mechanisms may be similar in all cases, since regeneration often recapitulates developmental processes, and cancer often exploits developmental pathways. Moreover, cell migration and cell proliferation appear to be downstream of the same signaling pathways. A deeper understanding of the complex signaling originating from CXCR4 is needed to exploit the opportunities to repair damaged organs safely and effectively.
Collapse
Affiliation(s)
- Marco E Bianchi
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Rosanna Mezzapelle
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
23
|
Ye S, Yu C, Zhang G, Shi F, Chen Y, Yang J, Wu W, Zhou Y. Downregulation of microRNA-126 is inversely correlated with insulin receptor substrate-1 protein expression in colorectal cancer and is associated with advanced stages of disease. Oncol Lett 2020; 20:2411-2419. [PMID: 32782558 PMCID: PMC7400408 DOI: 10.3892/ol.2020.11796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is a common human malignant tumor, and the fourth most common cause of cancer-associated mortality in China. However, the pathogenesis of CRC is not yet fully understood. The present study aimed to investigate the expression and clinical significance of microRNA (miR)-126 and insulin receptor substrate-1 (IRS-1), as well as the role of miR-126 in the prognosis of patients with CRC. A total of 86 colorectal tissue specimens, including 40 CRC and adjacent normal tissue, 26 colorectal adenoma tissue and 20 normal colorectal tissue samples, were collected for the present study. Reverse transcription-quantitative PCR analysis was performed to determine miR-126 and IRS-1 mRNA expression levels, while western blotting and immunohistochemistry (IHC) analyses were performed to determine IRS-1 protein expression levels. The correlation between miR-126 and IRS-1 expression, as well as the association between altered miR-126 and IRS-1 expression levels and clinicopathological characteristics, and the overall survival time of patients with CRC were assessed. The results demonstrated that miR-126 expression was significantly downregulated, while IRS-1 protein expression was upregulated in CRC tissues compared with that in adjacent normal tissues, colorectal adenoma tissues and normal colorectal tissues, respectively. IHC analysis exhibited strong positive staining of IRS-1 protein in CRC tissues, while absent or weak staining of IRS-1 protein was detected in adjacent normal tissues, colorectal adenoma tissues and normal colorectal tissues. miR-126 expression was inversely correlated with IRS-1 protein expression in CRC tissues (r=−0.420; P<0.05). Furthermore, downregulated miR-126 expression was associated with advanced clinicopathological characteristics of the disease and a shorter overall survival time in patients with CRC. Taken together, the results of the present study suggest that miR-126 downregulation may be a candidate molecular marker predictive of poor prognosis of patients with CRC.
Collapse
Affiliation(s)
- Shicai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Caiyuan Yu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Guixia Zhang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Feixiong Shi
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yongze Chen
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jianyun Yang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Weiyun Wu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yu Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
24
|
Girigoswami K, Girigoswami A. A Review on the Role of Nanosensors in Detecting Cellular miRNA Expression in Colorectal Cancer. Endocr Metab Immune Disord Drug Targets 2020; 21:12-26. [PMID: 32410567 DOI: 10.2174/1871530320666200515115723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the leading causes of death across the globe. Early diagnosis with high sensitivity can prevent CRC progression, thereby reducing the condition of metastasis. OBJECTIVE The purpose of this review is (i) to discuss miRNA based biomarkers responsible for CRC, (ii) to brief on the different methods used for the detection of miRNA in CRC, (iii) to discuss different nanobiosensors so far found for the accurate detection of miRNAs in CRC using spectrophotometric detection, piezoelectric detection. METHODS The keywords for the review like micro RNA detection in inflammation, colorectal cancer, nanotechnology, were searched in PubMed and the relevant papers on the topics of miRNA related to CRC, nanotechnology-based biosensors for miRNA detection were then sorted and used appropriately for writing the review. RESULTS The review comprises a general introduction explaining the current scenario of CRC, the biomarkers used for the detection of different cancers, especially CRC and the importance of nanotechnology and a general scheme of a biosensor. The further subsections discuss the mechanism of CRC progression, the role of miRNA in CRC progression and different nanotechnology-based biosensors so far investigated for miRNA detection in other diseases, cancer and CRC. A scheme depicting miRNA detection using gold nanoparticles (AuNPs) is also illustrated. CONCLUSION This review may give insight into the different nanostructures, like AuNPs, quantum dots, silver nanoparticles, MoS2derived nanoparticles, etc., based approaches for miRNA detection using biosensors.
Collapse
Affiliation(s)
- Koyeli Girigoswami
- Medical Bionanotechnology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai, 603103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai, 603103, India
| |
Collapse
|
25
|
Buckley H, Dumville J, Hodgkinson M, Wearmouth D, Barlow G, van der Woude M, Cullum N, Chetter I, Lagos D. Characterisation of baseline microbiological and host factors in an inception cohort of people with surgical wounds healing by secondary intention reveals circulating IL-6 levels as a potential predictive biomarker of healing. Wellcome Open Res 2020; 5:80. [DOI: 10.12688/wellcomeopenres.15688.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 11/20/2022] Open
Abstract
Background: More than 2 million people per year are treated for surgical wounds in the UK. Over a quarter of these wounds are estimated to heal by secondary intention (from the “bottom up”) resulting in further complications and requiring increased healthcare resources. Identification of microbiological or host biomarkers that can predict healing outcomes may help to optimize the management of surgical wounds healing by secondary intention. However, the microbial and host factor heterogeneity amongst this diverse population is completely unexplored. Methods: We demonstrate feasibility of determining presence and levels of wound microbes and systemic host factors in an inception cohort of 54 people presenting with surgical wounds healing by secondary intention, who were subsequently followed-up for a period of 12-21 months. We present descriptive statistics for plasma levels of inflammatory, angiogenic cytokines and microRNAs, and we identify a range of wound colonizing microbes. We tentatively explore association with healing aiming to generate hypotheses for future research. Results: We report a potential correlation between poor healing outcomes and elevated interleukin (IL)-6 plasma levels at presentation (ρ=0.13) which requires confirmation. Conclusions: This study demonstrates the degree of biological heterogeneity amongst people with surgical wounds healing by secondary intention and proves the feasibility of embedding a biomarker discovery study in a cohort study in surgical wounds. Our results are essential for designing large biomarker discovery studies to further investigate the potential validity of circulating IL-6 or other factors as novel predictive biomarkers of healing for surgical wounds healing by secondary intention.
Collapse
|
26
|
Wei L, Chen Z, Cheng N, Li X, Chen J, Wu D, Dong M, Wu X. MicroRNA-126 Inhibit Viability of Colorectal Cancer Cell by Repressing mTOR Induced Apoptosis and Autophagy. Onco Targets Ther 2020; 13:2459-2468. [PMID: 32273718 PMCID: PMC7102882 DOI: 10.2147/ott.s238348] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/19/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Colorectal cancer (CRC) is a fatal disease, and tumor development is a complex cellular event involving a multistep cascade process involving proliferation, invasion, and migration. In recent years, it has been shown that microRNA-126 (miR-126) plays a key role in the tumorigenesis of CRC, but further studies are required to investigate the regulatory mechanisms through which this miRNA affects cell viability, autophagy, and apoptosis in CRC. We aimed to study the effect of miR-126 in gene regulation in CRC HCT116 cells. METHODS CRC biopsy samples and normal colorectal tissue samples were used for miRNA profiling. Real-time quantitative PCR and WB were utilized to detect RNA and protein levels. MTT and colony formation assays were performed to examine cell viability. Furthermore, an immunofluorescence assay and Annexin V/PI flow cytometry were performed to detect autophagy and apoptosis, respectively. RESULTS The expression of miR-126 was downregulated in CRC biopsies and cell lines compared with that in normal cells and tissues. The upregulation of miR-126 resulted in impaired viability and growth of CRC cells. Furthermore, with the overexpression of miR-126, cell autophagy was increased, as evidenced by LC3-I/II transformation and p62 degradation. Meanwhile, apoptosis induction was also observed because of the increased miR-126 levels. The autophagy inhibitor Bafilomycin A1 (BafA1) repressed both autophagy and apoptosis, indicating that miR-126 induced autophagy was responsible for the induction of apoptosis. A dual-luciferase reporter assay (DLRA) and bioinformatics prediction revealed that miR-126 silenced the mTOR gene by targeting the 3'-UTR. mTOR mRNA levels in CRC biopsy tissues and cell lines were upregulated to a greater extent than that in normal cells and tissues. Furthermore, HCT116 cells transfected with an miR-126 mimic showed a decreased expression of mTOR. In addition, the overexpression of mTOR counteracted miR-126 on autophagy and apoptosis. CONCLUSION Our study demonstrated that miR-126-induced can regulate the activity of CRC cells via autophagy and apoptosis and suggested a new mechanism of miR-126-mTOR interaction in CRC pathogenesis.
Collapse
Affiliation(s)
- Li Wei
- Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510630, People’s Republic of China
| | - Zhanhong Chen
- Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510630, People’s Republic of China
| | - Na Cheng
- Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510630, People’s Republic of China
| | - Xing Li
- Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510630, People’s Republic of China
| | - Jie Chen
- Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510630, People’s Republic of China
| | - Donghao Wu
- Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510630, People’s Republic of China
| | - Min Dong
- Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510630, People’s Republic of China
| | - Xiangyuan Wu
- Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong510630, People’s Republic of China
| |
Collapse
|
27
|
Fenretinide reduces angiogenesis by downregulating CDH5, FOXM1 and eNOS genes and suppressing microRNA-10b. Mol Biol Rep 2020; 47:1649-1658. [DOI: 10.1007/s11033-020-05252-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
|
28
|
Angioregulatory microRNAs in Colorectal Cancer. Cancers (Basel) 2019; 12:cancers12010071. [PMID: 31887997 PMCID: PMC7016698 DOI: 10.3390/cancers12010071] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer mortality. Angiogenesis is a rate-determining step in CRC development and metastasis. The balance of angiogenic and antiangiogenic factors is crucial in this process. Angiogenesis-related genes can be regulated post-transcriptionally by microRNAs (miRNAs) and some miRNAs have been shown to shuttle between tumor cells and the tumor microenvironment (TME). MiRNAs have context-dependent actions and can promote or suppress angiogenesis dependent on the type of cancer. On the one hand, miRNAs downregulate anti-angiogenic targets and lead to angiogenesis induction. Tumor suppressor miRNAs, on the other hand, enhance anti-angiogenic response by targeting pro-angiogenic factors. Understanding the interaction between these miRNAs and their target mRNAs will help to unravel molecular mechanisms involved in CRC progression. The aim of this article is to review the current literature on angioregulatory miRNAs in CRC.
Collapse
|
29
|
Soleimani A, Rahmani F, Saeedi N, Ghaffarian R, Khazaei M, Ferns GA, Avan A, Hassanian SM. The potential role of regulatory microRNAs of RAS/MAPK signaling pathway in the pathogenesis of colorectal cancer. J Cell Biochem 2019; 120:19245-19253. [PMID: 31512778 DOI: 10.1002/jcb.29268] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is the leading cause of cancer death worldwide. Dysregulation of RAS/MAPK signaling axis is frequently found in CRC patients. The RAS/MAPK axis regulates cancer cell proliferation, apoptosis, inflammation, migration, and metastasis. Oncogenic or tumor-suppressor microRNAs (miRNAs) for RAS/MAPK signaling play a key role in the pathogenesis of CRC and are considered as novel potential biomarkers for diagnosis and prognosis of human malignancies. This review summarizes the current knowledge of mechanisms of action of RAS/MAPK miRNAs in the development and progression of CRC for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nikoo Saeedi
- Student Research Committee, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Rana Ghaffarian
- Student Research Committee, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, Sussex, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2019; 217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.
Collapse
|
31
|
Xiao J, Lai H, Wei S, Ye Z, Gong F, Chen L. lncRNA HOTAIR promotes gastric cancer proliferation and metastasis via targeting miR-126 to active CXCR4 and RhoA signaling pathway. Cancer Med 2019; 8:6768-6779. [PMID: 31517442 PMCID: PMC6825996 DOI: 10.1002/cam4.1302] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/02/2017] [Accepted: 11/26/2017] [Indexed: 12/30/2022] Open
Abstract
HOTAIR, a well-known long noncoding RNAs (lncRNA), has been recognized to contribute to the tumor metastasis in several tumors. But its role in gastric cancer remains elusive. Here, we reported an increase in HOTAIR promoted proliferation and metastasis of gastric cancer cell lines. The HOTAIR and miR-126 level was determined in 15 paired primary gastric cancer tissues and their adjacent noncancerous gastric tissues. Over-expression or downregulation HOTAIR was conducted in AGS or BGC-823 cells to investigate the impact of HOTAIR in proliferation and metastasis. Then dual luciferase reporter assay was utilized to study the interaction between CXCR4 and miR-126. Cells transfected with shHOTAIR or miR-126 mimic were subjected to western blot to investigate the role of SDF-1/CXCR4 signaling in HOTAIR mediated proliferation and metastasis. HOTAIR was highly expressed in gastric cancer tissues and several gastric cancer cell lines. Overexpressed HOTAIR facilitated proliferation and metastasis in vitro while HOTAIR knockdown inhibit proliferation and metastasis. A negative correlation was observed between miR-126 and HOTAIR. And, we also confirmed the decrease in miR-126 in clinic specimen. Furthermore, HOTAIR and miR-126 negatively regulated each other and then increase or decrease CXCR4 expression and downstream pathway, respectively. CXCR4 was confirmed as a direct target of miR-126. Our study demonstrated that high HOTAIR expression promote proliferation and metastasis in gastric cancer via miR-126/CXCR4 axis and downstream signaling pathways.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Gastrointestinal SurgeryFujian Cancer HospitalFujian Medical University Cancer HospitalFuzhou350001China
| | - Hao Lai
- Department of Gastrointestinal SurgeryGuangxi Cancer HospitalGuangxi Medical University Cancer HospitalNanning530001China
| | - Sheng‐Hong Wei
- Department of Gastrointestinal SurgeryFujian Cancer HospitalFujian Medical University Cancer HospitalFuzhou350001China
| | - Zai‐Sheng Ye
- Department of Gastrointestinal SurgeryFujian Cancer HospitalFujian Medical University Cancer HospitalFuzhou350001China
| | - Fu‐Sheng Gong
- Department of Molecular immune laboratoryFujian Cancer HospitalFujian Medical University Cancer HospitalFuzhou350001China
| | - Lu‐Chuan Chen
- Department of Gastrointestinal SurgeryFujian Cancer HospitalFujian Medical University Cancer HospitalFuzhou350001China
| |
Collapse
|
32
|
周 伟, 聂 军, 张 大. [Differential expression of miR-126-5p in lung adenocarcinoma and the possible mechanism]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1186-1190. [PMID: 31801711 PMCID: PMC6867948 DOI: 10.12122/j.issn.1673-4254.2019.10.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the differential expression of miR-126-5p in patients with lung adenocarcinoma and explore the possible mechanism. METHODS We searched STARBASE database to analyze the differential expression of miR-126-5p between lung adenocarcinoma tissues and normal lung tissues. The prognosis of patients with lung adenocarcinoma was analyzed on Kaplan-Meier Plotter online website, and the survival curves of the patients with different expression levels of miR-126-5p were generated. The target gene of mir-126-5p was predicted by STARBASE database, and the expression level of the target gene and its influence on the patients' prognosis were analyzed using online website tool. We also examined the expression levels of miR-126-5p in peripheral serum of 30 healthy control subjects and 30 patients with lung adenocarcinoma using qPCR. RESULTS Analysis of the data from STARBASE database showed a high expression of miR-126-5p in normal lung tissues but a low expression in lung adenocarcinoma tissues. Kaplan-Meier Plotter online analysis based on big data analysis showed that patients with a high expression of miR-126-5p had a better survival prognosis than those with a low expression (HR=0.68, P=0.015). MiR-126-5p was predicted to bind to the 3'UTR region of BRCC3 mRNA, and their expression levels were negatively correlated (r=0.197, P < 0.05). Compared with normal tissues, lung adenocarcinoma tissues expressed high levels of BRCC3, which was associated with a poor prognosis of the patients (HR=1.39, P < 0.05). The serum level of miR-126-5p was significantly higher in healthy control subjects than in patients with lung adenocarcinoma (1.23 ± 0.21 vs 0.63 ± 0.12, P < 0.05). CONCLUSIONS The expression level of miR-126-5p is lowered in lung adenocarcinoma tissue, and patients with lung adenocarcinoma have lower serum level of miR-126-5p than healthy subjects. A high expression of miR-126-5p is associated with a more favorable prognosis of the patients than a low expression. miR-126-5p may play a role against cancer by regulating BRCC3.
Collapse
Affiliation(s)
- 伟 周
- />皖南医学院第一附属医院弋矶山医院胸心外科,安徽 芜湖 241001Department of Cardiothoracic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - 军 聂
- />皖南医学院第一附属医院弋矶山医院胸心外科,安徽 芜湖 241001Department of Cardiothoracic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - 大发 张
- />皖南医学院第一附属医院弋矶山医院胸心外科,安徽 芜湖 241001Department of Cardiothoracic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| |
Collapse
|
33
|
Xue K, Li J, Nan S, Zhao X, Xu C. Downregulation of LINC00460 decreases STC2 and promotes autophagy of head and neck squamous cell carcinoma by up-regulating microRNA-206. Life Sci 2019; 231:116459. [DOI: 10.1016/j.lfs.2019.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 11/26/2022]
|
34
|
Feng Y, Zhang Y, Zhou D, Chen G, Li N. MicroRNAs, intestinal inflammatory and tumor. Bioorg Med Chem Lett 2019; 29:2051-2058. [PMID: 31213403 DOI: 10.1016/j.bmcl.2019.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/06/2023]
Abstract
Colorectal cancer (CRC) is the third most malignant tumor. Inflammatory bowel disease (IBD) can increase the risk of colorectal cancer. And colitis-associated cancer (CAC) is a CRC subtype, representing the inflammation-related colorectal cancer. For the past decades, we have known that ectopic microRNA (miRNA) expression was involved in the pathogenesis of IBD and CRC, playing a pivotal role in the progression of inflammation to colorectal cancer. Thus, this review provides the recent advances in altered human tissue-specific miRNAs that contribute to IBD, CRC and CAC pathogenesis, diagnosis and treatment. Meanwhile, the potential utilization of miRNAs as novel therapeutic targets for the prevention of CRC was also discussed.
Collapse
Affiliation(s)
- Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Yuan Zhang
- Tianjin Vocational College of Bioengineering, Tianjin 300462, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
35
|
Siveen KS, Raza A, Ahmed EI, Khan AQ, Prabhu KS, Kuttikrishnan S, Mateo JM, Zayed H, Rasul K, Azizi F, Dermime S, Steinhoff M, Uddin S. The Role of Extracellular Vesicles as Modulators of the Tumor Microenvironment, Metastasis and Drug Resistance in Colorectal Cancer. Cancers (Basel) 2019; 11:746. [PMID: 31146452 PMCID: PMC6628238 DOI: 10.3390/cancers11060746] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, with high morbidity and mortality rates. A number of factors including modulation of the tumor microenvironment, high metastatic capability, and resistance to treatment have been associated with CRC disease progression. Recent studies have documented that tumor-derived extracellular vesicles (EVs) play a significant role in intercellular communication in CRC via transfer of cargo lipids, proteins, DNA and RNAs to the recipient tumor cells. This transfer influences a number of immune-related pathways leading to activation/differentiation/expression of immune cells and modulation of the tumor microenvironment that plays a significant role in CRC progression, metastasis, and drug resistance. Furthermore, tumor-derived EVs are secreted in large amounts in biological fluids of CRC patients and as such the expression analysis of EV cargoes have been associated with prognosis or response to therapy and may be a source of therapeutic targets. This review aims to provide a comprehensive insight into the role of EVs in the modulation of the tumor microenvironment and its effects on CRC progression, metastasis, and drug resistance. On the other hand, the potential role of CRC derived EVs as a source of biomarkers of response and therapeutic targets will be discussed in detail to understand the dynamic role of EVs in CRC diagnosis, treatment, and management.
Collapse
Affiliation(s)
- Kodappully S Siveen
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Eiman I Ahmed
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Abdul Q Khan
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Kirti S Prabhu
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Shilpa Kuttikrishnan
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Jericha M Mateo
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Hatem Zayed
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha P.O. Box 2713, Qatar.
| | - Kakil Rasul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Fouad Azizi
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Martin Steinhoff
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
- Department of Dermatology Venereology, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
- Weill Cornell-Medicine, Doha P.O. Box 24811, Qatar.
- Weill Cornell University, New York, NY 10065, USA.
| | - Shahab Uddin
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| |
Collapse
|
36
|
Shirafkan N, Shomali N, Kazemi T, Shanehbandi D, Ghasabi M, Baghbani E, Ganji M, Khaze V, Mansoori B, Baradaran B. microRNA-193a-5p inhibits migration of human HT-29 colon cancer cells via suppression of metastasis pathway. J Cell Biochem 2019; 120:8775-8783. [PMID: 30506718 DOI: 10.1002/jcb.28164] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023]
Abstract
PURPOSE Altered expression of microRNAs (miRNAs) is indicated strongly in colorectal cancer (CRC). This study aims to evaluate the inhibitory role of miR-193a-5p on epithelial-mesenchymal transition markers in CRC lines. The cellular effects and potential mechanisms of miR-193a-5p were also examined. METHODS Quantitative reverse-transcription polymerase chain reaction (RT-PCR) was performed to determine the expression of miR-193a-5p in three CRC cell lines (HCT-116, SW-480, and HT-29) and its impact on metastasis-related genes ( vimentin and CXCR4) before and after mimic transfection. Of those, the cell line with the highest changes was selected for the next upcoming experiments such as wound-healing assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and annexin-V staining tests. RESULTS Our results revealed that miR-193a-5p was significantly downregulated in three CRC cell lines and that HT-29 displayed the most decrease ( P < 0.0001). The restoration of miR-193a-5p in human HT-29 cell line inhibited cell migration. But, miR-193a-5p transfection did not affect cell viability and had no significant effect on apoptosis induction. Also, the quantitative RT-PCR analysis of miR-193a-5p mimic transfected cells revealed a significant increase in miR-193a-5p messenger RNA (mRNA) expression level ( P < 0.0001) with reduction of vimentin and CXCR4 mRNA expression levels in HT-29 cell line ( P < 0.01 and < 0.05, respectively). CONCLUSION Our results indicated that miR-193a-5p acts as a tumor suppressor miRNA and its downregulation plays an important role in metastasis via upregulation of metastasis-related genes in CRC. Therefore, it can be considered as a potential therapeutic target for applying in CRC management in the future.
Collapse
Affiliation(s)
- Naghmeh Shirafkan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehri Ghasabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maziar Ganji
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Khaze
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Hu M, Xiong S, Chen Q, Zhu S, Zhou X. Novel role of microRNA-126 in digestive system cancers: From bench to bedside. Oncol Lett 2019; 17:31-41. [PMID: 30655735 PMCID: PMC6313097 DOI: 10.3892/ol.2018.9639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are ubiquitously expressed, small, non-coding RNAs that regulate the expression of approximately 30% of the human genes at the post-transcriptional level. miRNAs have emerged as crucial modulators in the initiation and progression of various diseases, including numerous cancer types. The high incidence rate of cancer and the large number of cancer-associated cases of mortality are mostly due to a lack of effective treatments and biomarkers for early diagnosis. Therefore there is an urgent requirement to further understand the underlying mechanisms of tumorigenesis. MicroRNA-126 (miR-126) is significantly downregulated in a number of tumor types and is commonly identified as a tumor suppressor in digestive system cancers (DSCs). miR-126 downregulates various oncogenes, including disintegrin and metalloproteinase domain-containing protein 9, v-crk sarcoma virus CT10 oncogene homolog and phosphoinositide-3-kinase regulatory subunit 2. These genes are involved in a number of tumor-associated signaling pathways, including angiogenesis, epithelial-mensenchymal transition and metastasis pathways. The aim of the current review was to summarize the role of miR-126 in DSCs, in terms of its dysregulation, target genes and associated signaling pathways. In addition, the current review has discussed the potential clinical application of miR-126 as a biomarker and therapeutic target for DSCs.
Collapse
Affiliation(s)
- Mingli Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shengwei Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Qiaofeng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shixuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xiaodong Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
38
|
Xiang G, Cheng Y. MiR-126-3p inhibits ovarian cancer proliferation and invasion via targeting PLXNB2. Reprod Biol 2018; 18:218-224. [DOI: 10.1016/j.repbio.2018.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 05/29/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022]
|
39
|
Xu X, Cao L, Zhang Y, Lian H, Sun Z, Cui Y. MicroRNA-1246 inhibits cell invasion and epithelial mesenchymal transition process by targeting CXCR4 in lung cancer cells. Cancer Biomark 2018; 21:251-260. [PMID: 29171984 DOI: 10.3233/cbm-170317] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Recent studies have indicated that microRNAs (miRNAs) are closely related to lung cancer. However, the effects of miR-1246 on lung cancer are still elusive. In this study, we aimed to explore the molecular mechanisms of miR-1246 in lung cancer. MATERIALS AND METHODS Using RT-qPCR assay, we analyzed the expression of miR-1246 in lung cancer cell lines and lung epithelial cell line. Using Cell Counting Kit-8 (CCK-8), flow cytometry, Transwell, RT-qPCR and western blot assays, we investigated cell viability, apoptosis, invasion and epithelial mesenchymal transition (EMT) process. Using luciferase reporter assay, we confirmed a target of miR-1246. Using western blot assay, we detected the protein mechanisms of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signal pathways. RESULTS Our results showed that miR-1246 was down-regulated in lung cancer cell lines (A549, H1650 and H1299) compared to in lung epithelial cell line (16HBE14o). MiR-1246 overexpression remarkably inhibited cell invasion as well as up-regulated E-cadherin expression and down-regulated N-cadherin, Vimentin, ZEB1 and Snail expressions in A549 cells. Further studies have confirmed CXCR4 as a target gene of miR-1246, and CXCR4 silence significantly abolished the promotion effect of miR-1246 suppression on cell invasion and EMT process in A549 cells. Besides, miR-1246 blocked JAK/STAT and PI3K/AKT signal pathways by regulation of CXCR4. CONCLUSIONS These results demonstrated that miR-1246 inhibited cell invasion and EMT process by targeting CXCR4 and blocking JAK/STAT and PI3K/AKT signal pathways in lung cancer cells.
Collapse
|
40
|
MicroRNA-126 inhibits colon cancer cell proliferation and invasion by targeting the chemokine (C-X-C motif) receptor 4 and Ras homolog gene family, member A, signaling pathway. Oncotarget 2018; 7:60230-60244. [PMID: 27517626 PMCID: PMC5312381 DOI: 10.18632/oncotarget.11176] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 07/26/2016] [Indexed: 12/21/2022] Open
Abstract
MicroRNA-126 (miR-126) suppresses the migration, proliferation and invasion of colon cancer cells. However, the underlying mechanisms of miR-126 in colon cancer have not been fully elucidated. In this study, in vivo experiments revealed that miR-126 inhibits colon cancer growth and metastasis. Furthermore, miR-126 was down-regulated in human colon cancer tissue, and its expression was inversely correlated with TNM stage and metastasis of patients. Low level of miR-126 identified patients with poor prognosis. And we found that miR-126 expression was negatively correlated with the expression levels of chemokine (C-X-C motif) receptor 4 (CXCR4) and components of signaling pathway of Ras homolog gene family, member A (RhoA) in vitro and in vivo. Moreover, we verified that miR-126 negatively regulated CXCR4 and RhoA signaling in vitro. In addition, either in miR-126-overexpressing or in miR- 126-silenced colon cancer cells, the restoration of CXCR4 could significantly reverse the proliferation and invasion, as well as abolish the effects of miR-126 on RhoA signaling pathway. Collectively, these results demonstrated that miR-126 acts as a tumor suppressor by inactivating RhoA signaling via CXCR4 in colon cancer. And miR-126 may serve as a prognostic marker for monitoring and treating colon cancer.
Collapse
|
41
|
Wu XJ, Zhao ZF, Kang XJ, Wang HJ, Zhao J, Pu XM. MicroRNA-126-3p suppresses cell proliferation by targeting PIK3R2 in Kaposi's sarcoma cells. Oncotarget 2017; 7:36614-36621. [PMID: 27191494 PMCID: PMC5095025 DOI: 10.18632/oncotarget.9311] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
Kaposi's sarcoma is a highly vascular tumor of lymphatic endothelial origin. Many deregulated miRNAs, including miR-126-3p, have been identified in Kaposi's sarcoma tissues. miR-126-3p is the most highly endothelial-specific miRNA that regulates vascular integrity and angiogenesis. In this study, we aimed to determine the effect of miR-126-3p on Kaposi's sarcoma cells through transfection of a miRNA mimic and inhibitor. Moreover, we searched the target gene (PIK3R2) of miR-126-3p using bioinformatics software and further verified PIK3R2 using luciferase reporter assays, Real-time quantitative PCR (qRT-PCR) and western blot. The results demonstrated that miR-126-3p inhibited cell proliferation, arrested cell cycle progression, induced cell apoptosis, and inhibited cell invasion of SLK cells. The bioinformatics analysis and luciferase reporter assay revealed that PIK3R2 mRNA is a direct target of miR-126-3p. Moreover, the level of expression of the PIK3R2 gene was downregulated in SLK cells transfected with miR-126-3p siRNAs. Therefore, our data demonstrated that miR-126-3p is a tumor suppressor miRNA that acts by targeting PIK3R2 in Kaposi's sarcoma cells. These findings contribute to our understanding of the molecular mechanisms underlying Kaposi's sarcoma.
Collapse
Affiliation(s)
- Xiu-Juan Wu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang, Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Zong-Feng Zhao
- Clinical Medical Research Center, People's Hospital of Xinjiang, Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiao-Jing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang, Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Hong-Juan Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang, Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Juan Zhao
- Department of Dermatology and Venereology, People's Hospital of Xinjiang, Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiong-Ming Pu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang, Uygur Autonomous Region, Urumqi, Xinjiang, China
| |
Collapse
|
42
|
Law IKM, Padua DM, Iliopoulos D, Pothoulakis C. Role of G protein-coupled receptors-microRNA interactions in gastrointestinal pathophysiology. Am J Physiol Gastrointest Liver Physiol 2017; 313:G361-G372. [PMID: 28774868 PMCID: PMC5792214 DOI: 10.1152/ajpgi.00144.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 01/31/2023]
Abstract
G protein-coupled receptors (GPCRs) make up the largest transmembrane receptor superfamily in the human genome and are expressed in nearly all gastrointestinal cell types. Coupling of GPCRs and their respective ligands activates various phosphotransferases in the cytoplasm, and, thus, activation of GPCR signaling in intestine regulates many cellular and physiological processes. Studies in microRNAs (miRNAs) demonstrate that they represent critical epigenetic regulators of different pathophysiological responses in different organs and cell types in humans and animals. Here, we reviewed recent research on GPCR-miRNA interactions related to gastrointestinal pathophysiology, such as inflammatory bowel diseases, irritable bowel syndrome, and gastrointestinal cancers. Given that the presence of different types of cells in the gastrointestinal tract suggests the importance of cell-cell interactions in maintaining gastrointestinal homeostasis, we also discuss how GPCR-miRNA interactions regulate gene expression at the cellular level and subsequently modulate gastrointestinal pathophysiology through molecular regulatory circuits and cell-cell interactions. These studies helped identify novel molecular pathways leading to the discovery of potential biomarkers for gastrointestinal diseases.
Collapse
Affiliation(s)
- Ivy Ka Man Law
- 1Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | - David Miguel Padua
- 1Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | - Dimitrios Iliopoulos
- 1Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and ,2Center for Systems Biomedicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| |
Collapse
|
43
|
Mozzoni P, Ampollini L, Goldoni M, Alinovi R, Tiseo M, Gnetti L, Carbognani P, Rusca M, Mutti A, Percesepe A, Corradi M. MicroRNA Expression in Malignant Pleural Mesothelioma and Asbestosis: A Pilot Study. DISEASE MARKERS 2017; 2017:9645940. [PMID: 28757678 PMCID: PMC5512053 DOI: 10.1155/2017/9645940] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/21/2017] [Accepted: 06/05/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The identification of diagnostic/prognostic biomarkers for asbestos-related diseases is relevant for early diagnosis and patient survival and may contribute to understanding the molecular mechanisms underlying the disease development and progression. AIMS To identify a pattern of miRNAs as possible diagnostic biomarkers for patients with malignant pleural mesothelioma (MPM) and asbestosis (ASB) and as prognostic biomarkers for MPM patients. METHODS miRNA-16, miRNA-17, miRNA-126, and miRNA-486 were quantified in plasma and formalin-fixed paraffin-embedded samples to evaluate their diagnostic and prognostic roles compared to patients with other noncancerous pulmonary diseases (controls). Results. The expression of all the miRNAs was significantly lower in patients with MPM and ASB than that in controls. miRNA-16, miRNA-17, and miRNA-486 in plasma and tissue of MPM patients were significantly correlated. Furthermore, the expression of miRNA-16 in plasma and tissue, and miRNA-486 only in tissue, was positively related with cumulative survival in MPM patients. CONCLUSIONS All the miRNA levels were decreased in patients with MPM or ASB, supporting the role of circulating miRNAs as a potential tool for diseases associated with exposure to asbestos fibers. miRNA-16 was directly related to MPM patient prognosis, suggesting its possible use as a prognostic marker in MPM patients.
Collapse
Affiliation(s)
- Paola Mozzoni
- Molecular Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Ampollini
- Thoracic Surgery, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Matteo Goldoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rossella Alinovi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marcello Tiseo
- Medical Oncology, University Hospital of Parma, Parma, Italy
| | - Letizia Gnetti
- Pathological Anatomy and Histology, University Hospital of Parma, Parma, Italy
| | - Paolo Carbognani
- Thoracic Surgery, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Michele Rusca
- Thoracic Surgery, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Mutti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Percesepe
- Molecular Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
44
|
Almeida ALNRD, Bernardes MVAA, Feitosa MR, Peria FM, Tirapelli DPDC, Rocha JJRD, Feres O. Serological under expression of microRNA-21, microRNA-34a and microRNA-126 in colorectal cancer. Acta Cir Bras 2017; 31 Suppl 1:13-8. [PMID: 27142899 DOI: 10.1590/s0102-86502016001300004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE This paper describes the ability of miRNA value predict oncological outcomes in CRC patients and correlates to clinical and pathologic variables. METHODS We prospectively analyzed the serological expression of microRNA-21, microRNA-34a, and microRNA-126 in 37 stage II - IV CRC patients and correlate to seven fit counterparts. Serological microRNAs were extracted using the miRNeasy Mini Kit(r) (Qiagen, Hilden, Germany). Quantification of microRNAs was performed using TaqMan Master Mix(r) reagent (Applied Biosystems, USA). RESULTS We obtained serological underexpression microRNA-21, microRNA-34a, and microRNA-126 in CRC group. However, miRNAs serological values do not impact prognosis. Furthermore, miRNAs was not influenced by CEA values, TNM staging, and histological subtype. CONCLUSION Despite lower expression of miR-21, miR-34a and miR-126 in the CRC group, no association with poor prognosis was found.
Collapse
Affiliation(s)
| | | | - Marley Ribeiro Feitosa
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | | | | | | | - Omar Feres
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Brazil
| |
Collapse
|
45
|
Park PG, Jo SJ, Kim MJ, Kim HJ, Lee JH, Park CK, Kim H, Lee KY, Kim H, Park JH, Dong SM, Lee JM. Role of LOXL2 in the epithelial-mesenchymal transition and colorectal cancer metastasis. Oncotarget 2017; 8:80325-80335. [PMID: 29113306 PMCID: PMC5655201 DOI: 10.18632/oncotarget.18170] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most dangerous types of malignant tumors, and cancer metastasis is a major factor in the failure of CRC therapy. Recently, LOXL2 (lysyl oxidase-like 2) has been shown to represent a regulator of epithelial-mesenchymal transition (EMT) in different cancer types. However, LOXL2 has not been reported to be involved in CRC metastasis. In this study, we demonstrated that LOXL2 expression is strongly correlated with the rate of CRC metastasis, it participates in the regulation of EMT-related molecule expression in CRC cells in vitro, and it is involved in migratory potential alterations. Additionally, tissue microarray analysis of CRC patients showed an increase in the probability of developing CRC distant metastasis and a decrease in the survival rate of patients with high LOXL2 expression. The results obtained in this study indicate that LOXL2 is involved in the development and progression of CRC metastasis, and therefore, its expression levels may represent a useful prognostic marker.
Collapse
Affiliation(s)
- Pil-Gu Park
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Ji Jo
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Pediatrics, Severance Hospital, Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jeong Kim
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hae Lee
- Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Cheol Keun Park
- Department of Pathology, Yonsei University, College of Medicine, Seoul, South Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University, College of Medicine, Seoul, South Korea
| | - Kang Young Lee
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoguen Kim
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Yonsei University, College of Medicine, Seoul, South Korea
| | - Jeon Han Park
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Myung Dong
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,IMK Bio-Convergence R&D Center, International Vaccine Institute SNU Research Park, Seoul, Republic of Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
46
|
Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7354260. [PMID: 28573140 PMCID: PMC5442347 DOI: 10.1155/2017/7354260] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common form of cancer in developed countries and, despite the improvements achieved in its treatment options, remains as one of the main causes of cancer-related death. In this review, we first focus on colorectal carcinogenesis and on the genetic and epigenetic alterations involved. In addition, noncoding RNAs have been shown to be important regulators of gene expression. We present a general overview of what is known about these molecules and their role and dysregulation in cancer, with a special focus on the biogenesis, characteristics, and function of microRNAs. These molecules are important regulators of carcinogenesis, progression, invasion, angiogenesis, and metastases in cancer, including colorectal cancer. For this reason, miRNAs can be used as potential biomarkers for diagnosis, prognosis, and efficacy of chemotherapeutic treatments, or even as therapeutic agents, or as targets by themselves. Thus, this review highlights the importance of miRNAs in the development, progression, diagnosis, and therapy of colorectal cancer and summarizes current therapeutic approaches for the treatment of colorectal cancer.
Collapse
|
47
|
Maji P, Shah E, Paul S. RelSim: An integrated method to identify disease genes using gene expression profiles and PPIN based similarity measure. Inf Sci (N Y) 2017. [DOI: 10.1016/j.ins.2016.06.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Shi D, Liang L, Zheng H, Cai G, Li X, Xu Y, Cai S. Silencing of long non-coding RNA SBDSP1 suppresses tumor growth and invasion in colorectal cancer. Biomed Pharmacother 2016; 85:355-361. [PMID: 27890432 DOI: 10.1016/j.biopha.2016.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/08/2016] [Indexed: 01/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in tumor development and progression. This study was undertaken to examine the expression and biological functions of a novel lncRNA SBDSP1 in colorectal cancer (CRC). Quantitative real-time PCR analysis was used to measure the expression of SBDSP1 in CRC tissues and cell lines. Knockdown of SBDSP1 via short hairpin RNA technology was performed to determine the roles of SBDSP1 in CRC cell growth, colony formation, cell cycle progression, migration, and invasion. The effect of SBDSP1 knockdown on tumorigenesis of CRC cells was investigated in a subcutaneous tumor mouse model. Western blot analysis was done to examine the involvement of signaling pathways in the action of SBDSP1. Notably, SBDSP1 was overexpressed in CRC tissues and cells relative to corresponding normal controls. Moreover, SBDSP1 expression was significantly greater in CRCs with nodal metastasis than in primary tumors (P=0.0259). Downregulation of SBDSP1 significantly inhibited cell proliferation, colony formation, migration, and invasion in SW480 and HCT116 cells, which was accompanied by suppression of Akt, ERK1/2, and STAT3 phosphorylation. SBDSP1-depleted cells showed a G0/G1 cell cycle arrest and deregulation of p21 and cyclin D1. In vivo studies confirmed that SBDSP1 downregulation retarded the growth of HCT116 xenogaft tumors. Altogether, SBDSP1 plays an essential role in CRC cell growth, invasion, and tumorigenesis, largely through inactivation of multiple signaling pathways. Therefore, targeting SBDSP1 may have therapeutic benefits in the treatment of CRC.
Collapse
Affiliation(s)
- Debing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Liang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongtu Zheng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Yi W, Li D, Guo Y, Zhang Y, Huang B, Li X. Sevoflurane inhibits the migration and invasion of glioma cells by upregulating microRNA-637. Int J Mol Med 2016; 38:1857-1863. [PMID: 27840895 DOI: 10.3892/ijmm.2016.2797] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/03/2016] [Indexed: 11/06/2022] Open
Abstract
Cancer cell migration and invasion are essential features of the metastatic process. Volatile anesthetic sevoflurane inhibits the migration and invasion of multiple cancer cell lines; however, its effects on glioma cells are unclear. Emerging evidence suggests that microRNA (miRNA)-637 regulates glioma cell migration and invasion through the Akt1 pathway. Sevoflurane has been shown to modulate a number of miRNAs. In the present study, we examined whether sevoflurane inhibits glioma cell migration and invasion and, if so, whether these beneficial effects are mediated by miRNA-637. U251 glioma cells were treated without (control) or with sevoflurane at low, moderate or high concentrations for 6 h. To explore the molecular mechanisms, an additional group of U251 cells was treated with a miRNA‑637 inhibitor prior to treatment with a high concentration of sevoflurane. Compared with the control group, sevoflurane inhibited the migration and invasion of U251 cells in a dose-dependent manner. Molecular analyses revealed that sevoflurane increased the expression of miRNA‑637 and decreased the expression of Akt1 and phosphorylated Akt1 in a dose-dependent manner. Moreover, the inhibitory effects of sevoflurane on U251 cell migration and invasion were completely abolished by pre-treatment with miRNA‑637 inhibitor, which reversed the sevoflurane-induced reduction in the expression of Akt1 and phosphorylated Akt1 in the U251 cells. These results demonstrate that sevoflurane inhibits glioma cell migration and invasion and that these beneficial effects are mediated by the upregulation of miRNA‑637, which suppresses Akt1 expression and activity. These findings may have significant clinical implications for anesthesiologists regarding the choice of volatile anesthetic agents for the surgical resection of gliomas to prevent metastases and improve patient outcomes.
Collapse
Affiliation(s)
- Wenbo Yi
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yongmin Guo
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yan Zhang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
50
|
Wang P, Li Z, Liu H, Zhou D, Fu A, Zhang E. MicroRNA-126 increases chemosensitivity in drug-resistant gastric cancer cells by targeting EZH2. Biochem Biophys Res Commun 2016; 479:91-6. [PMID: 27622325 DOI: 10.1016/j.bbrc.2016.09.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022]
Abstract
Chemotherapeutic insensitivity is a significant barrier for effective treatment of gastric cancer (GC). Recently, emerging evidence has demonstrated that microRNAs (miRNAs) are critically involved in drug resistance. Here, by a large-scale screen, we noticed low expression of miR-126 in the drug-resistant GC cell lines SGC7901/VCR and SGC7901/ADR compared with their parental cell line SGC7901. Ectopic expression of miR-126 increased sensitivity of SGC7901/VCR and SGC7901/ADR cells to vincristine (VCR) and adriamycin (ADR). Mechanistically, Enhancer of Zeste Homolog 2 (EZH2) was identified as a direct target of miR-126. Genetic silencing of EZH2 mirrored the effects of miR-126 in drug resistance, and restoration of EZH2 blocked the inhibitory effect of miR-126 on GC. Taken together, our results suggest that miR-126 is a tumor suppressor by sensitizing GC cells to chemotherapy and provide a potential therapeutic approach in cancer treatment.
Collapse
Affiliation(s)
- Ping Wang
- Department of Oncology, Yantaishan Hospital, Yantai, Shandong 264000, PR China
| | - Ziqiu Li
- Department of General Surgery, The People's Hospital of Rushan City, Rushan, Shandong 264500, PR China
| | - Haide Liu
- Department of Radiation Oncology, Yantaishan Hospital, Yantai, Shandong 264000, PR China
| | - Dongmei Zhou
- Department of Oncology, Yantaishan Hospital, Yantai, Shandong 264000, PR China
| | - Aiqin Fu
- Department of Oncology, Yantaishan Hospital, Yantai, Shandong 264000, PR China
| | - Enning Zhang
- Department of Oncology, Yantaishan Hospital, Yantai, Shandong 264000, PR China.
| |
Collapse
|