1
|
Howell MC, Green R, Cianne J, Dayhoff GW, Uversky VN, Mohapatra S, Mohapatra S. EGFR TKI resistance in lung cancer cells using RNA sequencing and analytical bioinformatics tools. J Biomol Struct Dyn 2023; 41:9808-9827. [PMID: 36524419 PMCID: PMC10272293 DOI: 10.1080/07391102.2022.2153269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
Epidermal Growth Factor Receptor (EGFR) signaling and EGFR mutations play key roles in cancer pathogenesis, particularly in the development of drug resistance. For the ∼20% of all non-small cell lung cancer (NSCLC) patients that harbor an activating mutation, EGFR tyrosine kinase inhibitors (TKIs) provide initial clinical responses. However, long-term efficacy is not possible due to acquired drug resistance. Despite a gradually increasing knowledge of the mechanisms underpinning the development of resistance in tumors, there has been very little success in overcoming it and it is probable that many additional mechanisms are still unknown. Herein, publicly available RNASeq (RNA sequencing) datasets comparing lung cancer cell lines treated with EGFR TKIs until resistance developed with their corresponding parental cells and protein array data from our own EGFR TKI treated xenograft tumors, were analyzed for differential gene expression, with the intent to investigate the potential mechanisms of drug resistance to EGFR TKIs. Pathway analysis, as well as structural disorder analysis of proteins in these pathways, revealed several key proteins, including DUSP1, DUSP6, GAB2, and FOS, that could be targeted using novel combination therapies to overcome EGFR TKI resistance in lung cancer.
Collapse
Affiliation(s)
- Mark C Howell
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- Center for Research & Education in Nanobioengineering, Division of Translational Medicine, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ryan Green
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- Center for Research & Education in Nanobioengineering, Division of Translational Medicine, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Junior Cianne
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Shyam Mohapatra
- Center for Research & Education in Nanobioengineering, Division of Translational Medicine, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans Hospital, Tampa, FL, USA
| |
Collapse
|
2
|
Salucci S, Aramini B, Bartoletti-Stella A, Versari I, Martinelli G, Blalock W, Stella F, Faenza I. Phospholipase Family Enzymes in Lung Cancer: Looking for Novel Therapeutic Approaches. Cancers (Basel) 2023; 15:3245. [PMID: 37370855 DOI: 10.3390/cancers15123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer (LC) is the second most common neoplasm in men and the third most common in women. In the last decade, LC therapies have undergone significant improvements with the advent of immunotherapy. However, the effectiveness of the available treatments remains insufficient due to the presence of therapy-resistant cancer cells. For decades, chemotherapy and radiotherapy have dominated the treatment strategy for LC; however, relapses occur rapidly and result in poor survival. Malignant lung tumors are classified as either small- or non-small-cell lung carcinoma (SCLC and NSCLC). Despite improvements in the treatment of LC in recent decades, the benefits of surgery, radiotherapy, and chemotherapy are limited, although they have improved the prognosis of LC despite the persistent low survival rate due to distant metastasis in the late stage. The identification of novel prognostic molecular markers is crucial to understand the underlying mechanisms of LC initiation and progression. The potential role of phosphatidylinositol in tumor growth and the metastatic process has recently been suggested by some researchers. Phosphatidylinositols are lipid molecules and key players in the inositol signaling pathway that have a pivotal role in cell cycle regulation, proliferation, differentiation, membrane trafficking, and gene expression. In this review, we discuss the current understanding of phosphoinositide-specific phospholipase enzymes and their emerging roles in LC.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Beatrice Aramini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Anna Bartoletti-Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ilaria Versari
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - William Blalock
- "Luigi Luca Cavalli-Sforza'' Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Franco Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Irene Faenza
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
3
|
Thangam C, Cyril R, Sekar R, Jayasree R, Ramachandran V, Langeswaran K, Asir AB, Subbaraj GK. Role of phospholipase A2 in squamous cell carcinoma and breast cancer. PHOSPHOLIPASES IN PHYSIOLOGY AND PATHOLOGY 2023:315-335. [DOI: 10.1016/b978-0-323-95697-0.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
Ivanušec A, Šribar J, Križaj I. Secreted Phospholipases A 2 - not just Enzymes: Revisited. Int J Biol Sci 2022; 18:873-888. [PMID: 35002531 PMCID: PMC8741859 DOI: 10.7150/ijbs.68093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Secreted phospholipases A2 (sPLA2s) participate in a very broad spectrum of biological processes through their enzymatic activity and as ligands for membrane and soluble receptors. The physiological roles of sPLA2s as enzymes have been very well described, while their functions as ligands are still poorly known. Since the last overview of sPLA2-binding proteins (sPLA2-BPs) 10 years ago, several important discoveries have occurred in this area. New and more sensitive analytical tools have enabled the discovery of additional sPLA2-BPs, which are presented and critically discussed here. The structural diversity of sPLA2-BPs reveals sPLA2s as very promiscuous proteins, and we offer some structural explanations for this nature that makes these proteins evolutionarily highly advantageous. Three areas of physiological engagement of sPLA2-BPs have appeared most clearly: cellular transport and signalling, and regulation of the enzymatic activity of sPLA2s. Due to the multifunctionality of sPLA2s, they appear to be exceptional pharmacological targets. We reveal the potential to exploit interactions of sPLA2s with other proteins in medical terms, for the development of original diagnostic and therapeutic procedures. We conclude this survey by suggesting the priority questions that need to be answered.
Collapse
Affiliation(s)
- Adrijan Ivanušec
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Scott KF, Mann TJ, Fatima S, Sajinovic M, Razdan A, Kim RR, Cooper A, Roohullah A, Bryant KJ, Gamage KK, Harman DG, Vafaee F, Graham GG, Church WB, Russell PJ, Dong Q, de Souza P. Human Group IIA Phospholipase A 2-Three Decades on from Its Discovery. Molecules 2021; 26:molecules26237267. [PMID: 34885848 PMCID: PMC8658914 DOI: 10.3390/molecules26237267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Phospholipase A2 (PLA2) enzymes were first recognized as an enzyme activity class in 1961. The secreted (sPLA2) enzymes were the first of the five major classes of human PLA2s to be identified and now number nine catalytically-active structurally homologous proteins. The best-studied of these, group IIA sPLA2, has a clear role in the physiological response to infection and minor injury and acts as an amplifier of pathological inflammation. The enzyme has been a target for anti-inflammatory drug development in multiple disorders where chronic inflammation is a driver of pathology since its cloning in 1989. Despite intensive effort, no clinically approved medicines targeting the enzyme activity have yet been developed. This review catalogues the major discoveries in the human group IIA sPLA2 field, focusing on features of enzyme function that may explain this lack of success and discusses future research that may assist in realizing the potential benefit of targeting this enzyme. Functionally-selective inhibitors together with isoform-selective inhibitors are necessary to limit the apparent toxicity of previous drugs. There is also a need to define the relevance of the catalytic function of hGIIA to human inflammatory pathology relative to its recently-discovered catalysis-independent function.
Collapse
Affiliation(s)
- Kieran F. Scott
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Correspondence: ; Tel.: +61-2-8738-9026
| | - Timothy J. Mann
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Shadma Fatima
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- School of Biotechnology and Biological Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia;
| | - Mila Sajinovic
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Anshuli Razdan
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Ryung Rae Kim
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (W.B.C.)
| | - Adam Cooper
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Aflah Roohullah
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Katherine J. Bryant
- School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Kasuni K. Gamage
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia; (K.K.G.); (D.G.H.)
| | - David G. Harman
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia; (K.K.G.); (D.G.H.)
| | - Fatemeh Vafaee
- School of Biotechnology and Biological Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia;
- UNSW Data Science Hub, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Garry G. Graham
- Department of Clinical Pharmacology, St Vincent’s Hospital Sydney, Darlinghurst, NSW 2010, Australia;
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - W. Bret Church
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (W.B.C.)
| | - Pamela J. Russell
- Australian Prostate Cancer Research Centre—QUT, Brisbane, QLD 4102, Australia;
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Paul de Souza
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- School of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Razdan A, Main NM, Chiu V, Shackel NA, de Souza P, Bryant K, Scott KF. Targeting the eicosanoid pathway in hepatocellular carcinoma. Am J Cancer Res 2021; 11:2456-2476. [PMID: 34249410 PMCID: PMC8263695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023] Open
Abstract
Liver cancer has variable incidence worldwide and high mortality. Histologically, the most common subtype of liver cancer is hepatocellular carcinoma (HCC). Approximately 30-40% of HCC patients are diagnosed at an advanced stage, and at present, there are limited treatment options for such patients. The current first-line therapy with tyrosine kinase inhibitors, sorafenib or lenvatinib, prolongs survival by a median of about 2.5-3 months after which the disease normally progresses. Additionally, many patients discontinue the use of tyrosine kinase inhibitors due to toxicity or may not be suitable candidates due to co-morbidity or frailty. It is, therefore, imperative to identify novel therapeutic targets for advanced HCC patients. Persistent injury to the liver as a result of insults such as hepatitis B or C viral (HBV or HCV) infections, alcohol abuse, and non-alcoholic fatty liver disease (NAFLD), results in chronic inflammation, which progresses to hepatic fibrosis and later, cirrhosis, provides the conditions for initiation of HCC. One of the key pathways studied for its role in inflammation and carcinogenesis is the eicosanoid pathway. In this review, we briefly outline the eicosanoid pathway, describe the mechanisms by which some pathway members either facilitate or counter the development of liver diseases, with the focus on NAFLD/hepatic fibrosis/cirrhosis, and HCC. We describe the link between the eicosanoid pathway, inflammation and these liver diseases, and identify components of the eicosanoid pathway that may be used as potential therapeutic targets in HCC.
Collapse
Affiliation(s)
- Anshuli Razdan
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Nathan M Main
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Vincent Chiu
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Nicholas A Shackel
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Paul de Souza
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
- School of Medicine, University of WollongongWollongong, NSW, Australia
| | - Katherine Bryant
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Kieran F Scott
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| |
Collapse
|
7
|
Secretory Phospholipase A2 IIa Mediates Expression of Growth Factor Receptors in Esophageal Adenocarcinoma. Dig Dis Sci 2021; 66:784-795. [PMID: 32277371 DOI: 10.1007/s10620-020-06241-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Receptor tyrosine kinases of the epidermal growth factor receptor (EGFR) family such as human epidermal receptor-2 (HER2) are involved in the development and progression of esophageal adenocarcinoma (EAC). Prior studies have demonstrated that group IIa secretory phospholipase A2 (sPLA2 IIa) can function as a ligand for the EGFR family of receptors and lead to an increase in receptor signaling. AIMS We hypothesized that sPLA2 IIa inhibition downregulates the expression of EGFR and HER-2 in EAC and through this mechanism decreases proliferation in EAC. METHODS Normal human esophageal epithelium, Barrett's esophagus (BE), and EAC tissue samples were assayed for baseline expression of EGFR, HER-2, and sPLA2 IIa. sPLA2 IIa was attenuated via inhibitor or lentiviral knockdown in esophageal cell lines, and cells were assayed for EGFR and HER2 expression as well as proliferation. FLO1 EAC cells were injected into the flank of nude mice. After randomization, mice received daily group IIA sPLA2 inhibitor or a control solution, and tumor volume was measured with calipers. RESULTS sPLA2 IIa, EGFR, and HER2 expression increased across the spectrum of normal esophageal epithelium to EAC. sPLA2 IIa inhibition and knockdown decreased the expression of HER-2 and EGFR and proliferation. Mice treated with sPLA2 IIa inhibitor had smaller tumors than controls. CONCLUSIONS sPLA2 IIa inhibition decreases EGFR and HER2 expression and lowers proliferation of human EAC. The discovery of sPLA2 IIa inhibition's ability to attenuate growth factor receptor signaling underscores the exciting potential of sPLA2 IIa inhibitors as therapeutics in the treatment of EAC.
Collapse
|
8
|
Jespersen SS, Stovgaard ES, Nielsen D, Christensen TD, Buhl ASK, Christensen IJ, Balslev E. Expression of Secretory Phospholipase A2 Group IIa in Breast Cancer and Correlation to Prognosis in a Cohort of Advanced Breast Cancer Patients. Appl Immunohistochem Mol Morphol 2021; 29:e5-e9. [PMID: 32217848 DOI: 10.1097/pai.0000000000000854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Secreted phospholipase A2 group IIa (sPLA2-IIa) has been shown to promote tumor genesis and cell proliferation. The properties of this group of enzymes are utilized in liposomal drug delivery of chemotherapy. sPLA2-IIa is also under investigation as a possible treatment target in itself, and as a prognostic marker. The expression of sPLA2-IIa in breast cancer has not been examined extensively, and never using immunohistochemistry. We sought to investigate the expression of sPLA2-IIa in a cohort of advanced breast cancer patients with correlation to known clinicopathologic risk factors and survival. Material from 525 breast cancer patients (426 primary tumors and 99 metastases or local recurrences) was examined for sPLA2-IIa expression using immunohistochemistry. Out of these, 262 showed expression of sPLA2-IIa. We found that there was no correlation to clinicopathologic characteristics, and no impact of sPLA2-IIa expression on prognosis. However, we found that a large proportion of patients in our study had high levels of sPLA2-IIa expression, and that sPLA2-IIa was equally expressed in primary tumors and metastases. These findings may be significant in the future development of liposomal drug delivery or targeted sPLA2-IIa treatment.
Collapse
Affiliation(s)
| | | | - Dorte Nielsen
- Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Troels D Christensen
- Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anna S K Buhl
- Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
9
|
Peng Z, Chang Y, Fan J, Ji W, Su C. Phospholipase A2 superfamily in cancer. Cancer Lett 2020; 497:165-177. [PMID: 33080311 DOI: 10.1016/j.canlet.2020.10.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Phospholipase A2 enzymes (PLA2s) comprise a superfamily that is generally divided into six subfamilies known as cytosolic PLA2s (cPLA2s), calcium-independent PLA2s (iPLA2s), secreted PLA2s (sPLA2s), lysosomal PLA2s, platelet-activating factor (PAF) acetylhydrolases, and adipose specific PLA2s. Each subfamily consists of several isozymes that possess PLA2 activity. The first three PLA2 subfamilies play important roles in inflammation-related diseases and cancer. In this review, the roles of well-studied enzymes sPLA2-IIA, cPLA2α and iPLA2β in carcinogenesis and cancer development were discussed. sPLA2-IIA seems to play conflicting roles and can act as a tumor suppressor or a tumor promoter according to the cancer type, but cPLA2α and iPLA2β play protumorigenic role in most cancers. The mechanisms of PLA2-mediated signal transduction and crosstalk between cancer cells and endothelial cells in the tumor microenvironment are described. Moreover, the mechanisms by which PLA2s mediate lipid reprogramming and glycerophospholipid remodeling in cancer cells are illustrated. PLA2s as the upstream regulators of the arachidonic acid cascade are generally high expressed and activated in various cancers. Therefore, they can be considered as potential pharmacological targets and biomarkers in cancer. The detailed information summarized in this review may aid in understanding the roles of PLA2s in cancer, and provide new clues for the development of novel agents and strategies for tumor prevention and treatment.
Collapse
Affiliation(s)
- Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Yanxin Chang
- Department of Biliary Tract Surgery IV, Eastern Hepatobiliary Surgical Hospital, Navy Military Medical University, Shanghai, 200438, China.
| | - Jianhui Fan
- Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, 350025, Fujian Province, China.
| | - Weidan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
10
|
Takemi S, Nishio R, Taguchi H, Ojima S, Matsumoto M, Sakai T, Sakata I. Molecular cloning and analysis of Suncus murinus group IIA secretary phospholipase A2 expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 100:103427. [PMID: 31278953 DOI: 10.1016/j.dci.2019.103427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/30/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
The intestinal epithelial monolayer forms a mucosal barrier between the gut microbes and the host tissue. The mucosal barrier is composed of mucins and antimicrobial peptides and proteins (AMPs). Several animal studies have reported that Paneth cells, which occupy the base of intestinal crypts, play an important role in the intestinal innate immunity by producing AMPs, such as lysozyme, Reg3 lectins, α-defensins, and group IIA secretory phospholipase A2 (GIIA sPLA2). The house musk shrew (Suncus murinus) has only a few intestinal commensal bacteria and is reported to lack Paneth cells in the intestine. Although the expression of lysozyme was reported in the suncus intestine, the expression of other AMPs has not yet been reported. Therefore, the current study was focused on GIIA sPLA2 expression in Suncus murinus. GIIA sPLA2 mRNA was found to be most abundant in the spleen and also highly expressed in the intestine. Cells expressing GIIA sPLA2 mRNA were distributed not only in the crypt, but also in the villi. In addition, intragastric injection of lipopolysaccharide increased GIIA sPLA2 expression in the small intestine of suncus. These results suggest that suncus may host unique AMP-secreting cells in the intestine.
Collapse
Affiliation(s)
- Shota Takemi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Ryo Nishio
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Hayato Taguchi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Shiomi Ojima
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Mio Matsumoto
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Takafumi Sakai
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan; Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan.
| |
Collapse
|
11
|
Wu C, Su J, Wang X, Wang J, Xiao K, Li Y, Xiao Q, Ling M, Xiao Y, Qin C, Long W, Zhang F, Pan Y, Xiang F, Liu Q. Overexpression of the phospholipase A2 group V gene in glioma tumors is associated with poor patient prognosis. Cancer Manag Res 2019; 11:3139-3152. [PMID: 31114356 PMCID: PMC6489671 DOI: 10.2147/cmar.s199207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/17/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: Gliomas are the most common primary malignant neoplasms of the central nervous system. Secreted phospholipases A2 (sPLA2s) are known to play an important role in various physiological processes, including bioactive lipid production, defense mechanisms, and cell signaling. However, their roles and clinical importance in gliomas remain unclear. Patients and methods: In this study, we analyzed the association between the expression of various sPLA2-encoding genes and the clinicopathology of gliomas, using the data of 1047 patients obtained from a public database. Immunohistochemical analysis of 82 glioma tissues was also carried out to assess the relationship between phospholipase A2 group V (PLA2G5) protein expression and the World Health Organization (WHO) glioma grades. Results: We found that high PLA2G5 gene expression was associated with unfavorable prognosis in both low-grade and high-grade gliomas. The immunohistochemistry of the 82 glioma tissues further confirmed that PLA2G5 protein expression was dependent on the WHO glioma grade. In addition, we found a correlation between PLA2G5 gene expression and both epithelial-mesenchymal transition and the isocitrate dehydrogenase 1 mutation status in these tumors. Conclusion: Our results indicate that PLA2G5 could be a potential biomarker for predicting poor prognosis in patients with gliomas.
Collapse
Affiliation(s)
- Changwu Wu
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Jun Su
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Xiangyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Junquan Wang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Kai Xiao
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Yang Li
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Qun Xiao
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Min Ling
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Yao Xiao
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Wenyong Long
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China.,Institute of Skull Base Surgery and Neuro-Oncology at Hunan Neurosurgery Institute of Central South University, Changsha, Hunan, People's Republic of China
| | - Fengqi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Yimin Pan
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Feng Xiang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China.,Institute of Skull Base Surgery and Neuro-Oncology at Hunan Neurosurgery Institute of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
12
|
Inhibition of secretory phospholipase A2 IIa attenuates prostaglandin E2-induced invasiveness in lung adenocarcinoma. Mol Cell Biochem 2019; 456:145-156. [PMID: 30684134 DOI: 10.1007/s11010-019-03500-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/19/2019] [Indexed: 12/31/2022]
Abstract
Secretory phospholipase A2 IIa (sPLA2 IIa) catalyzes the production of multiple inflammatory mediators that influence the development of lung and other cancers. The most potent of these carcinogenic mediators is prostaglandin E2 (PGE2). We hypothesize that sPLA2 IIa inhibition modulates the production of PGE2, and sPLA2 IIa inhibition exerts its antineoplastic effects via downregulation of PGE2 production. We aim to evaluate these relationships via analysis of PGE2-mediated growth regulation pathways. A549 and H1650 lung adenocarcinoma cells were assayed for PGE2 production in the presence of sPLA2 IIa inhibitor. A549 and H1650 cells were treated with PGE2 and immune blotting was performed to assess ICAM-1 expression and STAT-3 activity. PGE2-induced ICAM-1 expression was measured via immunofluorescence. A549 and H1650 cells were treated with PGE2 in the presence of STAT3 inhibitor and assayed for ICAM-1 expression. A549 cells were treated with PGE2 in the presence ICAM-1 blocking antibody and assayed for invasion. PGE2 stimulation significantly increased the invasiveness and proliferation of lung adenocarcinoma (invasion p < 0.05, proliferation p < 0.05 A549 cells, p < 0.005 H1650 cells). sPLA2 IIa inhibition reduced PGE2 secretion (p < 0.05). PGE2 stimulation significantly upregulated the expression of cell adhesion molecule ICAM-1 and the phosphorylation of anti-apoptotic transcription factor STAT3 (p < 0.05). STAT3 inhibition attenuated ICAM-1 expression demonstrating the dependence of ICAM-1 on the STAT3 pathway (p < 0.05). ICAM-1 blockade attenuated the pro-invasive effects of PGE2 (p < 0.05). sPLA2 IIa inhibition attenuates the potent effects of PGE2-induced invasiveness. This is mediated by decreasing pro-inflammatory and invasion-promoting ICAM-1via the STAT-3 pathway. These data further describe how sPLA2 IIa inhibition mechanistically exerts its anticancer effects and support its use as an antineoplastic agent.
Collapse
|
13
|
Massimino ML, Simonato M, Spolaore B, Franchin C, Arrigoni G, Marin O, Monturiol-Gross L, Fernández J, Lomonte B, Tonello F. Cell surface nucleolin interacts with and internalizes Bothrops asper Lys49 phospholipase A 2 and mediates its toxic activity. Sci Rep 2018; 8:10619. [PMID: 30006575 PMCID: PMC6045611 DOI: 10.1038/s41598-018-28846-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/20/2018] [Indexed: 01/01/2023] Open
Abstract
Phospholipases A2 are a major component of snake venoms. Some of them cause severe muscle necrosis through an unknown mechanism. Phospholipid hydrolysis is a possible explanation of their toxic action, but catalytic and toxic properties of PLA2s are not directly connected. In addition, viperid venoms contain PLA2-like proteins, which are very toxic even if they lack catalytic activity due to a critical mutation in position 49. In this work, the PLA2-like Bothrops asper myotoxin-II, conjugated with the fluorophore TAMRA, was found to be internalized in mouse myotubes, and in RAW264.7 cells. Through experiments of protein fishing and mass spectrometry analysis, using biotinylated Mt-II as bait, we found fifteen proteins interacting with the toxin and among them nucleolin, a nucleolar protein present also on cell surface. By means of confocal microscopy, Mt-II and nucleolin were shown to colocalise, at 4 °C, on cell membrane where they form Congo-red sensitive assemblies, while at 37 °C, 20 minutes after the intoxication, they colocalise in intracellular spots going from plasmatic membrane to paranuclear and nuclear area. Finally, nucleolin antagonists were found to inhibit the Mt-II internalization and toxic activity and were used to identify the nucleolin regions involved in the interaction with the toxin.
Collapse
Affiliation(s)
| | - Morena Simonato
- Istituto di Neuroscienze, CNR, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Barbara Spolaore
- Dipartimento di Scienze del Farmaco, Università di Padova, Via F. Marzolo, 5, 35131, Padova, Italy
| | - Cinzia Franchin
- Dipartimento di Scienze Biomediche, Università di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
- Centro di Proteomica, Università di Padova e Azienda Ospedaliera di Padova, Via G. Orus 2/B, 35129, Padova, Italy
| | - Giorgio Arrigoni
- Dipartimento di Scienze Biomediche, Università di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
- Centro di Proteomica, Università di Padova e Azienda Ospedaliera di Padova, Via G. Orus 2/B, 35129, Padova, Italy
| | - Oriano Marin
- Dipartimento di Scienze Biomediche, Università di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Laura Monturiol-Gross
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, 11501, San José, Costa Rica
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, 11501, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, 11501, San José, Costa Rica
| | - Fiorella Tonello
- Istituto di Neuroscienze, CNR, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
14
|
Lu S, Dong Z. Overexpression of secretory phospholipase A2-IIa supports cancer stem cell phenotype via HER/ERBB-elicited signaling in lung and prostate cancer cells. Int J Oncol 2017; 50:2113-2122. [PMID: 28440478 DOI: 10.3892/ijo.2017.3964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
Abstract
Resistance to conventional chemotherapies remains a significant clinical challenge in treatment of cancer. The cancer stem cells (CSCs) have properties necessary for tumor initiation, resistance to therapy, and progression. HER/ERBB‑elicited signaling supports CSC properties. Our previous studies revealed that secretory phospholipase A2 group IIa (sPLA2‑IIa) is overexpressed in both prostate and lung cancer cells, leading to an aberrant high level in the interstitial fluid, i.e., tumor microenvironment and blood. HER/ERBB-PI3K-Akt-NF-κB signaling stimulates sPLA2‑IIa overexpression, and in turn, sPLA2‑IIa activates EGFR family receptors and HER/ERBB-elicited signaling and stimulates sPLA2‑IIa overexpression in a positive feedback manner. The present study determined the molecular mechanisms of sPLA2‑IIa in stimulating HER/ERBB-elicited signaling and supporting CSC properties. We found that sPLA2‑IIa binds both EGFR and HER3 demonstrated by co-immunoprecipitation experiments and also indirectly interacts with HER2, suggesting that sPLA2‑IIa functions as a ligand for both EGFR and HER3. Furthermore, both side population CSCs from non-small cell lung cancer (NSCLC) A549 and H1975 cells and ALDH1‑high CSCs from castration-resistant prostate cancer (CRPC) 22Rv1 cells overexpress sPLA2‑IIa and produce tumors when inoculated into subcutis of nude mice. Given an aberrant high level of sPLA2‑IIa in the tumor microenvironment that should be much higher than that in the blood, our findings support the notion that sPLA2‑IIa functions as a ligand for EGFR family receptors and supports CSC properties via HER/ERBB-elicited signaling, which may contribute to resistance to therapy and cancer progression.
Collapse
Affiliation(s)
- Shan Lu
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhongyun Dong
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
15
|
Arnold N, Girke T, Sureshchandra S, Nguyen C, Rais M, Messaoudi I. Genomic and functional analysis of the host response to acute simian varicella infection in the lung. Sci Rep 2016; 6:34164. [PMID: 27677639 PMCID: PMC5039758 DOI: 10.1038/srep34164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/08/2016] [Indexed: 01/19/2023] Open
Abstract
Varicella Zoster Virus (VZV) is the causative agent of varicella and herpes zoster. Although it is well established that VZV is transmitted via the respiratory route, the host-pathogen interactions during acute VZV infection in the lungs remain poorly understood due to limited access to clinical samples. To address these gaps in our knowledge, we leveraged a nonhuman primate model of VZV infection where rhesus macaques are intrabronchially challenged with the closely related Simian Varicella Virus (SVV). Acute infection is characterized by immune infiltration of the lung airways, a significant up-regulation of genes involved in antiviral-immunity, and a down-regulation of genes involved in lung development. This is followed by a decrease in viral loads and increased expression of genes associated with cell cycle and tissue repair. These data provide the first characterization of the host response required to control varicella virus replication in the lung and provide insight into mechanisms by which VZV infection can cause lung injury in an immune competent host.
Collapse
Affiliation(s)
- Nicole Arnold
- Graduate Program in Microbiology, University of California-Riverside, CA, USA
| | - Thomas Girke
- Department of Botany and Plant Sciences, University of California-Riverside, CA, USA
| | - Suhas Sureshchandra
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California-Riverside, CA, USA
| | - Christina Nguyen
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA, USA
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA, USA
| | - Ilhem Messaoudi
- Graduate Program in Microbiology, University of California-Riverside, CA, USA
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California-Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA, USA
| |
Collapse
|
16
|
Takada Y, Fujita M. Secreted Phospholipase A2 Type IIA (sPLA2-IIA) Activates Integrins in an Allosteric Manner. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:103-115. [PMID: 27864802 DOI: 10.1007/5584_2016_95] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secreted phospholipase A2 type IIA (sPLA2-IIA) is a well-established pro-inflammatory protein and has been a major target for drug discovery. However, the mechanism of its signaling action has not been fully understood. We previously found that sPLA2-IIA binds to integrins αvβ3 and α4β1 in human and that this interaction plays a role in sPLA2-IIA's signaling action. Our recent studies found that sPLA2-IIA activates integrins in an allosteric manner through direct binding to a newly identified binding site of integrins (site 2), which is distinct from the classical RGD-binding site (site 1). The sPLA2-IIA-induced integrin activation may be related to the signaling action of sPLA2-IIA. Since sPLA2-IIA is present in normal human tears in addition to rheumatoid synovial fluid at high concentrations the sPLA2-IIA-mediated integrin activation on leukocytes may be involved in immune responses in normal and pathological conditions.
Collapse
Affiliation(s)
- Yoshikazu Takada
- Department of Dermatology, Biochemistry and Molecular Medicine, UC Davis School of Medicine, Research III Suite 3300, 4645 Second Avenue, Sacramento, CA, 95817, USA. .,The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan, Republic of China.
| | - Masaaki Fujita
- Department of Clinical Immunology and Rheumatology, The Tazuke-Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgimachi, Kita-ku, Osaka, 530-8480, Japan
| |
Collapse
|
17
|
El-Awady RA, Hersi F, Al-Tunaiji H, Saleh EM, Abdel-Wahab AHA, Al Homssi A, Suhail M, El-Serafi A, Al-Tel T. Epigenetics and miRNA as predictive markers and targets for lung cancer chemotherapy. Cancer Biol Ther 2015; 16:1056-70. [PMID: 25962089 PMCID: PMC4622527 DOI: 10.1080/15384047.2015.1046023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/17/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022] Open
Abstract
Lung cancer cells show inherent and acquired resistance to chemotherapy. The lack of good predictive markers/novel targets and the incomplete understanding of the mechanisms of resistance limit the success of lung cancer response to chemotherapy. In the present study, we used an isogenic pair of lung adenocarcinoma cell lines; A549 (wild-type) and A549DOX11 (doxorubicin resistant) to study the role of epigenetics and miRNA in resistance/response of non-small cell lung cancer (NSCLC) cells to doxorubicin. Our results demonstrate differential expression of epigenetic markers whereby the level of HDACs 1, 2, 3 and4, DNA methyltransferase, acetylated H2B and acetylated H3 were lower in A549DOX11 compared to A549 cells. Fourteen miRNAs were dys-regulated in A549DOX11 cells compared to A549 cells, of these 14 miRNAs, 4 (has-mir-1973, 494, 4286 and 29b-3p) have shown 2.99 - 4.44 fold increase in their expression. This was associated with reduced apoptosis and higher resistance of A549DOX11cells to doxorubicin and etoposide. Sequential treatment with the epigenetic modifiers trichostatin A or 5-aza-2'-deoxycytidine followed by doxorubicin resulted in: (i) enhanced sensitivity of both cell lines to doxorubicin especially at low concentrations, (ii) enhanced doxorubicin-induced DNA damage in both cell lines, (iii) dysregulation of some miRNAs in A549 cells. In conclusion, A549DOX11 cells resistant to DNA damaging drugs have epigenetic profile and miRNA expression different from the sensitive cells. Moreover, epigenetic modifiers may reverse the resistance of certain NSCLC cells to DNA damaging agents by enhancing induction of DNA damage. This may open the door for using epigenetic profile/miRNA expression of some cancer cells as resistance markers/targets to improve response of resistant cells to doxorubicin and for the use of combination doxorubicin/epigenetic modifiers to reduce doxorubicin toxicity.
Collapse
Key Words
- 5-aza-2′-deoxycytidine
- 5AZA, 5-aza-2′-deoxycytidine
- 5mc, 5-methyl cytosine
- BSA, bovine serum albumin
- DMSO, dimethyl sulfoxide
- DNMT, DNA methyltransferase
- HAT, histone acetyl transferase
- HDAC
- HDAC, histone deacetylase
- NSCLC, non-small cell lung cancer
- PBS, phosphate-buffered saline
- SCLC, small-cell lung cancer
- TSA, trichostatin A
- doxorubicin
- epigenetics
- miRNA
- trichostatin A
Collapse
MESH Headings
- Antibiotics, Antineoplastic/pharmacology
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/genetics
- DNA Methylation/drug effects
- DNA Methylation/genetics
- DNA Modification Methylases/genetics
- DNA Modification Methylases/metabolism
- Decitabine
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic/drug effects
- Epigenesis, Genetic/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/drug effects
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- MicroRNAs/genetics
- Oligonucleotide Array Sequence Analysis
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Raafat A El-Awady
- College of Pharmacy; University of Sharjah; Sharjah, United Arab Emirates
- Sharjah Institute of Medical Research; University of Sharjah; Sharjah, United Arab Emirates
- Pharmacology; Clinical Biochemistry and Molecular Biology Units; Cancer Biology Department; National Cancer Institute; Cairo University; Cairo, Egypt
- College of Medicine; University of Sharjah; Sharjah, United Arab Emirates
| | - Fatema Hersi
- Sharjah Institute of Medical Research; University of Sharjah; Sharjah, United Arab Emirates
| | - Hala Al-Tunaiji
- Sharjah Institute of Medical Research; University of Sharjah; Sharjah, United Arab Emirates
| | - Ekram M Saleh
- Pharmacology; Clinical Biochemistry and Molecular Biology Units; Cancer Biology Department; National Cancer Institute; Cairo University; Cairo, Egypt
| | - Abdel-Hady A Abdel-Wahab
- Pharmacology; Clinical Biochemistry and Molecular Biology Units; Cancer Biology Department; National Cancer Institute; Cairo University; Cairo, Egypt
| | - Amer Al Homssi
- College of Medicine; University of Sharjah; Sharjah, United Arab Emirates
| | - Mousa Suhail
- College of Medicine; University of Sharjah; Sharjah, United Arab Emirates
| | - Ahmed El-Serafi
- College of Medicine; University of Sharjah; Sharjah, United Arab Emirates
- College of Medicine; Suez Canal University; Ismaileya, Egypt
| | - Taleb Al-Tel
- College of Pharmacy; University of Sharjah; Sharjah, United Arab Emirates
- Sharjah Institute of Medical Research; University of Sharjah; Sharjah, United Arab Emirates
| |
Collapse
|
18
|
Brglez V, Lambeau G, Petan T. Secreted phospholipases A2 in cancer: Diverse mechanisms of action. Biochimie 2014; 107 Pt A:114-23. [DOI: 10.1016/j.biochi.2014.09.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/25/2014] [Indexed: 12/24/2022]
|