1
|
Olszewski M, Maciejewska N, Kallingal A, Chylewska A, Dąbrowska AM, Biedulska M, Makowski M, Padrón JM, Baginski M. Palindromic carbazole derivatives: unveiling their antiproliferative effect via topoisomerase II catalytic inhibition and apoptosis induction. J Enzyme Inhib Med Chem 2024; 39:2302920. [PMID: 38221785 PMCID: PMC10791108 DOI: 10.1080/14756366.2024.2302920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/24/2023] [Indexed: 01/16/2024] Open
Abstract
Human DNA topoisomerases are essential for crucial cellular processes, including DNA replication, transcription, chromatin condensation, and maintenance of its structure. One of the significant strategies employed in cancer treatment involves the inhibition of a specific type of topoisomerase, known as topoisomerase II (Topo II). Carbazole derivatives, recognised for their varied biological activities, have recently become a significant focus in oncological research. This study assesses the efficacy of three symmetrically substituted carbazole derivatives: 2,7-Di(2-furyl)-9H-carbazole (27a), 3,6-Di(2-furyl)-9H-carbazole (36a), and 3,6-Di(2-thienyl)-9H-carbazole (36b) - as anticancer agents. Among investigated carbazole derivatives, compound 3,6-di(2-furyl)-9H-carbazole bearing two furan moieties emerged as a novel catalytic inhibitor of Topo II. Notably, 3,6-di(2-furyl)-9H-carbazole effectively selectively inhibited the relaxation and decatenation activities of Topo IIα, with minimal effects on the IIβ isoform. These findings underscore the potential of compound 3,6-Di(2-furyl)-9H-carbazole as a promising lead candidate warranting further investigation in the realm of anticancer drug development.
Collapse
Affiliation(s)
- Mateusz Olszewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Agnieszka Chylewska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Aleksandra M. Dąbrowska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Małgorzata Biedulska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Mariusz Makowski
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, La Laguna, Spain
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
2
|
Xu G, Li Z, Ding Y, Shen Y. Discovery of 1,2-diphenylethene derivatives as human DNA topoisomerase II catalytic inhibitors and antitumor agents. Eur J Med Chem 2022; 243:114706. [DOI: 10.1016/j.ejmech.2022.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
|
3
|
Mad-Adam N, Rattanaburee T, Tanawattanasuntorn T, Graidist P. Effects of trans-(±)-kusunokinin on chemosensitive and chemoresistant ovarian cancer cells. Oncol Lett 2022; 23:59. [PMID: 34992691 PMCID: PMC8721857 DOI: 10.3892/ol.2021.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer ranks eighth in cancer incidence and mortality among women worldwide. Cisplatin-based chemotherapy is commonly used for patients with ovarian cancer. However, the clinical efficacy of cisplatin is limited due to the occurrence of adverse side effects and development of cancer chemoresistance during treatment. Trans-(±)-kusunokinin has been previously reported to inhibit cell proliferation and induce cell apoptosis in various cancer cell types, including breast, colon and cholangiocarcinoma. However, the potential effects of (±)-kusunokinin on ovarian cancer remains unknown. In the present study, chemosensitive ovarian cancer cell line A2780 and chemoresistant ovarian cancer cell lines A2780cis, SKOV-3 and OVCAR-3 were treated with trans-(±)-kusunokinin to investigate its potential effects. MTT, colony formation, apoptosis and multi-caspase assays were used to determine cytotoxicity, the ability of single cells to form colonies, induction of apoptosis and multi-caspase activity, respectively. Moreover, western blot analysis was performed to determine the proteins level of topoisomerase II, cyclin D1, CDK1, Bax and p53-upregulated modulator of apoptosis (PUMA). The results demonstrated that trans-(±)-kusunokinin exhibited the strongest cytotoxicity against A2780cis cells with an IC50 value of 3.4 µM whilst also reducing the colony formation of A2780 and A2780cis cells. Trans-(±)-kusunokinin also induced the cells to undergo apoptosis and increased multi-caspase activity in A2780 and A2780cis cells. This compound significantly downregulated topoisomerase II, cyclin D1 and CDK1 expression, but upregulated Bax and PUMA expression in both A2780 and A2780cis cells. In conclusion, trans-(±)-kusunokinin suppressed ovarian cancer cells through the inhibition of colony formation, cell proliferation and the induction of apoptosis. This pure compound could be a potential targeted therapy for ovarian cancer treatment in the future. However, studies in an animal model and clinical trial need to be performed to support the efficacy and safety of this new treatment.
Collapse
Affiliation(s)
- Nadeeya Mad-Adam
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thidarath Rattanaburee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Tanotnon Tanawattanasuntorn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
4
|
Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T, Shao P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front Immunol 2021; 12:779787. [PMID: 34899740 PMCID: PMC8651870 DOI: 10.3389/fimmu.2021.779787] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a classic autoimmune disease characterized by uncontrolled synovial proliferation, pannus formation, cartilage injury, and bone destruction. The specific pathogenesis of RA, a chronic inflammatory disease, remains unclear. However, both key glycolysis rate-limiting enzymes, hexokinase-II (HK-II), phosphofructokinase-1 (PFK-1), and pyruvate kinase M2 (PKM2), as well as indirect rate-limiting enzymes, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), are thought to participate in the pathogenesis of RA. In here, we review the latest literature on the pathogenesis of RA, introduce the pathophysiological characteristics of HK-II, PFK-1/PFKFB3, and PKM2 and their expression characteristics in this autoimmune disease, and systematically assess the association between the glycolytic rate-limiting enzymes and RA from a molecular level. Moreover, we highlight HK-II, PFK-1/PFKFB3, and PKM2 as potential targets for the clinical treatment of RA. There is great potential to develop new anti-rheumatic therapies through safe inhibition or overexpression of glycolysis rate-limiting enzymes.
Collapse
Affiliation(s)
- Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinshuo Tang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhongsheng Zhou
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hao Tian
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enbo Liu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baoying Gao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pu Shao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Mohammadhosseini M, Venditti A, Frezza C, Serafini M, Bianco A, Mahdavi B. The Genus Haplophyllum Juss.: Phytochemistry and Bioactivities-A Review. Molecules 2021; 26:4664. [PMID: 34361817 PMCID: PMC8347287 DOI: 10.3390/molecules26154664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023] Open
Abstract
Herein, a comprehensive review is given focusing on the chemical profiles of the essential oils (EOs), non-volatile compounds, ethnobotany, and biological activities of different Haplophyllum (Rutaceae family) species. To gather the relevant data, all the scientific databases, including Scopus, ISI-WOS (Institute of Scientific Information-Web of Science), and PubMed and highly esteemed publishers such as Elsevier, Springer, Taylor and Francis, etc., were systematically retrieved and reviewed. A wide array of valuable groups of natural compounds, e.g., terpenoids, coumarins, alkaloids, lignans, flavonoids, and organic acids have been isolated and subsequently characterized in different organic extracts of a number of Haplophyllum species. In addition, some remarkable antimicrobial, antifungal, anti-inflammatory, anticancer, cytotoxic, antileishmanial, and antialgal effects as well as promising remedial therapeutic properties have been well-documented for some species of the genus Haplophyllum.
Collapse
Affiliation(s)
- Majid Mohammadhosseini
- Department of Chemistry, College of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood 3616713455, Iran
| | - Alessandro Venditti
- Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.V.); (A.B.)
| | - Claudio Frezza
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Mauro Serafini
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Armandodoriano Bianco
- Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.V.); (A.B.)
| | - Behnam Mahdavi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar 9617976487, Iran;
| |
Collapse
|
6
|
Li T, Li Y, Gan Y, Tian R, Wu Q, Shu G, Yin G. Methylation-mediated repression of MiR-424/503 cluster promotes proliferation and migration of ovarian cancer cells through targeting the hub gene KIF23. Cell Cycle 2019; 18:1601-1618. [PMID: 31135262 PMCID: PMC6619937 DOI: 10.1080/15384101.2019.1624112] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is one type of gynecological malignancies with extremely high lethal rate. Abnormal proliferation and metastasis are regarded to play important roles in patients' death, whereas we know little about the underlying molecular mechanisms. Under this circumstance, our current study aims to investigate the role of hub genes in ovarian cancer. Bioinformatics analysis of the data from GEO and analyses of ovarian cancer samples were performed. Then, the results showed that KIF23, a hub gene, was mainly related to cell cycle and positively associated with poor prognosis. Meanwhile, both miR-424-5p and miR-503-5p directly targeted to 3'UTR of KIF23 to suppress the expression of KIF23 and inhibit ovarian cancer cell proliferation and migration. Furthermore, we discovered that miR-424/503 was epigenetically repressed by hypermethylation in the promoter regions, which directly modulated the expression of KIF23 to improve the oncogenic performance of cancer cells in vitro. Together, our research certifies that miR-424/503 cluster is silenced by DNA hypermethylation, which promotes the expression of KIF23, thereby regulating the proliferation and migration of ovarian cancer cells. Interposing this process might be a novel approach in cancer therapy.
Collapse
Affiliation(s)
- Tong Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Yimin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Yaqi Gan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Ruotong Tian
- School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Qihan Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Medical School, Fudan University, Shanghai, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
7
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
8
|
Woo JK, Jung HJ, Park JY, Kang JH, Lee BI, Shin D, Nho CW, Cho SY, Seong JK, Oh SH. Daurinol blocks breast and lung cancer metastasis and development by inhibition of focal adhesion kinase (FAK). Oncotarget 2017; 8:57058-57071. [PMID: 28915654 PMCID: PMC5593625 DOI: 10.18632/oncotarget.18983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/18/2017] [Indexed: 01/16/2023] Open
Abstract
FAK overexpression has been reported in diverse primary and metastatic tumor tissues, supporting its pro-tumorigenic and pro-metastatic roles. Therefore, we have developed a neo-treatment strategy using daurinol to effectively treat cancer metastasis. Daurinol blocked cancer cell migration and invasion in vitro and exhibited anti-metastatic activity in an experimental metastasis model of breast and lung cancer. Daurinol selectively inhibited phosphorylation of FAK at Tyr925, Tyr576/577, and Tyr397 sites in a dose- and time-dependent manner. Daurinol effectively suppressed migration and invasion of MDA-MB-231 and A549 cancer cells. These data were associated with inhibition of expression and secretion of invasion factors, including matrix metalloproteinase (MMP) 2, MMP9, and urokinase plasminogen activator (uPA). Consistent with these in vitro results, daurinol (10 mg/kg; Oral gavage) effectively inhibited breast and lung cancer metastasis in a mouse model. In addition, daurinol showed strong suppressive activity of cell survival as revealed by colony formation assays. Analysis of cellular phenotypes revealed that inhibition of FAK phosphorylation in cancer cells limited colony formation, cell migration, and invasion, thereby reducing the cell proliferation rate. Furthermore, daurinol significantly reduced tumor development in 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK)/benzo(a)pyrene (BaP)-treated A/J mice. Our results suggest that daurinol suppresses lung metastasis through inhibition of migration and survival via blockade of FAK activity.
Collapse
Affiliation(s)
- Jong Kyu Woo
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea.,Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyun Jin Jung
- Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Youn Park
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Byung Il Lee
- National Cancer Center, Goyang-si, Republic of Korea
| | - DongYun Shin
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Chu Won Nho
- Korea Institute of Science and Technology (KIST), Gangneung Institute, Gangneung-si, Republic of Korea
| | - Soo-Young Cho
- National Cancer Center, Goyang-si, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Oh
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
9
|
Lee SY, Kim JY, Jung YJ, Kang K. Toxicological evaluation of the topoisomerase inhibitor, etoposide, in the model animal Caenorhabditis elegans and 3T3-L1 normal murine cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:1836-1843. [PMID: 28206703 DOI: 10.1002/tox.22406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
Etoposide, a topoisomerase II inhibitor, has been widely used as a clinical anticancer drug to treat diverse cancer patients. Since not only rapidly dividing cancer cells but also the cells of normal human tissues and every living organism in environmental ecosystems have topoisomerases, it is crucial to study the toxicity of etoposide in other organisms in addition to cancer cells. In this study, we evaluated the toxicity of etoposide in both a soil nematode, Caenorhabditis elegans, and 3T3-L1 normal murine cells. Etoposide significantly retarded the growth, egg laying, and hatching in C. elegans. Etoposide also affected the reproductive gonad tissue, decreased the number of germ cells and induced abnormally enlarged nuclei in C. elegans. In addition, etoposide inhibited 3T3-L1 cell proliferation, with IC50 values of 37.8 ± 7.3 and 9.8 ± 1.8 μM after 24 and 48 hours of treatment, respectively, via the induction of cell cycle arrest at the G2/M phase and apoptotic cell death. Etoposide also induced nuclear enlargement in 3T3-L1 normal murine cells. The reproductive toxicity and abnormal nuclear morphological changes seemed to correlate with the adverse effects of etoposide. We suggest that these experimental platforms, i.e., the toxicological evaluation of both nematodes and 3T3-L1 cells, may be useful to study the mechanisms underlying the side effects of chemicals, including topoisomerase inhibitors.
Collapse
Affiliation(s)
- So Young Lee
- Systems Biotechnology Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Korea
| | - Joo Yeon Kim
- Systems Biotechnology Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Korea
| | - Yu-Jin Jung
- Systems Biotechnology Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Korea
| | - Kyungsu Kang
- Systems Biotechnology Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Korea
- Department of Biological Chemistry, University of Science and Technology (UST), Dajeon, 34113, Korea
| |
Collapse
|
10
|
Jung YJ, Lee EH, Lee CG, Rhee KJ, Jung WS, Choi Y, Pan CH, Kang K. AKR1B10-inhibitory Selaginella tamariscina extract and amentoflavone decrease the growth of A549 human lung cancer cells in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2017; 202:78-84. [PMID: 28286104 DOI: 10.1016/j.jep.2017.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Selaginella tamariscina (P.Beauv.) Spring is a traditional medicinal plant used to treat various human diseases, including cancer, in Asia. The detailed molecular mechanism underlying the anti-cancer effects of this plant and the anti-cancer action of the combinatorial treatment of S. tamariscina and doxorubicin have not yet been investigated. AIM OF THE STUDY We evaluated the inhibitory activity of S. tamariscina extract (STE) and its major compound, amentoflavone, on human aldo-keto reductase family 1B10 (AKR1B10), which is a detoxification enzyme involved in drug resistance, to evaluate their anti-cancer effects and their potential as adjuvant agents for doxorubicin cancer chemotherapy. MATERIALS AND METHODS We tested the AKR1B10 inhibitory activity of STE and amentoflavone via an in vitro biochemical assay using recombinant human AKR1B10. We tested the anti-proliferative activity in A549, NCI-H460, SKOV-3, and MCF-7 human cancer cells, which contain different expression levels of AKR1B10, and determined the combination index to evaluate whether the addition of STE and amentoflavone is synergistic or antagonistic to the anti-cancer action of doxorubicin. We finally evaluated the in vivo anti-tumor effects of STE in a nude mouse xenograft model of A549 cells. RESULTS STE and amentoflavone potently inhibited human AKR1B10 and synergistically increased the doxorubicin anti-proliferative effect in A549 and NCI-H460 human lung cancer cells that express a high level of AKR1B10 mRNA and protein. STE also significantly inhibited A549 tumor growth in animal experiments. CONCLUSION Our results suggest that STE and amentoflavone could be potential anti-cancer agents that target AKR1B10 and might be candidate adjuvant agents to boost the anti-cancer effect of doxorubicin.
Collapse
Affiliation(s)
- Yu-Jin Jung
- Systems Biotechnology Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Eun Ha Lee
- Systems Biotechnology Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Chang Gun Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Republic of Korea
| | - Woo-Suk Jung
- Systems Biotechnology Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Yongsoo Choi
- Systems Biotechnology Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; Department of Biological Chemistry, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Cheol-Ho Pan
- Systems Biotechnology Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; Department of Biological Chemistry, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Kyungsu Kang
- Systems Biotechnology Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; Department of Biological Chemistry, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
11
|
Jain CK, Majumder HK, Roychoudhury S. Natural Compounds as Anticancer Agents Targeting DNA Topoisomerases. Curr Genomics 2017; 18:75-92. [PMID: 28503091 PMCID: PMC5321768 DOI: 10.2174/1389202917666160808125213] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022] Open
Abstract
DNA topoisomerases are important cellular enzymes found in almost all types of living cells (eukaryotic and prokaryotic). These enzymes are essential for various DNA metabolic processes e.g. replication, transcription, recombination, chromosomal decatenation etc. These enzymes are important molecular drug targets and inhibitors of these enzymes are widely used as effective anticancer and antibacterial drugs. However, topoisomerase inhibitors have some therapeutic limitations and they exert serious side effects during cancer chemotherapy. Thus, development of novel anticancer topoisomerase inhibitors is necessary for improving cancer chemotherapy. Nature serves as a repertoire of structurally and chemically diverse molecules and in the recent years many DNA topoisomerase inhibitors have been identified from natural sources. The present review discusses anticancer properties and therapeutic importance of eighteen recently identified natural topoisomerase inhibitors (from the year 2009 to 2015). Structural characteristics of these novel inhibitors provide backbones for designing and developing new anticancer drugs.
Collapse
Affiliation(s)
- Chetan Kumar Jain
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Hemanta Kumar Majumder
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre & Research Institute, M G Road, Thakurpukur, Kolkata-700 063, India
| |
Collapse
|
12
|
Yu H, Dai G, He QR, Tang JJ. Enantioselective synthesis and evaluation of 4-styryldihydropyrimidin-2-thiones as anti-proliferative agents. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1790-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Jun KY, Kwon Y. Proposal of Dual Inhibitor Targeting ATPase Domains of Topoisomerase II and Heat Shock Protein 90. Biomol Ther (Seoul) 2016; 24:453-68. [PMID: 27582553 PMCID: PMC5012869 DOI: 10.4062/biomolther.2016.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 01/03/2023] Open
Abstract
There is a conserved ATPase domain in topoisomerase II (topo II) and heat shock protein 90 (Hsp90) which belong to the GHKL (gyrase, Hsp90, histidine kinase, and MutL) family. The inhibitors that target each of topo II and Hsp90 are intensively studied as anti-cancer drugs since they play very important roles in cell proliferation and survival. Therefore the development of dual targeting anti-cancer drugs for topo II and Hsp90 is suggested to be a promising area. The topo II and Hsp90 inhibitors, known to bind to their ATP binding site, were searched. All the inhibitors investigated were docked to both topo II and Hsp90. Four candidate compounds as possible dual inhibitors were selected by analyzing the molecular docking study. The pharmacophore model of dual inhibitors for topo II and Hsp90 were generated and the design of novel dual inhibitor was proposed.
Collapse
Affiliation(s)
- Kyu-Yeon Jun
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
14
|
Qi J, Gou Y, Zhang Y, Yang K, Chen S, Liu L, Wu X, Wang T, Zhang W, Yang F. Developing Anticancer Ferric Prodrugs Based on the N-Donor Residues of Human Serum Albumin Carrier IIA Subdomain. J Med Chem 2016; 59:7497-511. [DOI: 10.1021/acs.jmedchem.6b00509] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinxu Qi
- School
of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Yi Gou
- School
of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Yao Zhang
- School
of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Kun Yang
- School
of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Shifang Chen
- School
of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Li Liu
- Department
of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoyang Wu
- Ben
May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637, United States
| | - Tao Wang
- Department
of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Zhang
- School
of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Feng Yang
- School
of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
15
|
Hayat F, Park SH, Choi NS, Lee J, Park SJ, Shin D. Synthesis and anticancer activity of 4-aza-daurinol derivatives. Arch Pharm Res 2015; 38:1975-82. [PMID: 26048036 DOI: 10.1007/s12272-015-0619-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/25/2015] [Indexed: 11/29/2022]
Abstract
Daurinol, a natural aryl naphthalene lactone, has been reported to have antiproliferative activity against various cell lines, and has also been shown to be efficacious in an in vivo xenograft mouse model. In this study, we tried to discover a new scaffold that enables both rapid structure-activity relationship study of daurinol and scalable synthesis of active compounds. 4-Aza-daurinol, a bioisosterism-based scaffold of daurinol, was designed and 17 analogues were synthesized and evaluated against five representative cancer cell lines. Among them, the 2,3-dihydrobenzo[b][1,4]dioxinyl derivative was found to be the most potent and showed similar activity and tendency as daurinol.
Collapse
Affiliation(s)
- Faisal Hayat
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon, 406-799, South Korea
| | - Seung-Hyuk Park
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon, 406-799, South Korea
| | - Nam-Song Choi
- College of Interdisciplinary & Creative Studies, Konyang University, 121 Daehak-ro, Nonsan-si, Chungchungnam-do, 320-711, South Korea
| | - Juyeun Lee
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Geonggi-do, 426-791, South Korea
| | - Sung Jean Park
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon, 406-799, South Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon, 406-799, South Korea.
| |
Collapse
|
16
|
Hayat F, Kang L, Lee CY, Shin D. Synthesis of arylnaphthalene lignan lactone using benzoin condensation, intramolecular thermal cyclization and Suzuki coupling. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Xu LL, Luo WS, Tan N, Xu Q, Xu B, Zhu-Ge FY. Total flavonoids of litchi suppress proliferation of LX2 human hepatic stellate cells by upregulating p27 expression. Shijie Huaren Xiaohua Zazhi 2015; 23:539-546. [DOI: 10.11569/wcjd.v23.i4.539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of total flavonoids of litchi (TFL) on the proliferation of LX2 human hepatic stellate cells and to explore the underlying mechanism.
METHODS: LX2 cells treated with different concentrations (7.8125, 15.6250, 31.2500, 62.5000, and 125.0000 µg/mL) of TFL were examined for cell growth inhibition using CCK-8. Flow cytometry was used to analyze the changes in cell cycle distribution of LX2 cells. The expression of p27 mRNA and protein in LX2 cells was determined by real-time quantitative PCR and Western blot, respectively.
RESULTS: Exposure to TFL caused significant dose- and time-dependent inhibition of LX2 cell proliferation. TFL induced S-phase cell cycle arrest as shown by flow cytometric analysis. In addition, expression of p27 mRNA and protein in LX2 cells was upregulated in the treatment groups.
CONCLUSION: TFL treatment inhibits LX2 cell proliferation and arrests cells at S phase, and the mechanism may be associated with the upregulation of p27 expression.
Collapse
|