1
|
Shang Y, Wang Z, Chen Y, Yang X, Ren Z, Zeng X, Xu L. HNF-DDA: subgraph contrastive-driven transformer-style heterogeneous network embedding for drug-disease association prediction. BMC Biol 2025; 23:101. [PMID: 40241152 PMCID: PMC12004644 DOI: 10.1186/s12915-025-02206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Drug-disease association (DDA) prediction aims to identify potential links between drugs and diseases, facilitating the discovery of new therapeutic potentials and reducing the cost and time associated with traditional drug development. However, existing DDA prediction methods often overlook the global relational information provided by other biological entities, and the complex association structure between drug diseases, limiting the potential correlations of drug and disease embeddings. RESULTS In this study, we propose HNF-DDA, a subgraph contrastive-driven transformer-style heterogeneous network embedding model for DDA prediction. Specifically, HNF-DDA adopts all-pairs message passing strategy to capture the global structure of the network, fully integrating multi-omics information. HNF-DDA also proposes the concept of subgraph contrastive learning to capture the local structure of drug-disease subgraphs, learning the high-order semantic information of nodes. Experimental results on two benchmark datasets demonstrate that HNF-DDA outperforms several state-of-the-art methods. Additionally, it shows superior performance across different dataset splitting schemes, indicating HNF-DDA's capability to generalize to novel drug and disease categories. Case studies for breast cancer and prostate cancer reveal that 9 out of the top 10 predicted candidate drugs for breast cancer and 8 out of the top 10 for prostate cancer have documented therapeutic effects. CONCLUSIONS HNF-DDA incorporates all-pairs message passing and subgraph capture strategies into heterogeneous network embedding, enabling effective learning of drug and disease representations enriched with heterogeneous information, while also demonstrating significant potential for applications in drug repositioning.
Collapse
Affiliation(s)
- Yifan Shang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Zixu Wang
- Department of Computer Science, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Yangyang Chen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Xinyu Yang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Zhonghao Ren
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Martínez-Ramírez JM, Carmona C, Ramírez-Expósito MJ, Martínez-Martos JM. Extracting Knowledge from Machine Learning Models to Diagnose Breast Cancer. Life (Basel) 2025; 15:211. [PMID: 40003620 PMCID: PMC11856414 DOI: 10.3390/life15020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
This study explored the application of explainable machine learning models to enhance breast cancer diagnosis using serum biomarkers, contrary to many studies that focus on medical images and demographic data. The primary objective was to develop models that are not only accurate but also provide insights into the factors driving predictions, addressing the need for trustworthy AI in healthcare. Several classification models were evaluated, including OneR, JRIP, the FURIA, J48, the ADTree, and the Random Forest, all of which are known for their explainability. The dataset included a variety of biomarkers, such as electrolytes, metal ions, marker proteins, enzymes, lipid profiles, peptide hormones, steroid hormones, and hormone receptors. The Random Forest model achieved the highest accuracy at 99.401%, followed closely by JRIP, the FURIA, and the ADTree at 98.802%. OneR and J48 achieved 98.204% accuracy. Notably, the models identified oxytocin as a key predictive biomarker, with most models featuring it in their rules. Other significant parameters included GnRH, β-endorphin, vasopressin, IRAP, and APB, as well as factors like iron, cholinesterase, the total protein, progesterone, 5-nucleotidase, and the BMI, which are considered clinically relevant to breast cancer pathogenesis. This study discusses the roles of the identified parameters in cancer development, thus underscoring the potential of explainable machine learning models for enhancing early breast cancer diagnosis by focusing on explainability and the use of serum biomarkers.The combination of both can lead to improved early detection and personalized treatments, emphasizing the potential of these methods in clinical settings. The identified markers also provide additional research and therapeutic targets for breast cancer pathogenesis and a deep understanding of their interactions, advancing personalized approaches to breast cancer management.
Collapse
Affiliation(s)
| | - Cristobal Carmona
- Department of Computer Science, University of Jaén, E-23071 Jaén, Spain; (J.M.M.-R.); (C.C.)
- Andalusian Research Institute in Data Science and Computational Intelligence, DASCI, University of Jaén, E-23071 Jaén, Spain
- Leicester School of Pharmacy, DeMontfort University, Leicester LE1 7RH, UK
| | - María Jesús Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group CVI-1039, Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain;
| | - José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CVI-1039, Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain;
| |
Collapse
|
3
|
Sobol NT, Solerno LM, Llavona C, Alonso DF, Garona J. Vasopressin Analog [V 4Q 5]dDAVP Exerts Cooperative Anticancer Effects in Combination With Low-Dose 5-Fluorouracil on Aggressive Colorectal Cancer Models. World J Oncol 2023; 14:540-550. [PMID: 38022396 PMCID: PMC10681791 DOI: 10.14740/wjon1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background Colorectal cancer (CRC) is a leading cause of cancer-associated mortality worldwide. Despite being an essential component of systemic chemotherapy for advanced CRC, 5-fluorouracil (5-FU) clinical use has severe limitations, such as high toxicity, low selectivity and drug resistance. [V4Q5]dDAVP (1-deamino-4-valine-5-glutamine-8-D-arginine vasopressin) is a peptide vasopressin analog and a selective agonist of the arginine vasopressin type 2 membrane receptor (AVPR2), expressed in microvascular and tumor tissue. This synthetic compound has well-proven antitumor and antimetastatic activity in different tumor types, including metastatic CRC. The objective of this work was to assess the potential combinational benefits in preclinical CRC models after [V4Q5]dDAVP addition to 5-FU. Methods Effects on cellular viability, cell cycle progression, apoptosis and molecular mechanisms associated to [V4Q5]dDAVP treatment in combination with 5-FU were evaluated in murine CT-26 and human COLO-205 cell lines. In vivo, impact of dual therapy was explored on CRC tumor growth and metastatic spread. Results In CRC cells, [V4Q5]dDAVP (1 µM) addition to sub-IC50 5-FU concentrations resulted in the enhancement of cytostatic effects induced by chemotherapy. Reduction of cell viability after combined treatment was associated with cell cycle arrest in the G0/G1 phase, induction of apoptosis and increased gene expression of the cyclin-dependent kinase inhibitor p21 (CDKN1A) and the tumor suppressor p53 (TP53) in malignant cells, as assessed by flow cytometry, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), and quantitative reverse transcription polymerase chain reaction (qRT-PCR), respectively. In vivo, intravenous administration of [V4Q5]dDAVP (0.3 µg/kg) in combination with safe low doses of 5-FU (50 or 80 mg/kg for CT-26 or COLO-205 tumor models, respectively) effectively abrogated CRC growth, reducing aggressiveness of primary lesions and increasing survival of tumor-bearing mice. In addition, concomitant administration of [V4Q5]dDAVP and 5-FU inhibited pulmonary metastasis formation by CT-26 cells in immunocompetent mice, especially reducing macrometastatic disease. Conclusions [V4Q5]dDAVP seems to enhance the efficacy of 5-FU-based chemotherapy in CRC by modulating tumor progression, as well as metastatic dissemination, suggesting its potential role as a safe and cost-effective co-adjuvant agent for the management of advanced CRC.
Collapse
Affiliation(s)
- Natasha T. Sobol
- Center of Molecular and Translational Oncology (COMTra), Unit of Translational Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
- Center of Translational Medicine, Unit of Biomedical Cancer Research (IBioCAN), Laboratory N° 6, El Cruce “Nestor Kirchner” Hospital, Buenos Aires, Argentina
- These authors contributed equally to the study
| | - Luisina M. Solerno
- Center of Molecular and Translational Oncology (COMTra), Unit of Translational Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
- Center of Translational Medicine, Unit of Biomedical Cancer Research (IBioCAN), Laboratory N° 6, El Cruce “Nestor Kirchner” Hospital, Buenos Aires, Argentina
- These authors contributed equally to the study
| | - Candela Llavona
- Center of Molecular and Translational Oncology (COMTra), Unit of Translational Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
- Center of Translational Medicine, Unit of Biomedical Cancer Research (IBioCAN), Laboratory N° 6, El Cruce “Nestor Kirchner” Hospital, Buenos Aires, Argentina
| | - Daniel F. Alonso
- Center of Molecular and Translational Oncology (COMTra), Unit of Translational Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
- Center of Translational Medicine, Unit of Biomedical Cancer Research (IBioCAN), Laboratory N° 6, El Cruce “Nestor Kirchner” Hospital, Buenos Aires, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Juan Garona
- Center of Molecular and Translational Oncology (COMTra), Unit of Translational Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
- Center of Translational Medicine, Unit of Biomedical Cancer Research (IBioCAN), Laboratory N° 6, El Cruce “Nestor Kirchner” Hospital, Buenos Aires, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Hijazi MA, Gessner A, El-Najjar N. Repurposing of Chronically Used Drugs in Cancer Therapy: A Chance to Grasp. Cancers (Basel) 2023; 15:3199. [PMID: 37370809 DOI: 10.3390/cancers15123199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the advancement in drug discovery for cancer therapy, drug repurposing remains an exceptional opportunistic strategy. This approach offers many advantages (faster, safer, and cheaper drugs) typically needed to overcome increased challenges, i.e., side effects, resistance, and costs associated with cancer therapy. However, not all drug classes suit a patient's condition or long-time use. For that, repurposing chronically used medications is more appealing. This review highlights the importance of repurposing anti-diabetic and anti-hypertensive drugs in the global fight against human malignancies. Extensive searches of all available evidence (up to 30 March 2023) on the anti-cancer activities of anti-diabetic and anti-hypertensive agents are obtained from multiple resources (PubMed, Google Scholar, ClinicalTrials.gov, Drug Bank database, ReDo database, and the National Institutes of Health). Interestingly, more than 92 clinical trials are evaluating the anti-cancer activity of 14 anti-diabetic and anti-hypertensive drugs against more than 15 cancer types. Moreover, some of these agents have reached Phase IV evaluations, suggesting promising official release as anti-cancer medications. This comprehensive review provides current updates on different anti-diabetic and anti-hypertensive classes possessing anti-cancer activities with the available evidence about their mechanism(s) and stage of development and evaluation. Hence, it serves researchers and clinicians interested in anti-cancer drug discovery and cancer management.
Collapse
Affiliation(s)
- Mohamad Ali Hijazi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nahed El-Najjar
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Mao L, Pan Z, Chen W, Hu W, Chen X, Dai H. AVPR2 is a potential prognostic biomarker and correlated with immune infiltration in head and neck squamous cell carcinoma. BMC Med Genomics 2023; 16:67. [PMID: 36998036 PMCID: PMC10061778 DOI: 10.1186/s12920-023-01500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 03/25/2023] [Indexed: 04/01/2023] Open
Abstract
PURPOSE To explore the potential of AVPR2 in the immunotherapy of head and neck squamous cell carcinoma (HNSCC), thus providing insights into a novel antitumour strategy. METHODS In this study, we performed a comprehensive analysis of the AVPR2 gene in HNSCC using public datasets from The Cancer Genome Atlas and Gene Expression Omnibus. We explored the potential molecular mechanism of HNSCC in clinical prognosis and tumour immunity from the aspects of gene expression, prognosis, immune subtypes, and immune infiltration. RESULTS AVPR2 expression was significantly downregulated in primary HNSCC tissue compared with normal tissue. HNSCC patients with high AVPR2 expression had a better prognosis. Moreover, the results of GSEA showed that immune subtype surface AVPR2 is involved in immune modulation. Furthermore, significant strong correlations between AVPR2 expression and infiltrating immune cells existed in HNSCC, and marker genes of infiltrating immune cells were also significantly related to AVPR2 expression in HNSCC. These results suggest that AVPR2 expression can influence the infiltration of tumour immune cells. Finally, we found that only high levels of B-cell infiltration, rather than those of other immune cells, can predict a longer overall survival in patients with HNSCC. Future studies are needed to explore the role of AVPR2 and tumour-infiltrating B cells in HNSCC. CONCLUSIONS The AVPR2 gene may be a prognostic biomarker of HNSCC. Moreover, AVPR2 may play a role in HNSCC immune modulation, and the regulation of tumour-infiltrating B cells by AVPR2 may be a key link.
Collapse
Affiliation(s)
- Linwei Mao
- Department of Otolaryngology, Affiliated Hospital of Putian University, Putian, Fujian, People's Republic of China.
| | - Zhiyong Pan
- Department of Otolaryngology, Affiliated Hospital of Putian University, Putian, Fujian, People's Republic of China
| | - Wenzhi Chen
- Department of Otolaryngology, Affiliated Hospital of Putian University, Putian, Fujian, People's Republic of China
| | - Weiqun Hu
- Department of Otolaryngology, Affiliated Hospital of Putian University, Putian, Fujian, People's Republic of China
| | - Xiufen Chen
- Department of Otolaryngology, Affiliated Hospital of Putian University, Putian, Fujian, People's Republic of China
| | - Huiting Dai
- Department of Otolaryngology, Affiliated Hospital of Putian University, Putian, Fujian, People's Republic of China
| |
Collapse
|
6
|
Erdem Tuncdemir B. Gαs and Gαq/11 protein coupling bias of two AVPR2 mutants (R68W and V162A) that cause nephrogenic diabetes insipidus. J Recept Signal Transduct Res 2022; 42:573-579. [PMID: 35901021 DOI: 10.1080/10799893.2022.2102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Loss-of-function mutations of the arginine vasopressin receptor 2 gene (AVPR2) cause Nephrogenic diabetes insipidus (NDI). AVPR2 is a kind of G protein coupled receptor (GPCR) and mainly couples with Gαs protein leading to cAMP accumulation in the cell as a secondary messenger. Recent studies showed that some AVPR2 mutations could cause biased Gαq/11 protein coupling rather than Gαs. Investigation into the characterization of biased receptors may give insights into the relationship between the conformational change of the receptor because of the mutation and related downstream signaling. In this study, R68W and V162A were analyzed to whether they show a bias to Gαs or Gαq/11 proteins. Their functionality in terms of cAMP production via Gαs protein coupling was decreased compared to the wild-type receptor. On the other hand, they showed the ability to couple with Gαq/11 protein and make Ca2+ mobilization at different levels in the cell. R68W showed bias to coupling with Gαq/11 protein rather than V162A and wild-type receptor. Studies about the Gα protein coupling bias of mutant AVPR2s may broaden our understanding of the relationship between the changed conformation of the receptor and consequently activated signaling pathways, and also may shed light on the development of more effective new therapeutics.
Collapse
|
7
|
Solernó LM, Sobol NT, Gottardo MF, Capobianco CS, Ferrero MR, Vásquez L, Alonso DF, Garona J. Propranolol blocks osteosarcoma cell cycle progression, inhibits angiogenesis and slows xenograft growth in combination with cisplatin-based chemotherapy. Sci Rep 2022; 12:15058. [PMID: 36075937 PMCID: PMC9458647 DOI: 10.1038/s41598-022-18324-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Osteosarcoma is still associated with limited response to standard-of-care therapy and alarmingly elevated mortality rates, especially in low- and middle-income countries. Despite multiple efforts to repurpose β-blocker propranolol in oncology, its potential application in osteosarcoma management remains largely unexplored. Considering the unsatisfied clinical needs of this aggressive disease, we evaluated the antitumoral activity of propranolol using different in vitro and in vivo osteosarcoma preclinical models, alone or in addition to chemotherapy. Propranolol significantly impaired cellular growth in β2-adrenergic receptor-expressing MG-63 and U-2OS cells, and was capable of blocking growth-stimulating effects triggered by catecholamines. siRNA-mediated ADRB2 knockdown in MG-63 cells was associated with decreased cell survival and a significant attenuation of PPN anti-osteosarcoma activity. Direct cytostatic effects of propranolol were independent of apoptosis induction and were associated with reduced mitosis, G0/G1 cell cycle arrest and a significant down-regulation of cell cycle regulator Cyclin D1. Moreover, colony formation, 3D spheroid growth, cell chemotaxis and capillary-like tube formation were drastically impaired after propranolol treatment. Interestingly, anti-migratory activity of β-blocker was associated with altered actin cytoskeleton dynamics. In vivo, propranolol treatment (10 mg/kg/day i.p.) reduced the early angiogenic response triggered by MG-63 cells in nude mice. Synergistic effects were observed in vitro after combining propranolol with chemotherapeutic agent cisplatin. Sustained administration of propranolol (10 mg/kg/day i.p., five days a week), alone and especially in addition to low-dose metronomic cisplatin (2 mg/kg/day i.p., three times a week), markedly reduced xenograft progression. After histological analysis, propranolol and cisplatin combination resulted in low tumor mitotic index and increased tumor necrosis. β-blockade using propranolol seems to be an achievable and cost-effective therapeutic approach to modulate osteosarcoma aggressiveness. Further translational studies of propranolol repurposing in osteosarcoma are warranted.
Collapse
Affiliation(s)
- Luisina M Solernó
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - Natasha T Sobol
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - María F Gottardo
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - Carla S Capobianco
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Maximiliano R Ferrero
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Biomedicine Research Institute of Buenos Aires (IBioBA), Buenos Aires, Argentina
| | - Liliana Vásquez
- Precision Medicine Research Center, School of Medicine, University of San Martín de Porres, Lima, Perú
| | - Daniel F Alonso
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina.,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Juan Garona
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina. .,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina. .,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Heidman LM, Peinetti N, Copello VA, Burnstein KL. Exploiting Dependence of Castration-Resistant Prostate Cancer on the Arginine Vasopressin Signaling Axis by Repurposing Vaptans. Mol Cancer Res 2022; 20:1295-1304. [PMID: 35503085 PMCID: PMC9357166 DOI: 10.1158/1541-7786.mcr-21-0927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/08/2021] [Accepted: 04/28/2022] [Indexed: 02/07/2023]
Abstract
Men with advanced prostate cancer are treated by androgen deprivation therapy but the disease recurs as incurable castration-resistant prostate cancer (CRPC), requiring new treatment options. We previously demonstrated that the G protein-coupled receptor (GPCR) arginine vasopressin receptor type1A (AVPR1A) is expressed in CRPC and promotes castration-resistant growth in vitro and in vivo. AVPR1A is part of a family of GPCR's including arginine vasopressin receptor type 2 (AVPR2). Interrogation of prostate cancer patient sample data revealed that coexpression of AVPR1A and AVPR2 is highly correlated with disease progression. Stimulation of AVPR2 with a selective agonist desmopressin promoted CRPC cell proliferation through cAMP/protein kinase A signaling, consistent with AVPR2 coupling to the G protein subunit alpha s. In contrast, blocking AVPR2 with a selective FDA-approved antagonist, tolvaptan, reduced cell growth. In CRPC xenografts, antagonizing AVPR2, AVPR1A, or both significantly reduced CRPC tumor growth as well as decreased on-target markers of tumor burden. Combinatorial use of AVPR1A and AVPR2 antagonists promoted apoptosis synergistically in CRPC cells. Furthermore, we found that castration-resistant cells produced AVP, the endogenous ligand for arginine vasopressin receptors, and knockout of AVP in CRPC cells significantly reduced proliferation suggesting possible AVP autocrine signaling. These data indicate that the AVP/arginine vasopressin receptor signaling axis represents a promising and clinically actionable target for CRPC. IMPLICATIONS The arginine vasopressin signaling axis in CRPC provides a therapeutic window that is targetable through repurposing safe and effective AVPR1A and AVPR2 antagonists.
Collapse
Affiliation(s)
- Laine M. Heidman
- 1Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Nahuel Peinetti
- 1Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Valeria A. Copello
- 1Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Kerry L. Burnstein
- 1Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
9
|
Liu H, Muttenthaler M. High Oxytocin Receptor Expression Linked to Increased Cell Migration and Reduced Survival in Patients with Triple-Negative Breast Cancer. Biomedicines 2022; 10:biomedicines10071595. [PMID: 35884900 PMCID: PMC9313263 DOI: 10.3390/biomedicines10071595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited treatment options and high mortality. The oxytocin receptor (OTR) is a class-A G protein-coupled receptor that has been linked to breast cancer, but its role in tumorigenesis and disease progression remains underexplored. OTR expression is highest in tumour-adjacent breast tissue, followed by normal and tumour tissue, indicating a potential role in the tumour microenvironment. OTR levels were higher in migrated MDA-MB-231 cells than in the control parental cells cultured in normal medium; OTR overexpression/knock-down and metastasis biomarker experiments revealed that high OTR expression enhanced metastasis capabilities. These findings align well with data from a murine breast cancer metastasis model, where metastasised tumours had higher OTR expression than the corresponding primary tumours, and high OTR expression also correlates to reduced survival in TNBC patients. OTR agonists/antagonists did not affect MDA-MB-231 cell migration, and pharmacological analysis revealed that the OT/OTR signalling was compromised. High OTR expression enhanced cell migration in an OTR ligand-independent manner, with the underlying mechanism linked to the EGF-mediated ERK1/2-RSK-rpS6 pathway. Taken together, high OTR expression seems to be involved in TNBC metastasis via increasing cell sensitivity to EGF. These results support a potential prognostic biomarker role of OTR and provide new mechanistic insights and opportunities for targeted treatment options for TNBC.
Collapse
Affiliation(s)
- Huiping Liu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +61-7-3346-2985; Fax: +61-7-3346-2101
| |
Collapse
|
10
|
Glavaš M, Gitlin-Domagalska A, Dębowski D, Ptaszyńska N, Łęgowska A, Rolka K. Vasopressin and Its Analogues: From Natural Hormones to Multitasking Peptides. Int J Mol Sci 2022; 23:3068. [PMID: 35328489 PMCID: PMC8955888 DOI: 10.3390/ijms23063068] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Human neurohormone vasopressin (AVP) is synthesized in overlapping regions in the hypothalamus. It is mainly known for its vasoconstricting abilities, and it is responsible for the regulation of plasma osmolality by maintaining fluid homeostasis. Over years, many attempts have been made to modify this hormone and find AVP analogues with different pharmacological profiles that could overcome its limitations. Non-peptide AVP analogues with low molecular weight presented good affinity to AVP receptors. Natural peptide counterparts, found in animals, are successfully applied as therapeutics; for instance, lypressin used in treatment of diabetes insipidus. Synthetic peptide analogues compensate for the shortcomings of AVP. Desmopressin is more resistant to proteolysis and presents mainly antidiuretic effects, while terlipressin is a long-acting AVP analogue and a drug recommended in the treatment of varicose bleeding in patients with liver cirrhosis. Recently published results on diverse applications of AVP analogues in medicinal practice, including potential lypressin, terlipressin and ornipressin in the treatment of SARS-CoV-2, are discussed.
Collapse
Affiliation(s)
| | - Agata Gitlin-Domagalska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.G.); (D.D.); (N.P.); (A.Ł.); (K.R.)
| | | | | | | | | |
Collapse
|
11
|
Segatori VI, Garona J, Caligiuri LG, Bizzotto J, Lavignolle R, Toro A, Sanchis P, Spitzer E, Krolewiecki A, Gueron G, Alonso DF. Effect of Ivermectin and Atorvastatin on Nuclear Localization of Importin Alpha and Drug Target Expression Profiling in Host Cells from Nasopharyngeal Swabs of SARS-CoV-2- Positive Patients. Viruses 2021; 13:2084. [PMID: 34696514 PMCID: PMC8537229 DOI: 10.3390/v13102084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023] Open
Abstract
Nuclear transport and vesicle trafficking are key cellular functions involved in the pathogenesis of RNA viruses. Among other pleiotropic effects on virus-infected host cells, ivermectin (IVM) inhibits nuclear transport mechanisms mediated by importins and atorvastatin (ATV) affects actin cytoskeleton-dependent trafficking controlled by Rho GTPases signaling. In this work, we first analyzed the response to infection in nasopharyngeal swabs from SARS-CoV-2-positive and -negative patients by assessing the gene expression of the respective host cell drug targets importins and Rho GTPases. COVID-19 patients showed alterations in KPNA3, KPNA5, KPNA7, KPNB1, RHOA, and CDC42 expression compared with non-COVID-19 patients. An in vitro model of infection with Poly(I:C), a synthetic analog of viral double-stranded RNA, triggered NF-κB activation, an effect that was halted by IVM and ATV treatment. Importin and Rho GTPases gene expression was also impaired by these drugs. Furthermore, through confocal microscopy, we analyzed the effects of IVM and ATV on nuclear to cytoplasmic importin α distribution, alone or in combination. Results showed a significant inhibition of importin α nuclear accumulation under IVM and ATV treatments. These findings confirm transcriptional alterations in importins and Rho GTPases upon SARS-CoV-2 infection and point to IVM and ATV as valid drugs to impair nuclear localization of importin α when used at clinically-relevant concentrations.
Collapse
Affiliation(s)
- Valeria Inés Segatori
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina; (V.I.S.); (J.G.); (L.G.C.)
| | - Juan Garona
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina; (V.I.S.); (J.G.); (L.G.C.)
- Centro de Medicina Traslacional, Hospital El Cruce, Florencio Varela B1888AAE, Argentina
| | - Lorena Grisel Caligiuri
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina; (V.I.S.); (J.G.); (L.G.C.)
| | - Juan Bizzotto
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Rosario Lavignolle
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Ayelén Toro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Pablo Sanchis
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Eduardo Spitzer
- Laboratorio Elea-Phoenix, Los Polvorines B1613AUE, Argentina;
| | - Alejandro Krolewiecki
- Instituto de Investigaciones de Enfermedades Tropicales (IIET-CONICET), Sede Regional Orán, Universidad Nacional de Salta, Orán A4530ANQ, Argentina;
| | - Geraldine Gueron
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Biológica, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina; (J.B.); (R.L.); (A.T.); (P.S.)
- CONICET—Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Daniel Fernando Alonso
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina; (V.I.S.); (J.G.); (L.G.C.)
| |
Collapse
|
12
|
Sobol NT, Solernó LM, Beltrán B, Vásquez L, Ripoll GV, Garona J, Alonso DF. Anticancer activity of repurposed hemostatic agent desmopressin on AVPR2-expressing human osteosarcoma. Exp Ther Med 2021; 21:566. [PMID: 33850538 PMCID: PMC8027742 DOI: 10.3892/etm.2021.9998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/03/2020] [Indexed: 01/15/2023] Open
Abstract
Osteosarcoma is the most prevalent primary bone malignancy. Due to its high aggressiveness, novel treatment strategies are urgently required to improve survival of patients with osteosarcoma, especially those with advanced disease. Desmopressin (dDAVP) is a widely used blood-saving agent that has been repurposed as an adjuvant agent for cancer management due to its antiangiogenic and antimetastatic properties. dDAVP acts as a selective agonist of the vasopressin membrane receptor type 2 (AVPR2) present in the microvascular endothelium and in some cancer cells, including breast, lung, colorectal and neuroendocrine tumor cells. Despite the fact that dDAVP has demonstrated its antitumor efficacy in a wide variety of tumor types, exploration of its potential anti-osteosarcoma activity has, to the best of our knowledge, not yet been conducted. Therefore, the aim of the present study was to evaluate the preclinical antitumor activity of dDAVP in osteosarcoma. Human MG-63 and U-2 OS osteosarcoma cell lines were used to assess in vitro and in vivo therapeutic effects of dDAVP. At low micromolar concentrations, dDAVP reduced AVPR2-expressing MG-63 cell growth in a concentration-dependent manner. In contrast, dDAVP exhibited no direct cytostatic effect on AVPR2-negative U-2 OS cells. As it would be expected for canonical AVPR2-activation, dDAVP raised intracellular cAMP levels in osteosarcoma cells, and coincubation with phosphodiesterase-inhibitor rolipram indicated synergistic antiproliferative activity. Cytostatic effects were associated with increased apoptosis, reduced mitotic index and impairment of osteosarcoma cell chemotaxis, as evaluated by TUNEL-labeling, mitotic body count in DAPI-stained cultures and Transwell migration assays. Intravenous administration of dDAVP (12 µg/kg; three times per week) to athymic mice bearing rapidly growing MG-63 xenografts, was indicated to be capable of reducing tumor progression after a 4-week treatment. No major alterations in animal weight, biochemical or hematological parameters were associated with dDAVP treatment, confirming its good tolerability and safety. Finally, AVPR2 expression was detected by immunohistochemistry in 66% of all evaluated chemotherapy-naive human conventional osteosarcoma biopsies. Taking these findings into account, repurposed agent dDAVP may represent an interesting therapeutic tool for the management of osteosarcoma. Further preclinical exploration of dDAVP activity on orthotopic or metastatic osteosarcoma models are required.
Collapse
Affiliation(s)
- Natasha Tatiana Sobol
- Center of Molecular and Translational Oncology, National University of Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
| | - Luisina María Solernó
- Center of Molecular and Translational Oncology, National University of Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
| | - Brady Beltrán
- Precision Medicine Research Center, School of Medicine, University of San Martín de Porres, Lima 15024, Perú
| | - Liliana Vásquez
- Precision Medicine Research Center, School of Medicine, University of San Martín de Porres, Lima 15024, Perú
| | - Giselle Vanina Ripoll
- Center of Molecular and Translational Oncology, National University of Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires C1425FQB, Argentina
| | - Juan Garona
- Center of Molecular and Translational Oncology, National University of Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires C1425FQB, Argentina
| | - Daniel Fernando Alonso
- Center of Molecular and Translational Oncology, National University of Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires C1425FQB, Argentina
| |
Collapse
|
13
|
Repurposing of Guanabenz acetate by encapsulation into long-circulating nanopolymersomes for treatment of triple-negative breast cancer. Int J Pharm 2021; 600:120532. [PMID: 33781877 DOI: 10.1016/j.ijpharm.2021.120532] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 01/25/2023]
Abstract
Poor patient response and limited treatment modalities are the major challenges against combating triple-negative breast cancer (TNBC). The high related mortality urges for novel cancer therapeutics. Guanabenz acetate (GA) is an orphan antihypertensive drug with a short half-life. Re-purposing (GA) by developing a polymersome (PS)-based cancer nanomedicine is an innovative approach in treating TNBC. Formulation and optimization of GA-loaded PEGylated Polycaprolactone PS through different process variables (solvent selection, the order of addition, pH of the aqueous phase, and drug to polymer ratio) were achieved by the nanoprecipitation method. The in vitro cellular uptake, anti-cancer, and anti-metastatic activity of GA and GA-loaded PS were tested in MDA-MB 231(TNBC cell line) and MCF-7 cell line. Western blot analysis was performed to elucidate the molecular anti-cancer mechanism. The in vivo biodistribution study and antitumor activity were investigated in the TNBC-xenograft model implanted in mice. Under optimized formulation conditions, GA-loaded PS had a nanosize of 90.5 nm with PDI < 0.2, a zeta potential -9.11 mV, drug encapsulation efficiency of 92.11% and sustained drug release for 6-days. GA-loaded PS exhibited enhanced cellular uptake and achieved a significantly lower IC50 in both breast cancer cell lines compared to free GA. Treatment with GA-loaded PS (60 µM) showed a significant reduction of 60.5 and 78.1% in cancer migration and metastasis in the case of MDA-MB 231 and MCF-7, respectively. Besides, drug-loaded PS increased phosphorylation of translational regulator eIF2α and decreased expression of Rac1 which were essential for decreasing cancer cell survival and metastasis. In vivo biodistribution study of GA-loaded PS showed long-circulating PS with high passively targeted tumor accumulation. Treatment with GA-loaded PS resulted in a significant decrease in tumor size and weight compared to free GA. In conclusion, GA-loaded PS is a new promising cancer therapeutics for the treatment of TNBC.
Collapse
|
14
|
β-Arrestin inhibition induces autophagy, apoptosis, G0/G1 cell cycle arrest in agonist-activated V2R receptor in breast cancer cells. Med Oncol 2021; 38:38. [PMID: 33721131 DOI: 10.1007/s12032-021-01484-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/18/2021] [Indexed: 10/21/2022]
Abstract
Non-visual arrestins (β-arrestins) are endocytic proteins that mediate agonist-activated GPCRs internalization and signaling pathways in an independent manner. The involvement of β-arrestins in cancer invasion and metastasis is increasingly reported. So, it is hypothesized that inhibition of β-arrestins may diminish the survival chances of cancer cells. This study aimed to evaluate the in vitro impact of inhibiting β-arrestins on the autophagic and/or apoptotic responsiveness of breast cancer cells. We used Barbadin to selectively inhibit β-Arr/AP2 interaction in AVP-stimulated V2R receptor of triple-negative breast cancer cells (MDA MB-231). Autophagy was assessed by the microtubule-associated protein 1 light chain 3-II (LC3II), apoptosis was measured by Annexin-V/PI staining and cell cycle distribution was investigated based upon the DNA content using flow cytometry. Barbadin reduced cell viability to 69.1% and increased the autophagy marker LC3II and its autophagic effect disappeared in cells transiently starved in Earle's balanced salt solution (EBSS). Also, Barbadin mildly enhanced the expression of P62 mRNA and arrested 63.7% of cells in G0/G1 phase. In parallel, the drug-induced apoptosis in 29.9% of cells (by AV/PI) and 27.8% of cells were trapped in sub-G1 phase. The apoptotic effect of Barbadin was enhanced when autophagy was inhibited by the PI3K inhibitor (Wortmannin). Conclusively, the data demonstrate the dual autophagic and apoptotic effects of β-βArr/AP2 inhibition in triple-negative breast cancer cells. These observations nominate β-Arrs as selective targets in breast cancer treatment.
Collapse
|
15
|
Droctové L, Lancien M, Tran VL, Susset M, Jego B, Theodoro F, Kessler P, Mourier G, Robin P, Diarra SS, Palea S, Flahault A, Chorfa A, Corbani M, Llorens-Cortes C, Mouillac B, Mendre C, Pruvost A, Servent D, Truillet C, Gilles N. A snake toxin as a theranostic agent for the type 2 vasopressin receptor. Am J Cancer Res 2020; 10:11580-11594. [PMID: 33052234 PMCID: PMC7545998 DOI: 10.7150/thno.47485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/04/2020] [Indexed: 01/01/2023] Open
Abstract
Rationale: MQ1, a snake toxin which targets with high nanomolar affinity and absolute selectivity for the type 2 vasopressin receptor (V2R), is a drug candidate for renal diseases and a molecular probe for imaging cells or organs expressing V2R. Methods: MQ1's pharmacological properties were characterized and applied to a rat model of hyponatremia. Its PK/PD parameters were determined as well as its therapeutic index. Fluorescently and radioactively labeled MQ1 were chemically synthesized and associated with moderate loss of affinity. MQ1's dynamic biodistribution was monitored by positron emission tomography. Confocal imaging was used to observe the labeling of three cancer cell lines. Results: The inverse agonist property of MQ1 very efficiently prevented dDAVP-induced hyponatremia in rats with low nanomolar/kg doses and with a very large therapeutic index. PK (plasma MQ1 concentrations) and PD (diuresis) exhibited a parallel biphasic decrease. The dynamic biodistribution showed that MQ1 targets the kidneys and then exhibits a blood and kidney biphasic decrease. Whatever the approach used, we found a T1/2α between 0.9 and 3.8 h and a T1/2β between 25 and 46 h and demonstrated that the kidneys were able to retain MQ1. Finally, the presence of functional V2R expressed at the membrane of cancer cells was, for the first time, demonstrated with a specific fluorescent ligand. Conclusion: As the most selective V2 binder, MQ1 is a new promising drug for aquaresis-related diseases and a molecular probe to visualize in vitro and in vivo V2R expressed physiologically or under pathological conditions.
Collapse
|
16
|
Paciaroni NG, Norwood VM, Ratnayake R, Luesch H, Huigens RW. Yohimbine as a Starting Point to Access Diverse Natural Product-Like Agents with Re-programmed Activities against Cancer-Relevant GPCR Targets. Bioorg Med Chem 2020; 28:115546. [PMID: 32616180 DOI: 10.1016/j.bmc.2020.115546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 11/29/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest protein superfamily in the human genome. GPCRs play key roles in mediating a wide variety of physiological events including proliferation and cancer metastasis. Given the major roles that GPCRs play in mediating cancer growth, they present promising targets for small molecule therapeutics. One of the principal goals of our lab is to identify complex natural products (NPs) suitable for ring distortion, or the dramatic altering of the inherently complex architectures of NPs, to rapidly generate an array of compounds with diverse molecular skeletal systems. The overarching goal of our ring distortion approach is to re-program the biological activity of select natural products and identify new compounds of importance to the treatment of disease, such as cancer. Described herein are the results from biological screens of diverse small molecules derived from the indole alkaloid yohimbine against a panel of GPCRs involved in various diseases. Several analogues displayed highly differential antagonistic activities across the GPCRs tested. We highlight the re-programmed profile of one analogue, Y7g, which exhibited selective antagonistic activities against AVPR2 (IC50 = 459 nM) and OXTR (IC50 = 1.16 µM). The activity profile of Y7g could correlate its HIF-dependent anti-cancer activity to its GPCR antagonism since these receptors are known to be upregulated in hypoxic cellular environments. Our findings demonstrate that the ring distortion of yohimbine can lead to the identification of new compounds capable of interacting with distinct cancer-relevant targets.
Collapse
Affiliation(s)
- Nicholas G Paciaroni
- University of Florida, Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, 1345 Center Dr., Gainesville, FL 32610, United States
| | - Verrill M Norwood
- University of Florida, Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, 1345 Center Dr., Gainesville, FL 32610, United States
| | - Ranjala Ratnayake
- University of Florida, Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, 1345 Center Dr., Gainesville, FL 32610, United States
| | - Hendrik Luesch
- University of Florida, Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, 1345 Center Dr., Gainesville, FL 32610, United States.
| | - Robert W Huigens
- University of Florida, Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, 1345 Center Dr., Gainesville, FL 32610, United States.
| |
Collapse
|
17
|
Armando RG, Gómez DLM, Gomez DE. New drugs are not enough‑drug repositioning in oncology: An update. Int J Oncol 2020; 56:651-684. [PMID: 32124955 PMCID: PMC7010222 DOI: 10.3892/ijo.2020.4966] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
Drug repositioning refers to the concept of discovering novel clinical benefits of drugs that are already known for use treating other diseases. The advantages of this are that several important drug characteristics are already established (including efficacy, pharmacokinetics, pharmacodynamics and toxicity), making the process of research for a putative drug quicker and less costly. Drug repositioning in oncology has received extensive focus. The present review summarizes the most prominent examples of drug repositioning for the treatment of cancer, taking into consideration their primary use, proposed anticancer mechanisms and current development status.
Collapse
Affiliation(s)
- Romina Gabriela Armando
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Diego Luis Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Daniel Eduardo Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| |
Collapse
|
18
|
Sinha S, Dwivedi N, Tao S, Jamadar A, Kakade VR, Neil MO, Weiss RH, Enders J, Calvet JP, Thomas SM, Rao R. Targeting the vasopressin type-2 receptor for renal cell carcinoma therapy. Oncogene 2020; 39:1231-1245. [PMID: 31616061 PMCID: PMC7007354 DOI: 10.1038/s41388-019-1059-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Arginine vasopressin (AVP) and its type-2 receptor (V2R) play an essential role in the regulation of salt and water homeostasis by the kidneys. V2R activation also stimulates proliferation of renal cell carcinoma (RCC) cell lines in vitro. The current studies investigated V2R expression and activity in human RCC tumors, and its role in RCC tumor growth. Examination of the cancer genome atlas (TCGA) database, and analysis of human RCC tumor tissue microarrays, cDNA arrays and tumor biopsy samples demonstrated V2R expression and activity in clear cell RCC (ccRCC). In vitro, V2R antagonists OPC31260 and Tolvaptan, or V2R gene silencing reduced wound closure and cell viability of 786-O and Caki-1 human ccRCC cell lines. Similarly in mouse xenograft models, Tolvaptan and OPC31260 decreased RCC tumor growth by reducing cell proliferation and angiogenesis, while increasing apoptosis. In contrast, the V2R agonist dDAVP significantly increased tumor growth. High intracellular cAMP levels and ERK1/2 activation were observed in human ccRCC tumors. In mouse tumors and Caki-1 cells, V2R agonists reduced cAMP and ERK1/2 activation, while dDAVP treatment had the reverse effect. V2R gene silencing in Caki-1 cells also reduced cAMP and ERK1/2 activation. These results provide novel evidence for a pathogenic role of V2R signaling in ccRCC, and suggest that inhibitors of the AVP-V2R pathway, including the FDA-approved drug Tolvaptan, could be utilized as novel ccRCC therapeutics.
Collapse
Affiliation(s)
- Sonali Sinha
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nidhi Dwivedi
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shixin Tao
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Abeda Jamadar
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Vijayakumar R Kakade
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Maura O' Neil
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robert H Weiss
- Division of Nephrology and Comprehensive Cancer Center, University of California, Davis, CA, USA
- Medical Service, VA Northern California Health Care System, Sacramento, CA, USA
| | - Jonathan Enders
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - James P Calvet
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sufi M Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Reena Rao
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
19
|
Ripoll GV, Pifano M, Garona J, Alonso DF. Commentary: Arginine vasopressin receptor 1a is a therapeutic target for castration-resistant prostate cancer. Front Oncol 2020; 9:1490. [PMID: 31998646 PMCID: PMC6970191 DOI: 10.3389/fonc.2019.01490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/11/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Giselle V Ripoll
- Laboratory of Molecular Oncology, Department of Science and Technology, National University of Quilmes, Bernal, Argentina.,Scientific Investigator Career of National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Marina Pifano
- Laboratory of Molecular Oncology, Department of Science and Technology, National University of Quilmes, Bernal, Argentina
| | - Juan Garona
- Laboratory of Molecular Oncology, Department of Science and Technology, National University of Quilmes, Bernal, Argentina.,Scientific Investigator Career of National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Daniel F Alonso
- Laboratory of Molecular Oncology, Department of Science and Technology, National University of Quilmes, Bernal, Argentina.,Scientific Investigator Career of National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
20
|
Garona J, Pifano M, Ripoll G, Alonso DF. Development and therapeutic potential of vasopressin synthetic analog [V 4Q 5]dDAVP as a novel anticancer agent. VITAMINS AND HORMONES 2020; 113:259-289. [PMID: 32138951 DOI: 10.1016/bs.vh.2019.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since its discovery, arginine vasopressin (AVP) was subjected to several modifications with the aim of obtaining novel derivatives with increased potency and selectivity for biomedical use. Desmopressin (dDAVP) is a first generation synthetic analog of AVP with hemostatic and antimetastatic activity. dDAVP acts as a selective agonist of the arginine vasopressin type 2 receptor (AVPR2) present in microvascular endothelium and cancer cells. Considering its selective effects on AVPR2-expressing malignant and vascular tissue, and interesting antitumor profile, dDAVP was used as a lead compound for the development of novel peptide analogs with enhanced anticancer efficacy. After conducting different structure-activity relationship studies to determine key aminoacidic positions for its antitumor activity against AVPR2-expressing malignant cells, dDAVP was rationally modified and a wide panel of synthetic analogs with different sequence and structural modifications was assessed. As a result of this structure-based drug derivatization novel AVP analog [V4Q5]dDAVP (1-deamino-4-valine-5-glutamine-8-d-arginine vasopressin) was selected as the most active candidate and further developed. [V4Q5]dDAVP was evaluated in highly aggressive and metastatic cancer preclinical models deploying enhanced cytostatic, antimetastatic and angiostatic effects in comparison to parental peptide dDAVP. In addition, novel compound demonstrated good tolerability as evaluated in several toxicological studies, and cooperative therapeutic effects after combination with standard-of-care chemotherapy. In summary, due to its ability to inhibit growth and tumor-associated angiogenesis, as well as impairing progression of metastatic disease, AVP analogs such as novel [V4Q5]dDAVP are promising compounds for further development as coadjuvant agents for the management of advance or recurrent cancers.
Collapse
Affiliation(s)
- Juan Garona
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.
| | - Marina Pifano
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Giselle Ripoll
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Daniel F Alonso
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| |
Collapse
|
21
|
Khegay II. Noncanonical effects of vasopressin in angiogenesis. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
The molecular action of vasopressin depends on the localization of hormonal receptors. The basic physiological effects of vasopressin are manifested in the blood vasculature, renal inner medulla and brain. To date, new information concerning the tissue-specific spreading of vasopressin receptors has been accumulated, and it needs to be summarized. Platelets and endotheliocytes expressing V1a and V2 receptor types, respectively, are related to less investigated targets of the hormone. Vasopressin induces the initial reversible stage of platelet activation, required for interaction with intercellular matrix proteins. Platelet adhesion on endothelium activates cellular secretion of growth factors and enzymes for intercellular matrix glucosamine metabolism. Platelet hyaluronidase HYAL2 hydrolyses high-molecular hyaluronic acid to shorter fragments. Unlike intact hyaluronic acid with a molecular weight of several megadaltons, generally showing distinctive antiangiogenic properties, intermediate fractions of hyaluronan hydrolysis in a range from 2.5 to 200 kilodaltons have a stimulating effect on angiogenesis. Intercellular contacts between platelets and endotheliocytes are stabilized due to adhesive transmembrane glycoprotein PECAM-1 interaction. Resulting PECAM-1 heterodimers acquire conformation with high affinity to integrins αvβ3. Integrin activation forms contact links between endothelium and fibrillar proteins. Activated endotheliocytes secrete von Willebrand factor and P-selectin. These proteins are accumulated in Weibel–Palade bodies. Vasopressin stimulates cAMP-dependent ACAP-regulated exocytosis of Weibel–Palade bodies. von Willebrand factor possesses adhesive properties and additionally accelerates interaction of cells with the intercellular matrix. Adhesion on fibrillar collagen and membrane glycoproteins in cooperation with effects of PECAM-1–αvβ3 integrin complexes fixes cell aggregates in the surrounding interstitium and promotes proliferating endotheliocyte migration in according to the direction of local growth factor gradients during angiogenesis. Neurohormonal regulation of platelet and endotheliocyte secretory activity functionally link proliferation and migration of endotheliocytes during angiogenesis and integrate it according to the adaptive capacity of the entire organism.
Collapse
|
22
|
Chevalier MT, Garona J, Sobol NT, Farina HG, Alonso DF, Álvarez VA. In vitro and in vivo evaluation of desmopressin-loaded poly(D,L-lactic-co-glycolic acid) nanoparticles for its potential use in cancer treatment. Nanomedicine (Lond) 2018; 13:2835-2849. [PMID: 30430901 DOI: 10.2217/nnm-2018-0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To develop and characterize the antitumor activity of poly(D,L-lactic-co-glycolic acid) nanoparticles loaded with hemostatic and anticancer drug desmopressin (dDAVP). MATERIALS & METHODS After full physicochemical characterization, anticancer activity of dDAVP-loaded poly(D,L-lactic-co-glycolic acid) nanoparticles (NPdDAVP) was evaluated in vitro and in vivo on a highly aggressive breast cancer model. RESULTS After efficiently loading desmopressin in poly(D,L-lactic-co-glycolic acid) matrix, NPdDAVP exhibited suitable physicochemical characteristics for biomedical applications. NPdDAVP displayed a potent cytostatic effect in vitro, inhibiting tumor cell proliferation and colony forming ability. Moreover, intravenous treatment using nanoparticulated-dDAVP inhibited tumor progression and prolonged survival in animals bearing rapidly-growing mammary tumors. CONCLUSION Within the framework of promising dDAVP repurposing studies, these findings support further preclinical development of the NPdDAVP for the management of highly aggressive cancer.
Collapse
Affiliation(s)
- Merari T Chevalier
- Grupo de Materiales Compuestos Termoplásticos, Instituto de Investigaciones de Ciencia y Tecnología de Materiales (INTEMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Colón 10890 (7600), Mar del Plata, Argentina
| | - Juan Garona
- Laboratorio de Oncología Molecular (LOM), Departamento de Ciencia y Tecnología (DCyT), Universidad Nacional de Quilmes (UNQ), Roque Saenz Peña 352 (B1876BXD), Buenos Aires, Argentina
| | - Natasha T Sobol
- Laboratorio de Oncología Molecular (LOM), Departamento de Ciencia y Tecnología (DCyT), Universidad Nacional de Quilmes (UNQ), Roque Saenz Peña 352 (B1876BXD), Buenos Aires, Argentina
| | - Hernan G Farina
- Laboratorio de Oncología Molecular (LOM), Departamento de Ciencia y Tecnología (DCyT), Universidad Nacional de Quilmes (UNQ), Roque Saenz Peña 352 (B1876BXD), Buenos Aires, Argentina
| | - Daniel F Alonso
- Laboratorio de Oncología Molecular (LOM), Departamento de Ciencia y Tecnología (DCyT), Universidad Nacional de Quilmes (UNQ), Roque Saenz Peña 352 (B1876BXD), Buenos Aires, Argentina
| | - Vera A Álvarez
- Grupo de Materiales Compuestos Termoplásticos, Instituto de Investigaciones de Ciencia y Tecnología de Materiales (INTEMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Colón 10890 (7600), Mar del Plata, Argentina
| |
Collapse
|
23
|
Garona J, Sobol NT, Pifano M, Segatori VI, Gomez DE, Ripoll GV, Alonso DF. Preclinical Efficacy of [V4 Q5 ]dDAVP, a Second Generation Vasopressin Analog, on Metastatic Spread and Tumor-Associated Angiogenesis in Colorectal Cancer. Cancer Res Treat 2018; 51:438-450. [PMID: 29879760 PMCID: PMC6473275 DOI: 10.4143/crt.2018.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/30/2018] [Indexed: 12/29/2022] Open
Abstract
Purpose Control of metastatic spread of colorectal cancer (CRC) remains as a major therapeutic challenge. [V4 Q5 ]dDAVP is a vasopressin peptide analog with previously reported anticancer activity against carcinoma tumors. By acting as a selective agonist of arginine vasopressin type 2 membrane receptor (AVPR2) present in endothelial and tumor cells, [V4Q5]dDAVP is able to impair tumor aggressiveness and distant spread. Our aim was to evaluate the potential therapeutic benefits of [V4Q5]dDAVP on highly aggressive CRC disease using experimental models with translational relevance. Materials and Methods Murine CT-26 and human Colo-205 AVPR2-expressing CRC cell lines were used to test the preclinical efficacy of [V4Q5]dDAVP, both in vitro and in vivo. Results In syngeneic mice surgically implanted with CT-26 cells in the spleen, sustained intravenous treatment with [V4Q5]dDAVP (0.3 µg/kg) dramatically impaired metastatic progression to liver without overt signs of toxicity, and also reduced experimental lung colonization. The compound inhibited in vivo angiogenesis driven by Colo-205 cells in athymic mice, as well as in vitro endothelial cell migration and capillary tube formation. [V4Q5]dDAVP exerted AVPR2-dependent cytostatic activity in vitro (IC50 1.08 µM) and addition to 5-fluorouracil resulted in synergistic antiproliferative effects both in CT-26 and Colo-205 cells. Conclusion The present preclinical study establishes for the first time the efficacy of [V4Q5]dDAVP on CRC. These encouraging results suggest that the novel second generation vasopressin analog could be used for the management of aggressive CRC as an adjuvant agent during surgery or to complement standard chemotherapy, limiting tumor angiogenesis and metastasis and thus protecting the patient from CRC recurrence.
Collapse
Affiliation(s)
- Juan Garona
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Natasha T Sobol
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Marina Pifano
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Valeria I Segatori
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Daniel E Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Giselle V Ripoll
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Daniel F Alonso
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| |
Collapse
|
24
|
Search of vasopressin analogs with antiproliferative activity on small-cell lung cancer: drug design based on two different approaches. Future Med Chem 2018; 10:879-894. [PMID: 29589487 DOI: 10.4155/fmc-2017-0178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIM Development of compounds with therapeutic application requires the interaction of different disciplines. Several tumors express vasopressin (AVP; arginine vasopressin) receptors with contrasting effects depending on receptor subtype. Desmopressin (dDAVP) is an AVP-selective analog with antiproliferative properties. In this work, an evolutionary approach and a rational strategy were applied in order to design novel AVP analogs. RESULTS We designed two novel analogs; dDInotocin (dDINT, insect analog), and [V4Q5]dDAVP, and demonstrated the importance of the dDAVP conformational loop for its antiproliferative activity. [V4Q5] dDAVP showed major cytostatic effect on lung cancer cells than dDAVP and its cytostatic effect was abolished by V2R blockade. CONCLUSION Combination of these strategies could provide the basis for future studies for the development of improved compounds with potential therapeutic applications.
Collapse
|
25
|
Khan M, Huang T, Lin CY, Wu J, Fan BM, Bian ZX. Exploiting cancer's phenotypic guise against itself: targeting ectopically expressed peptide G-protein coupled receptors for lung cancer therapy. Oncotarget 2017; 8:104615-104637. [PMID: 29262666 PMCID: PMC5732832 DOI: 10.18632/oncotarget.18403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023] Open
Abstract
Lung cancer, claiming millions of lives annually, has the highest mortality rate worldwide. This advocates the development of novel cancer therapies that are highly toxic for cancer cells but negligibly toxic for healthy cells. One of the effective treatments is targeting overexpressed surface receptors of cancer cells with receptor-specific drugs. The receptors-in-focus in the current review are the G-protein coupled receptors (GPCRs), which are often overexpressed in various types of tumors. The peptide subfamily of GPCRs is the pivot of the current article owing to the high affinity and specificity to and of their cognate peptide ligands, and the proven efficacy of peptide-based therapeutics. The article summarizes various ectopically expressed peptide GPCRs in lung cancer, namely, Cholecystokinin-B/Gastrin receptor, the Bombesin receptor family, Bradykinin B1 and B2 receptors, Arginine vasopressin receptors 1a, 1b and 2, and the Somatostatin receptor type 2. The autocrine growth and pro-proliferative pathways they mediate, and the distinct tumor-inhibitory effects of somatostatin receptors are then discussed. The next section covers how these pathways may be influenced or 'corrected' through therapeutics (involving agonists and antagonists) targeting the overexpressed peptide GPCRs. The review proceeds on to Nano-scaled delivery platforms, which enclose chemotherapeutic agents and are decorated with peptide ligands on their external surface, as an effective means of targeting cancer cells. We conclude that targeting these overexpressed peptide GPCRs is potentially evolving as a highly promising form of lung cancer therapy.
Collapse
Affiliation(s)
- Mahjabin Khan
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| | - Tao Huang
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| | - Cheng-Yuan Lin
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, P.R. China
| | - Jiang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Bao-Min Fan
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, P.R. China
| | - Zhao-Xiang Bian
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| |
Collapse
|
26
|
Pifano M, Garona J, Capobianco CS, Gonzalez N, Alonso DF, Ripoll GV. Peptide Agonists of Vasopressin V2 Receptor Reduce Expression of Neuroendocrine Markers and Tumor Growth in Human Lung and Prostate Tumor Cells. Front Oncol 2017; 7:11. [PMID: 28194370 PMCID: PMC5276816 DOI: 10.3389/fonc.2017.00011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/11/2017] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine tumors (NETs) comprise a heterogeneous group of malignancies that express neuropeptides as synaptophysin, chromogranin A (CgA), and specific neuronal enolase (NSE), among others. Vasopressin (AVP) is a neuropeptide with an endocrine, paracrine, and autocrine effect in normal and pathological tissues. AVP receptors are present in human lung, breast, pancreatic, colorectal, and gastrointestinal tumors. While AVP V1 receptors are associated with stimulation of cellular proliferation, AVP V2 receptor (V2r) is related to antiproliferative effects. Desmopressin (dDAVP) is a synthetic analog of AVP that acts as a selective agonist for the V2r, which shows antitumor properties in breast and colorectal cancer models. Recently, we developed a derivative of dDAVP named [V4Q5]dDAVP, which presents higher antitumor effects in a breast cancer model compared to the parental compound. The goal of present work was to explore the antitumor properties of the V2r agonist dDAVP and its novel analog [V4Q5]dDAVP on aggressive human lung (NCI-H82) and prostate cancer (PC-3) cell lines with neuroendocrine (NE) characteristics. We study the presence of specific NE markers (CgA and NSE) and V2r expression in NCI-H82 and PC-3. Both cell lines express high levels of NE markers NSE and CgA but then incubation with dDAVP diminished expression levels of both markers. DDAVP and [V4Q5]dDAVP significantly reduced proliferation, doubling time, and migration in both tumor cell cultures. [V4Q5]dDAVP analog showed a higher cytostatic effect than dDAVP, on cellular proliferation in the NCI-H82 cell line. Silencing of V2r using small interfering RNA significantly attenuated the inhibitory effects of [V4Q5]dDAVP on NCI-H82 cell proliferation. We, preliminarily, explored the in vivo effect of dDAVP and [V4Q5]dDAVP on NCI-H82 small cell lung cancer xenografts. Treated tumors (0.3 μg kg-1, thrice a week) grew slower in comparison to vehicle-treated animals. In this work, we demonstrated that the specific agonists of V2r, dDAVP, and [V4Q5]dDAVP displays antitumor capacity on different human models of lung and prostate cancers with NE features, showing their potential therapeutic benefits in the treatment of these aggressive tumors.
Collapse
Affiliation(s)
- Marina Pifano
- Laboratory of Molecular Oncology, Quilmes National University , Bernal, Buenos Aires , Argentina
| | - Juan Garona
- Laboratory of Molecular Oncology, Quilmes National University , Bernal, Buenos Aires , Argentina
| | - Carla S Capobianco
- Laboratory of Molecular Oncology, Quilmes National University , Bernal, Buenos Aires , Argentina
| | - Nazareno Gonzalez
- Laboratory of Molecular Oncology, Quilmes National University , Bernal, Buenos Aires , Argentina
| | - Daniel F Alonso
- Laboratory of Molecular Oncology, Quilmes National University , Bernal, Buenos Aires , Argentina
| | - Giselle V Ripoll
- Laboratory of Molecular Oncology, Quilmes National University , Bernal, Buenos Aires , Argentina
| |
Collapse
|
27
|
Addition of vasopressin synthetic analogue [V(4)Q(5)]dDAVP to standard chemotherapy enhances tumour growth inhibition and impairs metastatic spread in aggressive breast tumour models. Clin Exp Metastasis 2016; 33:589-600. [PMID: 27146156 DOI: 10.1007/s10585-016-9799-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/29/2016] [Indexed: 12/19/2022]
Abstract
[V(4)Q(5)]dDAVP is a novel 2nd generation vasopressin analogue with robust antitumour activity against metastatic breast cancer. We recently reported that, by acting on vasopressin V2r membrane receptor present in tumour cells and microvascular endothelium, [V(4)Q(5)]dDAVP inhibits angiogenesis and metastatic progression of the disease without overt toxicity. Despite chemotherapy remaining as a primary therapeutic option for aggressive breast cancer, its use is limited by low selectivity and associated adverse effects. In this regard, we evaluated potential combinational benefits by adding [V(4)Q(5)]dDAVP to standard-of-care chemotherapy. In vitro, combination of [V(4)Q(5)]dDAVP with sub-IC50 concentrations of paclitaxel or carmustine resulted in a cooperative inhibition of breast cancer cell growth in comparison to single-agent therapy. In vivo antitumour efficacy of [V(4)Q(5)]dDAVP addition to chemotherapy was first evaluated using the triple-negative MDA-MB-231 breast cancer xenograft model. Tumour-bearing mice were treated with i.v. injections of [V(4)Q(5)]dDAVP (0.3 μg/kg, thrice weekly) in combination with weekly cycles of paclitaxel (10 mg/kg i.p.). After 6 weeks of treatment, combination regimen resulted in greater tumour growth inhibition compared to monotherapy. [V(4)Q(5)]dDAVP addition was also associated with reduction of local aggressiveness, and impairment of tumour invasion and infiltration of the skin. Benefits of combined therapy were confirmed in the hormone-independent and metastatic F3II breast cancer model by combining [V(4)Q(5)]dDAVP with carmustine (25 mg/kg i.p.). Interestingly, [V(4)Q(5)]dDAVP plus cytotoxic agents severely impaired colony forming ability of tumour cells and inhibited breast cancer metastasis to lung. The present study shows that [V(4)Q(5)]dDAVP may complement conventional chemotherapy by modulating metastatic progression and early stages of microtumour establishment, and thus supports further preclinical testing of the compound for the management of aggressive breast cancer.
Collapse
|
28
|
Weinberg RS, Grecco MO, Ferro GS, Seigelshifer DJ, Perroni NV, Terrier FJ, Sánchez-Luceros A, Maronna E, Sánchez-Marull R, Frahm I, Guthmann MD, Di Leo D, Spitzer E, Ciccia GN, Garona J, Pifano M, Torbidoni AV, Gomez DE, Ripoll GV, Gomez RE, Demarco IA, Alonso DF. A phase II dose-escalation trial of perioperative desmopressin (1-desamino-8-d-arginine vasopressin) in breast cancer patients. SPRINGERPLUS 2015; 4:428. [PMID: 26306290 PMCID: PMC4540720 DOI: 10.1186/s40064-015-1217-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 02/02/2023]
Abstract
Desmopressin (dDAVP) is a well-known peptide analog of the antidiuretic hormone vasopressin, used to prevent excessive bleeding during surgical procedures. dDAVP increases hemostatic mediators, such as the von Willebrand factor (vWF), recently considered a key element in resistance to metastasis. Studies in mouse models and veterinary trials in dogs with locally-advanced mammary tumors demonstrated that high doses of perioperative dDAVP inhibited lymph node and early blood-borne metastasis and significantly prolonged survival. We conducted a phase II dose-escalation trial in patients with breast cancer, administering a lyophilized formulation of dDAVP by intravenous infusion in saline, 30–60 min before and 24 h after surgical resection. Primary endpoints were safety and tolerability, as well as selection of the best dose for cancer surgery. Secondary endpoints included surgical bleeding, plasma levels of vWF, and circulating tumor cells (CTCs) as measured by quantitative PCR of cytokeratin-19 transcripts. Only 2 of a total of 20 patients experienced reversible adverse events, including hyponatremia (grade 4) and hypersensitivity reaction (grade 2). Reactions were adequately managed by slowing the infusion rate. A reduced intraoperative bleeding was noted with increasing doses of dDAVP. Treatment was associated with higher vWF plasma levels and a postoperative drop in CTC counts. At the highest dose level evaluated (2 μg/kg) dDAVP appeared safe when administered in two slow infusions of 1 μg/kg, before and after surgery. Clinical trials to establish the effectiveness of adjunctive perioperative dDAVP therapy are warranted. This trial is registered on www.clinicaltrials.gov (NCT01606072).
Collapse
Affiliation(s)
- Ruth S Weinberg
- Gynecology Service, Anesthesiology Service, Allergy and Immunology Unit and Central Laboratory, 'Eva Peron' Hospital, San Martín, Argentina
| | - Marcelo O Grecco
- Gynecology Service, Anesthesiology Service, Allergy and Immunology Unit and Central Laboratory, 'Eva Peron' Hospital, San Martín, Argentina
| | - Gimena S Ferro
- Gynecology Service, Anesthesiology Service, Allergy and Immunology Unit and Central Laboratory, 'Eva Peron' Hospital, San Martín, Argentina
| | - Debora J Seigelshifer
- Gynecology Service, Anesthesiology Service, Allergy and Immunology Unit and Central Laboratory, 'Eva Peron' Hospital, San Martín, Argentina
| | - Nancy V Perroni
- Gynecology Service, Anesthesiology Service, Allergy and Immunology Unit and Central Laboratory, 'Eva Peron' Hospital, San Martín, Argentina
| | | | - Analía Sánchez-Luceros
- Thrombosis and Hemostasis Department, National Academy of Medicine, IMEX-ANM, Buenos Aires, Argentina
| | - Esteban Maronna
- Pathology Service, Mater Dei Sanatorium, Buenos Aires, Argentina
| | | | - Isabel Frahm
- Pathology Service, Mater Dei Sanatorium, Buenos Aires, Argentina
| | | | | | | | | | - Juan Garona
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, R. Sáenz Peña 352, Bernal, B1876BXD Buenos Aires, Argentina
| | - Marina Pifano
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, R. Sáenz Peña 352, Bernal, B1876BXD Buenos Aires, Argentina
| | - Ana V Torbidoni
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, R. Sáenz Peña 352, Bernal, B1876BXD Buenos Aires, Argentina
| | - Daniel E Gomez
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, R. Sáenz Peña 352, Bernal, B1876BXD Buenos Aires, Argentina
| | - Giselle V Ripoll
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, R. Sáenz Peña 352, Bernal, B1876BXD Buenos Aires, Argentina
| | | | | | - Daniel F Alonso
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, R. Sáenz Peña 352, Bernal, B1876BXD Buenos Aires, Argentina
| |
Collapse
|