1
|
Cao MY, Zhang K, Guo J, Dong F, Xu LF. Chronic diarrhea related to neuroblastoma: the important role of vasoactive intestinal peptide in tumor pathology and survival. BMC Cancer 2025; 25:457. [PMID: 40082825 PMCID: PMC11905442 DOI: 10.1186/s12885-025-13870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND To analyze the correlation between vasoactive intestinal peptide (VIP) protein expression in neuroblastoma (NB) tumors and NB clinical features and prognosis. METHODS Clinical data were collected from 91 patients with NB aged < 18 years who underwent tumor resection at the Shengjing Hospital of China Medical University between January 2015 and December 2021. VIP expression levels in tumor tissues were evaluated by immunohistochemistry, and the correlation between VIP expression intensity and NB clinical characteristics and prognosis was analyzed. RESULTS VIP expression was detected in 25/91 patients with NB (27.5%). VIP expression intensity was significantly increased in children with diarrhea and hypokalemia (P < 0.001, and P < 0.001, respectively), and was significantly associated with histopathological classification, prognosis, bone marrow metastasis, and tumor stage (P = 0.003, P = 0.036, P = 0.018, and P = 0.027, respectively). VIP expression intensity was positively correlated with synaptophysin expression (rs = 0.342, P = 0.001), and negatively correlated with expression of chromogranin A and proliferating cell nuclear antigen (Ki67) (rs = -0.265, P = 0.011; rs = -0.317, P = 0.002, respectively). There were no significant differences in VIP expression levels according to sex, age, tumor site, or levels of neuron specific enolase, 24-h urine vanillylmandelic acid, and lactate dehydrogenase. CONCLUSIONS VIP is one of the main causes of refractory diarrhea in patients with NB, and may be a potential biomarker of good prognosis. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Meng-Ying Cao
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, P.R. China
- Department of PICU, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, 310052, P.R. China
| | - Kun Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, P.R. China
| | - Jing Guo
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, P.R. China
| | - Fang Dong
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, P.R. China
| | - Ling-Fen Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, P.R. China.
| |
Collapse
|
2
|
Song Y, Lei L, Cai X, Wei H, Yu CY. Immunomodulatory Peptides for Tumor Treatment. Adv Healthc Mater 2025; 14:e2400512. [PMID: 38657003 DOI: 10.1002/adhm.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Peptides exhibit various biological activities, including biorecognition, cell targeting, and tumor penetration, and can stimulate immune cells to elicit immune responses for tumor immunotherapy. Peptide self-assemblies and peptide-functionalized nanocarriers can reduce the effect of various biological barriers and the degradation by peptidases, enhancing the efficiency of peptide delivery and improving antitumor immune responses. To date, the design and development of peptides with various functionalities have been extensively reviewed for enhanced chemotherapy; however, peptide-mediated tumor immunotherapy using peptides acting on different immune cells, to the knowledge, has not yet been summarized. Thus, this work provides a review of this emerging subject of research, focusing on immunomodulatory anticancer peptides. This review introduces the role of peptides in the immunomodulation of innate and adaptive immune cells, followed by a link between peptides in the innate and adaptive immune systems. The peptides are discussed in detail, following a classification according to their effects on different innate and adaptive immune cells, as well as immune checkpoints. Subsequently, two delivery strategies for peptides as drugs are presented: peptide self-assemblies and peptide-functionalized nanocarriers. The concluding remarks regarding the challenges and potential solutions of peptides for tumor immunotherapy are presented.
Collapse
Affiliation(s)
- Yang Song
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xingyu Cai
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| |
Collapse
|
3
|
Azizan S, Cheng KJ, Mejia Mohamed EH, Ibrahim K, Faruqu FN, Vellasamy KM, Khong TL, Syafruddin SE, Ibrahim ZA. Insights into the molecular mechanisms and signalling pathways of epithelial to mesenchymal transition (EMT) in colorectal cancer: A systematic review and bioinformatic analysis of gene expression. Gene 2024; 896:148057. [PMID: 38043836 DOI: 10.1016/j.gene.2023.148057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Colorectal cancer (CRC) is ranked as the second leading cause of mortality worldwide, mainly due to metastasis. Epithelial to mesenchymal transition (EMT) is a complex cellular process that drives CRC metastasis, regulated by changes in EMT-associated gene expression. However, while numerous genes have been identified as EMT regulators through various in vivo and in vitro studies, little is known about the genes that are differentially expressed in CRC tumour tissue and their signalling pathway in regulating EMT. Using an integration of systematic search and bioinformatic analysis, gene expression profiles of CRC tumour tissues were compared to non-tumour adjacent tissues to identify differentially expressed genes (DEGs), followed by performing systematic review on common identified DEGs. Fifty-eight common DEGs were identified from the analysis of 82 tumour tissue samples obtained from four gene expression datasets (NCBI GEO). These DEGS were then systematically searched for their roles in modulating EMT in CRC based on previously published studies. Following this, 10 common DEGs (CXCL1, CXCL8, MMP1, MMP3, MMP7, TACSTD2, VIP, HPGD, ABCG2, CLCA4) were included in this study and subsequently subjected to further bioinformatic analysis. Their roles and functions in modulating EMT in CRC were discussed in this review. This study enhances our understanding of the molecular mechanisms underlying EMT and uncovers potential candidate genes and pathways that could be targeted in CRC.
Collapse
Affiliation(s)
- Suha Azizan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kim Jun Cheng
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Kamariah Ibrahim
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Farid Nazer Faruqu
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tak Loon Khong
- Department of Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Shen Y, Chen JX, Li M, Xiang Z, Wu J, Wang YJ. Role of tumor-associated macrophages in common digestive system malignant tumors. World J Gastrointest Oncol 2023; 15:596-616. [PMID: 37123058 PMCID: PMC10134211 DOI: 10.4251/wjgo.v15.i4.596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/12/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
Many digestive system malignant tumors are characterized by high incidence and mortality rate. Increasing evidence has revealed that the tumor microenvironment (TME) is involved in cancer initiation and tumor progression. Tumor-associated macrophages (TAMs) are a predominant constituent of the TME, and participate in the regulation of various biological behaviors and influence the prognosis of digestive system cancer. TAMs can be mainly classified into the antitumor M1 phenotype and protumor M2 phenotype. The latter especially are crucial drivers of tumor invasion, growth, angiogenesis, metastasis, immunosuppression, and resistance to therapy. TAMs are of importance in the occurrence, development, diagnosis, prognosis, and treatment of common digestive system malignant tumors. In this review, we summarize the role of TAMs in common digestive system malignant tumors, including esophageal, gastric, colorectal, pancreatic and liver cancers. How TAMs promote the development of tumors, and how they act as potential therapeutic targets and their clinical applications are also described.
Collapse
Affiliation(s)
- Yue Shen
- Department of Dermatology, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Jia-Xi Chen
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Ming Li
- Department of Pathology, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Ze Xiang
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Yi-Jin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| |
Collapse
|
5
|
Zhang Y, Liu C, Wu C, Song L. Natural peptides for immunological regulation in cancer therapy: Mechanism, facts and perspectives. Biomed Pharmacother 2023; 159:114257. [PMID: 36689836 DOI: 10.1016/j.biopha.2023.114257] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
Cancer incidence and mortality rates are increasing annually. Treatment with surgery, chemotherapy and radiation therapy (RT) is unsatisfactory because many patients have advanced disease at the initial diagnosis. However, the emergence of immunotherapy promises to be an effective strategy to improve the outcome of advanced tumors. Immune checkpoint antibodies, which are at the forefront of immunotherapy, have had significant success but still leave some cancer patients without benefit. For more cancer patients to benefit from immunotherapy, it is necessary to find new drugs and combination therapeutic strategies to improve the outcome of advanced cancer patients and achieve long-term tumor control or even eradication. Peptides are promising choices for tumor immunotherapy drugs because they have the advantages of low production cost, high sequence selectivity, high tissue permeability, low toxicity and low immunogenicity etc., and the adjuvant matching and technologies like nanotechnology can further optimize the effects of peptides. In this review, we present the current status and mechanisms of research on peptides targeting multiple immune cells (T cells, natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), regulatory T cells (Tregs)) and immune checkpoints in tumor immunotherapy; and we summarize the current status of research on peptide-based tumor immunotherapy in combination with other therapies including RT, chemotherapy, surgery, targeted therapy, cytokine therapy, adoptive cell therapy (ACT) and cancer vaccines. Finally, we discuss the current status of peptide applications in mRNA vaccine delivery.
Collapse
Affiliation(s)
- Yunchao Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Chenxin Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
6
|
Vasoactive intestinal peptide blockade suppresses tumor growth by regulating macrophage polarization and function in CT26 tumor-bearing mice. Sci Rep 2023; 13:927. [PMID: 36650220 PMCID: PMC9845384 DOI: 10.1038/s41598-023-28073-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Macrophages are a major population of immune cells in solid cancers, especially colorectal cancers. Tumor-associated macrophages (TAMs) are commonly divided into M1-like (tumor suppression) and M2-like (tumor promotion) phenotypes. Vasoactive intestinal peptide (VIP) is an immunoregulatory neuropeptide with a potent anti-inflammatory function. Inhibition of VIP signaling has been shown to increase CD8+ T cell proliferation and function in viral infection and lymphoma. However, the role of VIP in macrophage polarization and function in solid tumors remains unknown. Here, we demonstrated that conditioned medium from CT26 (CT26-CM) cells enhanced M2-related marker and VIP receptor (VPAC) gene expression in RAW264.7 macrophages. VIP hybrid, a VIP antagonist, enhanced M1-related genes but reduced Mrc1 gene expression and increased phagocytic ability in CT26-CM-treated RAW264.7 cells. In immunodeficient SCID mice, VIP antagonist alone or in combination with anti-PD-1 antibody attenuated CT26 tumor growth compared with the control. Analysis of tumor-infiltrating leukocytes found that VIP antagonist increased M1/M2 ratios and macrophage phagocytosis of CT26-GFP cells. Furthermore, Vipr2 gene silencing or VPAC2 activation affected the polarization of CT26-CM-treated RAW264.7 cells. In conclusion, the inhibition of VIP signaling enhanced M1 macrophage polarization and macrophage phagocytic function, resulting in tumor regression in a CT26 colon cancer model.
Collapse
|
7
|
Huang K, Xu H, Han L, Xu R, Xu Z, Xie Y. Identification of therapeutic targets and prognostic biomarkers among frizzled family genes in glioma. Front Mol Biosci 2023; 9:1054614. [PMID: 36699699 PMCID: PMC9868451 DOI: 10.3389/fmolb.2022.1054614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background: The biological functions of the Frizzled gene family (FZDs), as the key node of wingless-type MMTV integration site family (Wnt) and mammalian target of rapamycin signaling pathways, have not been fully elucidated in glioma. This study aims to identify novel therapeutic targets and prognostic biomarkers for gliomas, which may help us understand the role of FZDs. Methods: RNA-sequence data were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) projects. Survival analyses, Cox regression analyses, nomograms, calibration curves, receiver operating characteristic (ROC) curves, gene function enrichment analyses, and immune cell infiltration analyses were conducted using R. Results: High expressions of FZDs were positively associated with the activation of mTOR signaling. FZD1/2/3/4/5/7/8 was significantly highly expressed in tumor tissues, and the high expression of FZD1/2/5/6/7/8 was significantly positively associated with poorer prognosis. FZD2 and FZD6 positively served as independent predictors of poor prognosis. Gene function analysis showed that FZDs were associated with mTOR signaling, immune response, cytokine-cytokine receptor interaction, extracellular matrix organization, apoptosis, and p53 signaling pathway. Conclusions: Our finding strongly indicated a crucial role of FZDs in glioma. FZD1/2/5/6/7/8 could be an unfavorable prognostic factor in glioma and FZD2 and FZD6 may be novel independent predictors of poor prognosis in glioma.
Collapse
Affiliation(s)
- Ke Huang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China,School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Huimei Xu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Liang Han
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Ruiming Xu
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhaoqing Xu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China,*Correspondence: Zhaoqing Xu, ; Yi Xie,
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China,*Correspondence: Zhaoqing Xu, ; Yi Xie,
| |
Collapse
|
8
|
Karami Fath M, Babakhaniyan K, Anjomrooz M, Jalalifar M, Alizadeh SD, Pourghasem Z, Abbasi Oshagh P, Azargoonjahromi A, Almasi F, Manzoor HZ, Khalesi B, Pourzardosht N, Khalili S, Payandeh Z. Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines (Basel) 2022; 10:1448. [PMID: 36146527 PMCID: PMC9501259 DOI: 10.3390/vaccines10091448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most typical and aggressive form of primary brain tumor in adults, with a poor prognosis. Successful glioma treatment is hampered by ineffective medication distribution across the blood-brain barrier (BBB) and the emergence of drug resistance. Although a few FDA-approved multimodal treatments are available for glioblastoma, most patients still have poor prognoses. Targeting epigenetic variables, immunotherapy, gene therapy, and different vaccine- and peptide-based treatments are some innovative approaches to improve anti-glioma treatment efficacy. Following the identification of lymphatics in the central nervous system, immunotherapy offers a potential method with the potency to permeate the blood-brain barrier. This review will discuss the rationale, tactics, benefits, and drawbacks of current glioma therapy options in clinical and preclinical investigations.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Kimiya Babakhaniyan
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran 1996713883, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | | | | | - Zeinab Pourghasem
- Department of Microbiology, Islamic Azad University of Lahijan, Gilan 4416939515, Iran
| | - Parisa Abbasi Oshagh
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer 6571995863, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz 7417773539, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1411734115, Iran
| | - Hafza Zahira Manzoor
- Experimental and Translational Medicine, University of Insubria, Via jean Henry Dunant 3, 21100 Varese, Italy
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4193713111, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
9
|
Yao L, Li J, Zhang X, Zhou L, Hu K. Downregulated ferroptosis-related gene SQLE facilitates temozolomide chemoresistance, and invasion and affects immune regulation in glioblastoma. CNS Neurosci Ther 2022; 28:2104-2115. [PMID: 35962621 PMCID: PMC9627366 DOI: 10.1111/cns.13945] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 02/06/2023] Open
Abstract
Chemoresistance in patients with glioblastoma multiforme (GBM) is a common reason hindering the success of treatment. Recently, ferroptosis has been reported to be associated with chemoresistance in different types of cancer, while the role of ferroptosis-related genes in GBM have not been fully elucidated. This study aimed to demonstrate the roles and mechanism of ferroptosis-related genes in chemoresistance and metastasis of GBM. First, two candidate genes, squalene epoxidase (SQLE) and FANCD2, were identified to be associated with ferroptosis-related chemoresistance in GBM from three temozolomide (TMZ) therapeutic datasets and one ferroptosis-related gene dataset. Then, comprehensive bio-informatics data from different databases testified that SQLE was significantly downregulated both in GBM tissue and cells and displayed a better prognosis in GBM. Clinical data identified lower expression of SQLE was significantly associated with WHO grade and 1p/19q codeletion. Moreover, through in vitro experiments, SQLE was confirmed to suppress ERK-mediated TMZ chemoresistance and metastasis of GBM cells. The KEGG analysis of SQLE-associated co-expressed genes indicated SQLE was potentially involved in the cell cycle. Furthermore, SQLE was found to have the most significant correlations with tumor-infiltrating lymphocytes and immunomodulators. These findings highlighted that SQLE could be a potential target and a biomarker for therapy and prognosis of patients with GBM.
Collapse
Affiliation(s)
- Lei Yao
- Department of Hepatobiliary SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Juanni Li
- Department of PathologyXiangya Hospital, Central South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Xiaofang Zhang
- Departments of Burn and PlasticNingxiang People's Hospital, Hunan University of Chinese MedicineChangshaChina
| | - Lei Zhou
- Department of AnesthesiologyThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Kuan Hu
- Department of Hepatobiliary SurgeryXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
10
|
Costa PAC, Silva WN, Prazeres PHDM, Picoli CC, Guardia GDA, Costa AC, Oliveira MA, Guimarães PPG, Gonçalves R, Pinto MCX, Amorim JH, Azevedo VAC, Resende RR, Russo RC, Cunha TM, Galante PAF, Mintz A, Birbrair A. Chemogenetic modulation of sensory neurons reveals their regulating role in melanoma progression. Acta Neuropathol Commun 2021; 9:183. [PMID: 34784974 PMCID: PMC8594104 DOI: 10.1186/s40478-021-01273-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/10/2021] [Indexed: 02/08/2023] Open
Abstract
Sensory neurons have recently emerged as components of the tumor microenvironment. Nevertheless, whether sensory neuronal activity is important for tumor progression remains unknown. Here we used Designer Receptors Exclusively Activated by a Designer Drug (DREADD) technology to inhibit or activate sensory neurons' firing within the melanoma tumor. Melanoma growth and angiogenesis were accelerated following inhibition of sensory neurons' activity and were reduced following overstimulation of these neurons. Sensory neuron-specific overactivation also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of melanoma biopsies revealed that increased expression of sensory neurons-related genes within melanoma was associated with improved survival. These findings suggest that sensory innervations regulate melanoma progression, indicating that manipulation of sensory neurons' activity may provide a valuable tool to improve melanoma patients' outcomes.
Collapse
Affiliation(s)
- Pedro A C Costa
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Walison N Silva
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Pedro H D M Prazeres
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Caroline C Picoli
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | - Alinne C Costa
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Mariana A Oliveira
- Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Pedro P G Guimarães
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ricardo Gonçalves
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Mauro C X Pinto
- Departamento de Farmacologia, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Jaime H Amorim
- Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, BA, Brasil
| | - Vasco A C Azevedo
- Departamento de Genetica, Ecologia e Evolucao, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Rodrigo R Resende
- Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Remo C Russo
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Thiago M Cunha
- Departamento de Farmacologia, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sirio-Libanes, Sao Paulo, SP, Brasil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
11
|
de Souza FRO, Ribeiro FM, Lima PMD. Implications of VIP and PACAP in Parkinson's Disease: What do we Know So Far? Curr Med Chem 2021; 28:1703-1715. [PMID: 32196442 DOI: 10.2174/0929867327666200320162436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parkinson's disease is one of the most common neurodegenerative disorders and although its aetiology is not yet fully understood, neuroinflammation has been identified as a key factor in the progression of the disease. Vasoactive intestinal peptide and pituitary adenylate-cyclase activating polypeptide are two neuropeptides that exhibit anti-inflammatory and neuroprotective properties, modulating the production of cytokines and chemokines and the behaviour of immune cells. However, the role of chemokines and cytokines modulated by the endogenous receptors of the peptides varies according to the stage of the disease. METHODS We present an overview of the relationship between some cytokines and chemokines with vasoactive intestinal peptide, pituitary adenylate cyclase activating polypeptide and their endogenous receptors in the context of Parkinson's disease neuroinflammation and oxidative stress, as well as the modulation of microglial cells by the peptides in this context. RESULTS The two peptides exhibit neuroprotective and anti-inflammatory properties in models of Parkinson's disease, as they ameliorate cognitive functions, decrease the level of neuroinflammation and promote dopaminergic neuronal survival. The peptides have been tested in a variety of in vivo and in vitro models of Parkinson's disease, demonstrating the potential for therapeutic application. CONCLUSION More studies are needed to establish the clinical use of vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide as safe candidates for treating Parkinson's disease, as the use of the peptides in different stages of the disease could produce different results concerning effectiveness.
Collapse
Affiliation(s)
- Filipe Resende Oliveira de Souza
- Laboratory of Immunology and Microbiology, Department of Natural Sciences, Federal University of Sao Joao Del Rei, Praca Dom Helvecio, n. 74, Fabricas, 36301160, Sao Joao Del Rei, MG, Brazil
| | - Fabiola Mara Ribeiro
- Laboratory of Neurobiochemistry, Department of Biochemistry and Immunology, Federal University of Minas Gerais, MG, Brazil
| | - Patrícia Maria d'Almeida Lima
- Laboratory of Immunology and Microbiology, Department of Natural Sciences, Federal University of Sao Joao Del Rei, Praca Dom Helvecio, n. 74, Fabricas, 36301160, Sao Joao Del Rei, MG, Brazil
| |
Collapse
|
12
|
Guo Y, Wang B, Wang T, Gao L, Yang ZJ, Wang FF, Shang HW, Hua R, Xu JD. Biological characteristics of IL-6 and related intestinal diseases. Int J Biol Sci 2021; 17:204-219. [PMID: 33390844 PMCID: PMC7757046 DOI: 10.7150/ijbs.51362] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022] Open
Abstract
The intestine serves as an important digestive and the largest immune organ in the body. Interleukin-6(IL-6), an important mediator of various pathways, participates in the interactions between different kinds of cells and closely correlates with intestinal physiological and pathological condition. In this review we summarize the signaling pathways of IL-6 and its functions in maintaining intestinal homeostasis. We also explored its relation with nervous system and highlight its potential role in Parkinson's disease. Based on its specialty of the double-side influences on intestinal tumors and inflammation, we summarize how they are done through distinctive process.
Collapse
Affiliation(s)
- Yuexin Guo
- Department of Oral Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, 100081, China
| | - Tiantian Wang
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Lei Gao
- Department of Bioinformatics, College of Bioengineering, Capital Medical University, Beijing 100069, China
| | - Ze-Jun Yang
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Fei-Fei Wang
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Hong-Wei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing 100069, China
| | - Rongxuan Hua
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China
| |
Collapse
|
13
|
Identification of a Transcription Factor-microRNA-Gene Coregulation Network in Meningioma through a Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6353814. [PMID: 32832554 PMCID: PMC7428944 DOI: 10.1155/2020/6353814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/04/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022]
Abstract
Background Meningioma is a prevalent type of brain tumor. However, the initiation and progression mechanisms involved in the meningioma are mostly unknown. This study aimed at exploring the potential transcription factors/micro(mi)RNAs/genes and biological pathways associated with meningioma. Methods mRNA expressions from GSE88720, GSE43290, and GSE54934 datasets, containing data from 83 meningioma samples and eight control samples, along with miRNA expression dataset GSE88721, which had 14 meningioma samples and one control sample, were integrated analyzed. The bioinformatics approaches were used for identifying differentially expressed genes and miRNAs, as well as predicting transcription factor targets related to the differentially expressed genes. The approaches were also used for gene ontology term analysis and biological pathway enrichment analysis, construction, and analysis of protein-protein interaction network, and transcription factor-miRNA-gene coregulation network construction. Results Fifty-six upregulated and 179 downregulated genes were identified. Thirty transcription factors able to target the differentially expressed genes were predicted and selected based on public databases. One hundred seventeen overlapping genes were identified from the differentially expressed genes and the miRNAs predicted by miRWalk. Furthermore, NF-κB/IL6, PTGS2, MYC/hsa-miR-574-5p, hsa-miR-26b-5p, hsa-miR-335-5p, and hsa-miR-98-5p, which are involved in the transcription factor-miRNA-mRNA coregulation network, were found to be associated with meningioma. Conclusion The bioinformatics analysis identified several potential molecules and relevant pathways that may represent critical mechanisms involved in the progression and development of meningioma. This work provides new insights into meningioma pathogenesis and treatments.
Collapse
|
14
|
Wu T, Wang X, Zhang R, Jiao Y, Yu W, Su D, Zhao Y, Tian J. Mice with pre-existing tumors are vulnerable to postoperative cognitive dysfunction. Brain Res 2020; 1732:146650. [DOI: 10.1016/j.brainres.2020.146650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
|
15
|
Xu S, Tang L, Li X, Fan F, Liu Z. Immunotherapy for glioma: Current management and future application. Cancer Lett 2020; 476:1-12. [PMID: 32044356 DOI: 10.1016/j.canlet.2020.02.002] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022]
Abstract
Gliomas are intrinsic brain tumors that originate from neuroglial progenitor cells. Conventional therapies, including surgery, chemotherapy, and radiotherapy, have achieved limited improvements in the prognosis of glioma patients. Immunotherapy, a revolution in cancer treatment, has become a promising strategy with the ability to penetrate the blood-brain barrier since the pioneering discovery of lymphatics in the central nervous system. Here we detail the current management of gliomas and previous studies assessing different immunotherapies in gliomas, despite the fact that the associated clinical trials have not been completed yet. Moreover, several drugs that have undergone clinical trials are listed as novel strategies for future application; however, these clinical trials have indicated limited efficacy in glioma. Therefore, additional studies are warranted to evaluate novel therapeutic approaches in glioma treatment.
Collapse
Affiliation(s)
- Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Lu Tang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
16
|
Zygulska AL, Furgala A, Kaszuba-Zwoińska J, Krzemieniecki K, Gil K. Changes in plasma levels of cholecystokinin, neurotensin, VIP and PYY in gastric and colorectal cancer - Preliminary results. Peptides 2019; 122:170148. [PMID: 31541684 DOI: 10.1016/j.peptides.2019.170148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
Physiological roles of enterohormones such as secretion, absorption and digestion were supported by clinical data. Overexpression of cholecystokinin (CCK), neurotensin (NT) and vasoactive intestinal peptide (VIP) receptors occur in gastrointestinal (GI) malignancies. The aim of the paper was to compare plasma levels of CCK, peptide YY (PYY), VIP and NT in patients with gastrointestinal malignancies and healthy controls. The study included 80 patients (37 men and 43 women) with GI malignancies (20 with gastric and 60 with colorectal cancers). Median age of the patients was 62.9 years (range: 40-85 years). Control group was comprised of 30 healthy persons with median age 59.8 years (range: 40-82 years). Fasting plasma concentrations of CKK, PYY, NT, and VIP were determined at rest, using ELISA kits for automated systems. Comparative analysis of enterohormone levels in patients with various types of gastrointestinal malignancies demonstrated presence of some cancer-specific alterations. Patients with gastric cancers presented with lower plasma concentrations of CCK than healthy controls and individuals from colorectal cancers (p = 0.02). The highest plasma concentrations of neurotensin was found in colorectal cancer patients in comparison to gastric (p = 0.02). The plasma levels of VIP observed in gastric cancer group were lower than in colorectal cancer patients (p = 0.01). Patients with GI malignancies may present with tumor-specific alterations in plasma enterohormone levels.
Collapse
Affiliation(s)
- Aneta Lidia Zygulska
- Department of Oncology, Krakow University Hospital, 10 Sniadeckich St., 31-531, Krakow, Poland.
| | - Agata Furgala
- Department of Pathophysiology, Jagiellonian University Medical College, 18 Czysta St., 31-121, Krakow, Poland.
| | - Jolanta Kaszuba-Zwoińska
- Department of Pathophysiology, Jagiellonian University Medical College, 18 Czysta St., 31-121, Krakow, Poland.
| | - Krzysztof Krzemieniecki
- Department of Oncology, Krakow University Hospital, 10 Sniadeckich St., 31-531, Krakow, Poland; Department of Oncology, Jagiellonian University, 10 Sniadeckich St., 31-531, Krakow, Poland.
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, 18 Czysta St., 31-121, Krakow, Poland.
| |
Collapse
|
17
|
Early Pattern of Epstein-Barr Virus Infection in Gastric Epithelial Cells by "Cell-in-cell". Virol Sin 2019; 34:253-261. [PMID: 30911896 DOI: 10.1007/s12250-019-00097-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr virus (EBV) is an important human dsDNA virus, which has been shown to be associated with several malignancies including about 10% of gastric carcinomas. How EBV enters an epithelial cell has been an interesting project for investigation. "Cell-in-cell" infection was recently reported an efficient way for the entry of EBV into nasopharynx epithelial cells. The present approach was to explore the feasibility of this mode for EBV infection in gastric epithelial cells and the dynamic change of host inflammatory reaction. The EBV-positive lymphoblastic cells of Akata containing a GFP tag in the viral genome were co-cultured with the gastric epithelial cells (GES-1). The infection situation was observed under fluorescence and electron microscopies. Real-time quantitative PCR and Western-blotting assay were employed to detect the expression of a few specific cytokines and inflammatory factors. The results demonstrated that EBV could get into gastric epithelial cells by "cell-in-cell" infection but not fully successful due to the host fighting. IL-1β, IL-6 and IL-8 played prominent roles in the cellular response to the infection. The activation of NF-κB and HSP70 was also required for the host antiviral response. The results imply that the gastric epithelial cells could powerfully resist the virus invader via cell-in-cell at the early stage through inflammatory and innate immune responses.
Collapse
|
18
|
Jiang MN, Zhou YY, Hua DH, Yang JY, Hu ML, Xing YQ. Vagal Nerve Stimulation Attenuates Ischemia-Reperfusion Induced Retina Dysfunction in Acute Ocular Hypertension. Front Neurosci 2019; 13:87. [PMID: 30804746 PMCID: PMC6378858 DOI: 10.3389/fnins.2019.00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose: The present study aimed to investigate whether cervical vagal nerve stimulation (VNS) could prevent retinal ganglion cell (RGC) loss and retinal dysfunction after ischemia/reperfusion (I/R) injury. Methods: First, rats were randomly divided into sham group (n = 4) and VNS group (n = 12). Activation of the nodose ganglia (NOG), nucleus of the solitary tract (NTS), superior salivatory nucleus (SSN), and pterygopalatine ganglion (PPG) neural circuit were evaluated by c-fos expression at 0 h after sham VNS and at 0 h (n = 4), 6 h (n = 4), 72 h (n = 4) after VNS. Secondly, rats were randomly assigned to I/R group (pressure-induced retinal ischemia for 1 h and reperfusion for 1 h in the right eye, n = 16) and I/R+VNS group (right cervical VNS for 2 h during the I/R period, n = 16). The left eye of each rat served as a control. Electroretinogram (ERG), RGC numbers, tumor necrosis factor-α (TNF-α) and vasoactive intestinal polypeptide (VIP) levels in retina were determined. Additionally, the level of VIP in PPG was evaluated. Results: In the first part of the study, compared with the sham group, the VNS group exhibited significantly increased expression of c-fos in NOG, NTS, SSN, and PPG tissues at 0, 6, and 72 h. In the second part of the study, compared with left eyes, retinal function in right eyes (as assessed by the a-wave, b-wave and the oscillatory potential amplitudes of ERG and RGC data) was significantly decreased by I/R. The decreased retinal function was attenuated by VNS. In addition, I/R induced an increase in inflammation, which was reflected by elevated TNF-α expression in the retina. VNS significantly attenuated the increase in I/R-induced inflammation. Moreover, VIP expression in the retina and PPG, which may contribute to the inhibition of the inflammatory response, was significantly increased after VNS. Conclusion: VNS could protect against retinal I/R injury by downregulating TNF-α. Upregulation of VIP expression due to activation of the NOG-NTS-SSN-PPG neural circuit may underlie to the protective effects of VNS.
Collapse
Affiliation(s)
- Meng-Nan Jiang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu-Yang Zhou
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di-Hao Hua
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia-Yi Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Man-Li Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yi-Qiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Heydari-Mehrabadi A, Kordi Tamandani DM, Baranzehi T, Hemati S. Analysis of Polymorphism and Expression Profile of ASIC1 and IL-6 Genes in Patients with Gastric Cancer. Asian Pac J Cancer Prev 2018; 19:3451-3455. [PMID: 30583668 PMCID: PMC6428554 DOI: 10.31557/apjcp.2018.19.12.3451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 11/10/2018] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer is one of the most common upper gastrointestinal malignancies. Some Iranian provinces, such as in the northern and northwestern areas, are at a high risk, whereas the central and western provinces are at a medium and the southern regions at low risk. This study was carried out to estimate the impact of the expression patterns of ASIC1 and IL-6 genes and the IL-6rs-174 and ASIC1rs 75624685 polymorphisms in the pathogenesis of gastric cancer. Materials and methods: Tetra-ARMS PCR was employed to analyze the polymorphism status of the ASIC1 and IL-6 genes with 85 paraffin-embedded tissue blocks from cases and 117 normal blood samples as controls. We also investigated mRNA expression levels of these genes in 12 cases and controls using real-time PCR. Results: Our results showed a significant association between expression of ASIC1 and elevated risk of gastric cancer (p<0.001).
Collapse
|
20
|
Wang Z, Gao ZM, Huang HB, Sun LS, Sun AQ, Li K. Association of IL-8 gene promoter -251 A/T and IL-18 gene promoter -137 G/C polymorphisms with head and neck cancer risk: a comprehensive meta-analysis. Cancer Manag Res 2018; 10:2589-2604. [PMID: 30127645 PMCID: PMC6089118 DOI: 10.2147/cmar.s165631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Purpose No consensus exists on the impact of polymorphisms in cytokines (such as interleukin IL-8 and IL-18) on cancer risk; moreover, there is very little evidence regarding head and neck cancer (HNC). Methods Thus, a meta-analysis including 22 studies with 4731 cases and 8736 controls was conducted to evaluate this association. The summary odds ratio (OR) and corresponding 95% confidence intervals (CIs) for C-X-C motif chemokine ligand 8 (CXCL8, which encodes IL-8) and IL-18 polymorphisms and HNC risk were estimated. Results The results showed a significantly increased risk of HNC susceptibility for IL18 −137 G/C in five genetic models, but, interestingly, no significant association was found for the CXCL8 −251 A/T polymorphism. When stratified by cancer type, an increased risk of nasopharyngeal cancer was found for both −137 G/C and −251A/T. When the studies were stratified by ethnicity and genotyping method, there were significant associations between Asian populations and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) studies for −137 G/C, and African populations for −251 A/T in some genetic models. A positive association was also found between the population-based groups in some models for −137 G/C; conversely, significantly decreased risk was found among the −251 A/T hospital-based group. Meta-regression was also conducted. The publication year, control source, and cancer type contributed to CXCL8 −251 A/T heterogeneity; however, no factors were found that contributed to IL-18 −137 G/C heterogeneity. Marginal significance was found in the recessive model for IL-18 −137 G/C by Egger’s test, whereas no publication bias was detected for CXCL8 −251 A/T. Conclusions The results indicate that the IL-18 −137 G/C polymorphism is associated with HNC risk, especially nasopharyngeal cancer, in Asian populations and, when using PCR-RFLP, CXCL8 −251 A/T polymorphisms play a complex role in HNC development.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zi-Ming Gao
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| | - Hai-Bo Huang
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| | - Li-Sha Sun
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| | - An-Qi Sun
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| | - Kai Li
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China,
| |
Collapse
|
21
|
Jurberg AD, Cotta-de-Almeida V, Temerozo JR, Savino W, Bou-Habib DC, Riederer I. Neuroendocrine Control of Macrophage Development and Function. Front Immunol 2018; 9:1440. [PMID: 29988513 PMCID: PMC6026652 DOI: 10.3389/fimmu.2018.01440] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022] Open
Abstract
Macrophages carry out numerous physiological activities that are essential for both systemic and local homeostasis, as well as innate and adaptive immune responses. Their biology is intricately regulated by hormones, neuropeptides, and neurotransmitters, establishing distinct neuroendocrine axes. The control is pleiotropic, including maturation of bone marrow-derived myeloid precursors, cell differentiation into functional subpopulations, cytotoxic activity, phagocytosis, production of inflammatory mediators, antigen presentation, and activation of effector lymphocytes. Additionally, neuroendocrine components modulate macrophage ability to influence tumor growth and to prevent the spreading of infective agents. Interestingly, macrophage-derived factors enhance glucocorticoid production through the stimulation of the hypothalamic–pituitary–adrenal axis. These bidirectional effects highlight a tightly controlled balance between neuroendocrine stimuli and macrophage function in the development of innate and adaptive immune responses. Herein, we discuss how components of neuroendocrine axes impact on macrophage development and function and may ultimately influence inflammation, tissue repair, infection, or cancer progression. The knowledge of the crosstalk between macrophages and endocrine or brain-derived components may contribute to improve and create new approaches with clinical relevance in homeostatic or pathological conditions.
Collapse
Affiliation(s)
- Arnon Dias Jurberg
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Vinícius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Jairo Ramos Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Moody TW, Nuche-Berenguer B, Jensen RT. Vasoactive intestinal peptide/pituitary adenylate cyclase activating polypeptide, and their receptors and cancer. Curr Opin Endocrinol Diabetes Obes 2016; 23:38-47. [PMID: 26702849 PMCID: PMC4844466 DOI: 10.1097/med.0000000000000218] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW To summarize the roles of vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating polypeptide (PACAP) and their receptors (VPAC1, VPAC2, PAC1) in human tumors as well as their role in potential novel treatments. RECENT FINDINGS Considerable progress has been made in understanding of the effects of VIP/PACAP on growth of various tumors as well as in the signaling cascades involved, especially in the role of transactivation of the epidermal growth factor family. The overexpression of VPAC1/2 and PAC1 on a number of common neoplasms (breast, lung, prostate, central nervous system and neuroblastoma) is receiving increased attention both as a means of tumor imaging the location and extent of these tumors, as well as for targeted directed treatment, by coupling cytotoxic agents to VIP/PACAP analogues. SUMMARY VIP/PACAP has prominent growth effects on a number of common neoplasms, which frequently overexpressed the three subtypes of their receptors. The increased understanding of their signaling cascades, effect on tumor growth/differentiation and the use of the overexpression of these receptors for localization/targeted cytotoxic delivery are all suggesting possible novel tumor treatments.
Collapse
Affiliation(s)
- Terry W Moody
- aDepartment of Health and Human Services, National Cancer Institute, Center for Cancer Research, Office of the Director bNational Institutes of Health, National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, Bethesda, Maryland, USA
| | | | | |
Collapse
|