1
|
Alzahrani MS, Almutairy B, Althobaiti YS, Alsaab HO. Recent Advances in RNA Interference-Based Therapy for Hepatocellular Carcinoma: Emphasis on siRNA. Cell Biochem Biophys 2024; 82:1947-1964. [PMID: 38987439 DOI: 10.1007/s12013-024-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Even though RNA treatments were first proposed as a way to change aberrant signaling in cancer, research in this field is currently ongoing. The term "RNAi" refers to the use of several RNAi technologies, including ribozymes, riboswitches, Aptamers, small interfering RNA (siRNA), antisense oligonucleotides (ASOs), and CRISPR/Cas9 technology. The siRNA therapy has already achieved a remarkable feat by revolutionizing the treatment arena of cancers. Unlike small molecules and antibodies, which need administration every three months or even every two years, RNAi may be given every quarter to attain therapeutic results. In order to overcome complex challenges, delivering siRNAs to the targeted tissues and cells effectively and safely and improving the effectiveness of siRNAs in terms of their action, stability, specificity, and potential adverse consequences are required. In this context, the three primary techniques of siRNA therapies for hepatocellular carcinoma (HCC) are accomplished for inhibiting angiogenesis, decreasing cell proliferation, and promoting apoptosis, are discussed in this review. We also deliberate targeting issues, immunogenic reactions to siRNA therapy, and the difficulties with their intrinsic chemistry and transportation.
Collapse
Affiliation(s)
- Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia.
| |
Collapse
|
2
|
Wang Y, Lin W, Huang G, Nie S, Yu Q, Hou F, Zong S. The therapeutic principle of combined clearing heat and resolving toxin plus TACE on primary liver cancer: A systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117072. [PMID: 37625603 DOI: 10.1016/j.jep.2023.117072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Transcatheter arterial chemoembolization (TACE) is recommended as the first-line therapy for unresected primary liver cancer (PLC), but only partial patients could benefit from TACE due to the serious adverse reactions. Clearing heat and resolving toxin (CHRT), one of most critical traditional Chinese medicine (TCM) therapeutic principles, has been widely used in the treatment of PLC patients especially after TACE. However, there is no enough clinical evidence to confirm the efficacy and safety of the combined therapy. AIM OF THE STUDY To comprehensively evaluate the efficacy and safety of the combined CHRT-CHF with TACE in the treatment of PLC. MATERIALS AND METHODS 7 databases were searched from their inception until February 1, 2023. The primary outcomes included survival rate (1-, 2-year), objective response rate (ORR) and disease control rate (DCR), liver function indicators (AST, ALT), adverse reactions including fever, upper digestive tract side and myelosuppression, AFP were selected as the secondary outcomes. RevMan5.4 software was used to evaluate the quality of included studies; meta-analysis, subgroup analysis, meta-regression analysis, publication bias and trial sequential analyses (TSA) was conducted by Stata software 12.0. RESULTS There were 40 RCTs involving 3649 patients. Patients treated with TACE plus CHRT-CHF showed significantly better 1-, 2-year survival (respectively: OR, 2.23 [1.67-2.97]; OR, 2.13 [1.56-2.92]), ORR (OR, 2.14 [1.82-2.52]), DCR (OR, 2.13 [1.73-2.62]) compared with TACE alone. There was a decreased incidence of aspartate transaminase (AST), alanine transaminase (ALT), alpha-fetoprotein (AFP) and postembolization syndrome (PES) in patients receiving the combined TACE with CHRT-CHF compared with TACE alone. Subgroup analysis found that lower proportion (20-30%) of CHRT-CHF significantly enhanced survival rate and DCR, higher proportion (≥40%) of CHRT-CHF reduced PES after TACE treatment. CONCLUSION The efficacy and safety of the combined CHRT-CHF with TACE were validated in this meta-analysis, the optimal proportion of CHRT-CHF in enhancing the efficacy may be 20-30%; Additionally, higher proportion (≥40%) of CHRT-CHF appears to reduce PES after TACE treatment. The potential role of combined relative proportion of CHRT-CHF with TACE should be emphasized in clinic.
Collapse
Affiliation(s)
- Yuyao Wang
- College of Traditional Chinese Medicine, Hebei University, Baoding, 071000, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200043, China
| | - Guokai Huang
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200043, China
| | - Shuchang Nie
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200043, China
| | - Qin Yu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Fenggang Hou
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai TCM University, Shanghai, 200071, China.
| | - Shaoqi Zong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200043, China.
| |
Collapse
|
3
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers. Cells 2023; 12:1406. [PMID: 37408240 DOI: 10.3390/cells12101406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
4
|
Lee MJ, Lee J, Kang SK, Wirth D, Yoo SM, Park C, Lee MS. CXCL1 confers a survival advantage in Kaposi's sarcoma-associated herpesvirus-infected human endothelial cells through STAT3 phosphorylation. J Med Virol 2023; 95. [PMID: 35869037 DOI: 10.1002/jmv.28020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 01/11/2023]
Abstract
Many cytokines produced by Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells have been shown to participate in the pathogenesis of KSHV. Determination of the exact role of cytokines in Kaposi's sarcoma (KS) pathogenesis is limited, however, by the difficulty to manipulate the target genes in human endothelial cells. In this study, we sought to elucidate the role of cytokines in KSHV-infected human immortalized endothelial cell line (HuARLT cells) by knockout (KO) of the corresponding target genes using the CRISPR/Cas9 system. The cytokine production profile of KSHV-infected HuARLT cells was analyzed using a protein array, and several cytokines were found to be highly upregulated following KSHV infection. This study focused on CXCL1, which was investigated by knocked out in HuARLT cells. KSHV-infected CXCL1 KO cells underwent increased cell death compared to KSHV-infected wild-type (WT) cells and mock-infected CXCL1 KO cells. Lytic replication was not observed in KSHV-infected WT nor CXCL1 KO cells. Phosphorylation of STAT3 was significantly suppressed in KSHV-infected CXCL1 KO cells. Additionally, inhibitors of STAT3 and CXCL1 induced cell death in KSHV-infected endothelial cells. Our results show that CXCL1 production is required for the survival of KSHV-infected endothelial cells, and the CXCL1 to STAT3 phosphorylation signaling pathway may be a therapeutic target for KS.
Collapse
Affiliation(s)
- Myung-Ju Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Jisu Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Su-Kyung Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Seung-Min Yoo
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Changhoon Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Motyka J, Gacuta E, Kicman A, Kulesza M, Ławicki P, Ławicki S. Plasma Levels of CXC Motif Chemokine 1 (CXCL1) and Chemokine 8 (CXCL8) as Diagnostic Biomarkers in Luminal A and B Breast Cancer. J Clin Med 2022; 11:jcm11226694. [PMID: 36431173 PMCID: PMC9693547 DOI: 10.3390/jcm11226694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Chemokines are involved in the regulation of immune balance and in triggering an immune response. CXCL1 and CXCL8 belong to the ELR-motif-containing group of CXC chemokines, which, in breast cancer (BC), stimulate angiogenesis and increase migration and invasiveness of tumor cells. The aim of this study was to evaluate CXCL1, CXCL8 and comparative marker CA 15-3 plasma concentrations in BC patients with luminal subtypes A and B. The study group consisted of 100 patients with BC, and the control group of 50 subjects with benign breast lesions and 50 healthy women. Chemokines concentrations were determined by ELISA method; CA15-3-by CMIA. Concentrations of CXCL8 and CA15-3 were significantly higher in BC total group and luminal B (for CA15-3 also in luminal A) subtype of BC than in healthy controls and subjects with benign lesions. In the total BC group, the highest SE, PPV and NPV were observed for CXCL8 (70%, 77.78%, 50%, resp.). A combined analysis of tested chemokines with CA 15-3 increased SE and NPV values (96%, 69.23%, resp.). The diagnostic power of the test (measured by area under ROC curve (AUC)) showed the highest value for CXCL8 in the total BC group (0.6410), luminal A (0.6120) and B subgroup of BC (0.6700). For the combined parameter, the AUC was increasing and reached the highest value for CXCL1 + CXCL8 + CA15-3 combination (0.7024). In light of these results, we suggest that CXCL8 could be used as an additional diagnostic marker that would positively influence the diagnostic utility of CA 15-3, especially in luminal B subtype of BC.
Collapse
Affiliation(s)
- Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence:
| | - Ewa Gacuta
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Bialystok, Poland
| | - Monika Kulesza
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Paweł Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Sławomir Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
6
|
Man X, Yang X, Wei Z, Tan Y, Li W, Jin H, Wang B. High expression level of CXCL1/GROα is linked to advanced stage and worse survival in uterine cervical cancer and facilitates tumor cell malignant processes. BMC Cancer 2022; 22:712. [PMID: 35764974 PMCID: PMC9241244 DOI: 10.1186/s12885-022-09749-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background CXCL1 belongs to a member of the ELR + CXC chemokine subgroups that also known as GRO-alpha. It has been recognized that several types of human cancers constitutively express CXCL1, which may serve as a crucial mediator involved in cancer development and metastasis via an autocrine and/or paracrine fashion. However, the expression pattern and clinical significance of CXCL1 in human uterine cervix cancer (UCC), as well as its roles and mechanisms in UCC tumor biology remains entirely unclear. Methods The expression and clinical significance of CXCL1 in UCC tissues was explored using immunohistochemistry and bioinformatics analyses. The expression and effects of CXCL1 in HeLa UCC cells were assessed using ELISA, CCK-8 and transwell assays. Western blotting experiments were performed to evaluate the potential mechanism of CXCL1 on malignant behaviors of HeLa UCC cells. Results The current study demonstrated that CXCL1 was expressed in HeLa UCC cells, PHM1-41 human immortalized cervical stromal cells, as well as cervical tissues, with UCC tissues having an evidently high level of CXCL1. This high level of CXCL1 in cancer tissues was notably related to poor clinical stages and worse survival probability, rather than tumor infiltration and patient age. In addition, CXCL1 expression was extremely correlated with CCL20, CXCL8 and CXCL3 cancer-associated chemokines expression. In vitro, the growth and migration abilities of HeLa cells were significantly enhanced in the presence of exogenous CXCL1. Gain-function assay revealed that CXCL1 overexpression significantly promoted growth and migration response in HeLa cells in both autocrine and paracrine manners. Finally, we found that CXCL1 overexpression in HeLa cells influenced the expression of ERK signal-related genes, and HeLa cell malignant behaviors derived from CXCL1 overexpression were further interrupted in the presence of the ERK1/2 blocker. Conclusion Our findings demonstrate the potential roles of CXCL1 as a promoter and a novel understanding of the functional relationship between CXCL1 and the ERK signaling pathway in UCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09749-0.
Collapse
Affiliation(s)
- Xiaxia Man
- Department of Oncologic Gynecology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xiaolin Yang
- Department of Geriatrics, The First hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhentong Wei
- Department of Oncologic Gynecology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuying Tan
- Department of Echocardiography, The First hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Wanying Li
- Department of Oncologic Gynecology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hongjuan Jin
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Baogang Wang
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
7
|
Johnson S, Karpova Y, Guo D, Ghatak A, Markov DA, Tulin AV. PARG suppresses tumorigenesis and downregulates genes controlling angiogenesis, inflammatory response, and immune cell recruitment. BMC Cancer 2022; 22:557. [PMID: 35585513 PMCID: PMC9118775 DOI: 10.1186/s12885-022-09651-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/09/2022] [Indexed: 12/20/2022] Open
Abstract
Chemokines are highly expressed in tumor microenvironment and play a critical role in all aspects of tumorigenesis, including the recruitment of tumor-promoting immune cells, activation of cancer-associated fibroblasts, angiogenesis, metastasis, and growth. Poly (ADP-ribose) polymerase (PARP) is a multi-target transcription regulator with high levels of poly(ADP-ribose) (pADPr) being reported in a variety of cancers. Furthermore, poly (ADP-ribose) glycohydrolase (PARG), an enzyme that degrades pADPr, has been reported to be downregulated in tumor tissues with abnormally high levels of pADPr. In conjunction to this, we have recently reported that the reduction of pADPr, by either pharmacological inhibition of PARP or PARG's overexpression, disrupts renal carcinoma cell malignancy in vitro. Here, we use 3 T3 mouse embryonic fibroblasts, a universal model for malignant transformation, to follow the effect of PARG upregulation on cells' tumorigenicity in vivo. We found that the overexpression of PARG in mouse allografts produces significantly smaller tumors with a delay in tumor onset. As downregulation of PARG has also been implicated in promoting the activation of pro-inflammatory genes, we also followed the gene expression profile of PARG-overexpressing 3 T3 cells using RNA-seq approach and observed that chemokine transcripts are significantly reduced in those cells. Our data suggest that the upregulation of PARG may be potentially useful for the tumor growth inhibition in cancer treatment and as anti-inflammatory intervention.
Collapse
Affiliation(s)
- Sarah Johnson
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Yaroslava Karpova
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334 Russia
| | - Danping Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Atreyi Ghatak
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Dmitriy A. Markov
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084 USA
| | - Alexei V. Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| |
Collapse
|
8
|
Sartorius K, Antwi SO, Chuturgoon A, Roberts LR, Kramvis A. RNA Therapeutic Options to Manage Aberrant Signaling Pathways in Hepatocellular Carcinoma: Dream or Reality? Front Oncol 2022; 12:891812. [PMID: 35600358 PMCID: PMC9115561 DOI: 10.3389/fonc.2022.891812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the early promise of RNA therapeutics as a magic bullet to modulate aberrant signaling in cancer, this field remains a work-in-progress. Nevertheless, RNA therapeutics is now a reality for the treatment of viral diseases (COVID-19) and offers great promise for cancer. This review paper specifically investigates RNAi as a therapeutic option for HCC and discusses a range of RNAi technology including anti-sense oligonucleotides (ASOs), Aptamers, small interfering RNA (siRNA), ribozymes, riboswitches and CRISPR/Cas9 technology. The use of these RNAi based interventions is specifically outlined in three primary strategies, namely, repressing angiogenesis, the suppression of cell proliferation and the promotion of apoptosis. We also discuss some of the inherent chemical and delivery problems, as well as targeting issues and immunogenic reaction to RNAi interventions.
Collapse
Affiliation(s)
- Kurt Sartorius
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- Department of Surgery, KZN Kwazulu-Natal (UKZN) Gastrointestinal Cancer Research Centre, Durban, South Africa
| | - Samuel O. Antwi
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Lewis R. Roberts
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Lee CW, Chiang YC, Yu PA, Peng KT, Chi MC, Lee MH, Fang ML, Lee KH, Hsu LF, Liu JF. A Role of CXCL1 Drives Osteosarcoma Lung Metastasis via VCAM-1 Production. Front Oncol 2021; 11:735277. [PMID: 34760697 PMCID: PMC8573405 DOI: 10.3389/fonc.2021.735277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma, a common aggressive and malignant cancer, appears in the musculoskeletal system among young adults. The major cause of mortality in osteosarcoma was the recurrence of lung metastases. However, the molecular mechanisms of metastasis involved in osteosarcomas remain unclear. Recently, CXCL1 and CXCR2 have been crucial indicators for lung metastasis in osteosarcoma by paracrine releases, suggesting the involvement of directing neutrophils into tumor microenvironment. In this study, overexpression of CXCL1 has a positive correlation with the migratory and invasive activities in osteosarcoma cell lines. Furthermore, the signaling pathway, CXCR2/FAK/PI3K/Akt, is activated through CXCL1 by promoting vascular cell adhesion molecule 1 (VCAM-1) via upregulation of nuclear factor-kappa B (NF-κB) expression and nuclear translocation. The in vivo animal model further demonstrated that CXCL1 serves as a critical promoter in osteosarcoma metastasis to the lung. The correlated expression of CXCL1 and VCAM-1 was observed in the immunohistochemistry staining from human osteosarcoma specimens. Our findings demonstrate the cascade mechanism regulating the network in lung metastasis osteosarcoma, therefore indicating that the CXCL1/CXCR2 pathway is a worthwhile candidate to further develop treatment schemas.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
| | - Yao-Chang Chiang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
| | - Pei-An Yu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Taiwan.,Sports Medicine Center, Chang Gung Memorial Hospital at Chia Yi, Chiayi, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Miao-Ching Chi
- Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ming-Hsueh Lee
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Mei-Ling Fang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan.,Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung, Taiwan
| | - Kuan-Han Lee
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Lee-Fen Hsu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan.,Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Kim JT, Napier DL, Kim J, Li C, Lee EY, Weiss HL, Wang Q, Evers BM. Ketogenesis alleviates TNFα-induced apoptosis and inflammatory responses in intestinal cells. Free Radic Biol Med 2021; 172:90-100. [PMID: 34087430 PMCID: PMC8355065 DOI: 10.1016/j.freeradbiomed.2021.05.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
The disturbance of strictly regulated self-regeneration in mammalian intestinal epithelium is associated with various intestinal disorders, particularly inflammatory bowel diseases (IBDs). TNFα, which plays a critical role in the pathogenesis of IBDs, has been reported to inhibit production of ketone bodies such as β-hydroxybutyrate (βHB). However, the role of ketogenesis in the TNFα-mediated pathological process is not entirely known. Here, we showed the regulation and role of HMGCS2, the rate-limiting enzyme of ketogenesis, in TNFα-induced apoptotic and inflammatory responses in intestinal epithelial cells. Treatment with TNFα dose-dependently decreased protein and mRNA expression of HMGCS2 and its product, βHB production in human colon cancer cell lines HT29 and Caco2 cells and mouse small intestinal organoids. Moreover, the repressed level of HMGCS2 protein was found in intestinal epithelium of IBD patients with Crohn's disease and ulcerative colitis as compared with normal tissues. Furthermore, knockdown of HMGCS2 enhanced and in contrast, HMGCS2 overexpression attenuated, the TNFα-induced apoptosis and expression of pro-inflammatory chemokines (CXCL1-3) in HT29, Caco2 cells and DLD1 cells, respectively. Treatment with βHB or rosiglitazone, an agonist of PPARγ, which increases ketogenesis, attenuated TNFα-induced apoptosis in the intestinal epithelial cells. Finally, HMGCS2 knockdown enhanced TNFα-induced reactive oxygen species (ROS) generation. In addition, hydrogen peroxide, the major ROS contributing to intestine injury, decreased HMGCS2 expression and βHB production in the intestinal cells and mouse organoids. Our findings demonstrate that increased ketogenesis attenuates TNFα-induced apoptosis and inflammation in intestinal cells, suggesting a protective role for ketogenesis in TNFα-induced intestinal pathologies.
Collapse
Affiliation(s)
- Ji Tae Kim
- Markey Cancer Center, Lexington, KY, 40536, USA
| | | | - Jinhwan Kim
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Chang Li
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Eun Y Lee
- Department of Pathology and Laboratory Medicine, Department of Surgery, Lexington, KY, 40536, USA
| | | | - Qingding Wang
- Markey Cancer Center, Lexington, KY, 40536, USA; Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA.
| | - B Mark Evers
- Markey Cancer Center, Lexington, KY, 40536, USA; Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
11
|
Hu L, Wen Z, Chen J, Chen Y, Jin L, Shi H, Chen J, Chen J. The cytomegalovirus UL146 gene product vCXCL1 promotes the resistance of hepatic cells to CD8 + T cells through up-regulation of PD-L1. Biochem Biophys Res Commun 2020; 532:393-399. [PMID: 32883520 DOI: 10.1016/j.bbrc.2020.08.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 01/03/2023]
Abstract
The HCMV (human cytomegalovirus) encodes numerous proteins which function to evade the immune response, which allows the virus to replicate. Exploring the mechanisms of HCMV immune escape helps to find the strategy to inhibit HCMV replicate. CD8+ T cells play a critical role in the immune response to viral pathogens. However, the mechanisms of HCMV to evade the attack by CD8+ T cells remain largely unknown. Viral CXCL1 (vCXCL1) is the production of HCMV UL146 gene. Here, we found that vCXCL1 promoted the resistance of hepatic cells to CD8+ T cells. vCXCL1 increased the levels of PD-L1 protein expression and mRNA expression. VCXCL1 enhanced the binding of STAT3 transcription factor to the promoter of PD-L1 and increased the activity of PD-L1 promoter. Furthermore, down-regulation of PD-L1 reduced the effects of vCXCL1 on the resistance of hepatic cells to CD8+ T cells. Taken together, vCXCL1 promotes the resistance of hepatic cells to CD8+ T cells through up-regulation of PD-L1. This finding might provide a new mechanism of HCMV immune escape.
Collapse
Affiliation(s)
- Linglong Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Zhengwang Wen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Jingjing Chen
- Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Yiping Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Longteng Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Haifan Shi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Junya Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Jie Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, People's Republic of China.
| |
Collapse
|
12
|
Chao CC, Lee CW, Chang TM, Chen PC, Liu JF. CXCL1/CXCR2 Paracrine Axis Contributes to Lung Metastasis in Osteosarcoma. Cancers (Basel) 2020; 12:cancers12020459. [PMID: 32079335 PMCID: PMC7072404 DOI: 10.3390/cancers12020459] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma, the most common of all bone malignancies, has a high likelihood of lung metastasis. Up until now, the molecular mechanisms involved in osteosarcomas with lung metastases are not clearly understood. Recent observations have shown that the chemokine CXCL1 and its receptor CXCR2 assist with the homing of neutrophils into the tumor microenvironment. Here, we show that the CXCL1/CXCR2 paracrine axis is crucial for lung metastasis in osteosarcoma. In an in vivo lung metastasis model of osteosarcoma, lung blood vessels expressed CXCL1 and osteosarcoma cells expressed the CXCR2 receptor. CXCR2 expression was higher in osteosarcoma cell lines than in normal osteoblast cells. Immunohistochemistry staining of clinical osteosarcoma specimens revealed positive correlations between CXCR2 expression and pathology stage and also vascular cell adhesion molecule 1 (VCAM-1) expression. High levels of CXCL1 secreted by human pulmonary artery endothelial cells (HPAECs) promoted osteosarcoma cell mobility, which was mediated by the upregulation of VCAM-1 expression. When HPAECs-conditioned media was incubated in osteosarcoma cells, we observed that the CXCR2 receptor and FAK/PI3K/Akt/NF-κB signaling cascade were required for VCAM-1 expression. Our findings illustrate a molecular mechanism of lung metastasis in osteosarcoma and indicate that CXCL1/CXCR2 is worth targeting in treatment schemas.
Collapse
Affiliation(s)
- Chia-Chia Chao
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan;
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City 33303, Taiwan
| | - Tsung-Ming Chang
- School of Medicine, Institute of Physiology, National Yang-Ming University, Taipei City 11221, Taiwan;
| | - Po-Chun Chen
- Translational medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City 11101, Taiwan;
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Ju-Fang Liu
- Translational medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City 11101, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: or ; Tel.: +(886)-2-2833-2211 (ext. 9420)
| |
Collapse
|
13
|
Nischalke HD, Lutz P, Bartok E, Krämer B, Langhans B, Frizler R, Berg T, Hampe J, Buch S, Datz C, Stickel F, Hartmann G, Strassburg CP, Nattermann J, Spengler U. The PNPLA3 I148M variant promotes lipid-induced hepatocyte secretion of CXC chemokines establishing a tumorigenic milieu. J Mol Med (Berl) 2019; 97:1589-1600. [PMID: 31637480 DOI: 10.1007/s00109-019-01836-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/05/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
Abstract
The I148M variant of the Patatin-like phospholipase domain-containing 3 (PNPLA3) protein is associated with an increased risk for liver inflammation and hepatocellular carcinoma (HCC), but the underlying mechanism is unknown. We hypothesized that enhanced CXC chemokine secretion mediates hepatic inflammation that accelerates development of HCC. Expandable primary human (upcyte®) hepatocytes and human PLC/PRF/5 hepatoma cells were lentivirally transduced with both PNPLA3 I148M variants and stimulated with lipids. Cytokine levels in culture supernatant and patient sera (n = 80) were analyzed by ELISA. Supernatants were assessed in transmigration experiments, tube formation, and proliferation assays. In vitro, lipid stimulation of transduced hepatocytes dose-dependently induced the production of interleukin-8 and CXCL1 in hepatocytes carrying the PNPLA3 148M variant. In line, sera from PNPLA3 148M-positive patients with alcoholic liver cirrhosis contained higher levels of interleukin-8 and CXCL1 than patients with wild-type PNPLA3. Supernatants from lipid-stimulated hepatocytes with the PNPLA3 148M variant induced enhanced migration of white blood cells, angiogenesis, and cell proliferation in comparison with supernatants from wild-type hepatocytes via CXC receptors 1 and 2. Increased production of interleukin-8 and CXCL1 by hepatocytes carrying the PNPLA3 148M variant contributes to a pro-inflammatory and tumorigenic milieu in patients with alcoholic liver disease. KEY MESSAGES: The PNPLA3 148M variant is associated with cirrhosis and hepatocellular carcinoma. Lipid stimulation of hepatocytes with this variant induces IL-8 and CXCL1. Supernatants from hepatocytes with this variant promote migration and angiogenesis. Sera from patients with this variant contained enhanced levels of IL-8 and CXCL1. The PNPLA3 148M variant contributes to a tumorigenic milieu via IL-8 and CXCL1.
Collapse
Affiliation(s)
- Hans Dieter Nischalke
- Department of Internal Medicine I, University Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Philipp Lutz
- Department of Internal Medicine I, University Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany
| | - Benjamin Krämer
- Department of Internal Medicine I, University Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Bettina Langhans
- Department of Internal Medicine I, University Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Regina Frizler
- Department of Internal Medicine I, University Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Thomas Berg
- Department of Gastroenterology, University Hospital Leipzig, Leipzig, Germany
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Stephan Buch
- Medical Department 1, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Christian Datz
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Private University of Salzburg, Salzburg, Austria
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zürich, Zürich, Switzerland
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, University Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrich Spengler
- Department of Internal Medicine I, University Hospital, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
14
|
Yang C, Yu H, Chen R, Tao K, Jian L, Peng M, Li X, Liu M, Liu S. CXCL1 stimulates migration and invasion in ER‑negative breast cancer cells via activation of the ERK/MMP2/9 signaling axis. Int J Oncol 2019; 55:684-696. [PMID: 31322183 PMCID: PMC6685590 DOI: 10.3892/ijo.2019.4840] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
Chemokine (C‑X‑C motif) ligand 1 (CXCL1), a member of the CXC chemokine family, has been reported to be a critical factor in inflammatory diseases and tumor progression; however, its functions and molecular mechanisms in estrogen receptor α (ER)‑negative breast cancer (BC) remain largely unknown. The present study demonstrated that CXCL1 was upregulated in ER‑negative BC tissues and cell lines compared with ER‑positive tissues and cell lines. Treatment with recombinant human CXCL1 protein promoted ER‑negative BC cell migration and invasion in a dose‑dependent manner, and stimulated the activation of phosphorylated (p)‑ extracellular signal‑regulated kinase (ERK)1/2, but not p‑STAT3 or p‑AKT. Conversely, knockdown of CXCL1 in BC cells attenuated these effects. Additionally, CXCL1 increased the expression of matrix metalloproteinase (MMP)2/9 via the ERK1/2 pathway. Inhibition of MEK1/2 by its antagonist U0126 reversed the effects of CXCL1 on MMP2/9 expression. Furthermore, immunohistochemical analysis revealed a strong positive association between CXCL1 and p‑ERK1/2 expression levels in BC tissues. In conclusion, the present study demonstrated that CXCL1 is highly expressed in ER‑negative BC, and stimulates BC cell migration and invasion via the ERK/MMP2/9 pathway. Therefore, CXCL1 may serve as a potential therapeutic target in ER‑negative BC.
Collapse
Affiliation(s)
- Chengcheng Yang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haochen Yu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Rui Chen
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kai Tao
- Department of the Second of Gynecology Oncology, Shanxi Provincial Tumor Hospital, The Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Lei Jian
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaotian Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
15
|
Vlahopoulos S, Adamaki M, Khoury N, Zoumpourlis V, Boldogh I. Roles of DNA repair enzyme OGG1 in innate immunity and its significance for lung cancer. Pharmacol Ther 2018; 194:59-72. [PMID: 30240635 DOI: 10.1016/j.pharmthera.2018.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines are pivotal mediators of the immune response, and their coordinated expression protects host tissue from excessive damage and oxidant stress. Nevertheless, the development of lung pathology, including asthma, chronic obstructive pulmonary disease, and ozone-induced lung injury, is associated with oxidant stress; as evidence, there is a significant increase in levels of the modified guanine base 7,8-dihydro-8-oxoguanine (8-oxoG) in the genome. 8-OxoG is primarily recognized by 8-oxoguanine glycosylase 1 (OGG1), which catalyzes the first step in the DNA base excision repair pathway. However, oxidant stress in the cell transiently halts enzymatic activity of substrate-bound OGG1. The stalled OGG1 facilitates DNA binding of transactivators, including NF-κB, to their cognate sites to enable expression of cytokines and chemokines, with ensuing recruitments of inflammatory cells. Hence, defective OGG1 will modulate the coordination between innate and adaptive immunity through excessive oxidant stress and cytokine dysregulation. Both oxidant stress and cytokine dysregulation constitute key elements of oncogenesis by KRAS, which is mechanistically coupled to OGG1. Thus, analysis of the mechanism by which OGG1 modulates gene expression helps discern between beneficial and detrimental effects of oxidant stress, exposes a missing functional link as a marker, and yields a novel target for lung cancer.
Collapse
Affiliation(s)
- Spiros Vlahopoulos
- Ηoremeio Research Laboratory, First Department of Paediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Nikolas Khoury
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Istvan Boldogh
- Departments of Microbiology and Immunology and the Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
16
|
Chatterjee PK, Yeboah MM, Solanki MH, Kumar G, Xue X, Pavlov VA, Al-Abed Y, Metz CN. Activation of the cholinergic anti-inflammatory pathway by GTS-21 attenuates cisplatin-induced acute kidney injury in mice. PLoS One 2017; 12:e0188797. [PMID: 29190774 PMCID: PMC5708817 DOI: 10.1371/journal.pone.0188797] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury (AKI) is the most common side effect of cisplatin, a widely used chemotherapy drug. Although AKI occurs in up to one third of cancer patients receiving cisplatin, effective renal protective strategies are lacking. Cisplatin targets renal proximal tubular epithelial cells leading to inflammation, reactive oxygen species, tubular cell injury, and eventually cell death. The cholinergic anti-inflammatory pathway is a vagus nerve-mediated reflex that suppresses inflammation via α7 nicotinic acetylcholine receptors (α7nAChRs). Our previous studies demonstrated the renoprotective and anti-inflammatory effects of cholinergic agonists, including GTS-21. Therefore, we examined the effect of GTS-21 on cisplatin-induced AKI. Male C57BL/6 mice received either saline or GTS-21 (4mg/kg, i.p.) twice daily for 4 days before cisplatin and treatment continued through euthanasia; 3 days post-cisplatin mice were euthanized and analyzed for markers of renal injury. GTS-21 significantly reduced cisplatin-induced renal dysfunction and injury (p<0.05). GTS-21 significantly attenuated renal Ptgs2/COX-2 mRNA and IL-6, IL-1β, and CXCL1 protein expression, as well as neutrophil infiltration after cisplatin. GTS-21 blunted cisplatin-induced renal ERK1/2 activation, as well as renal ATP depletion and apoptosis (p<0.05). GTS-21 suppressed the expression of CTR1, a cisplatin influx transporter and enhanced the expression of cisplatin efflux transporters MRP2, MRP4, and MRP6 (p<0.05). Using breast, colon, and lung cancer cell lines we showed that GTS-21 did not inhibit cisplatin’s tumor cell killing activity. GTS-21 protects against cisplatin-AKI by attenuating renal inflammation, ATP depletion and apoptosis, as well as by decreasing renal cisplatin influx and increasing efflux, without impairing cisplatin-mediated tumor cell killing. Our results support further exploring the cholinergic anti-inflammatory pathway for preventing cisplatin-induced AKI.
Collapse
Affiliation(s)
- Prodyot K Chatterjee
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Michael M Yeboah
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Malvika H Solanki
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America.,Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Gopal Kumar
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America
| | - Xiangying Xue
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Valentin A Pavlov
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America.,Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
| | - Yousef Al-Abed
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America.,Center for Molecular Innovation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Christine N Metz
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America.,Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, United States of America.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States of America
| |
Collapse
|
17
|
Donson AM, Apps J, Griesinger AM, Amani V, Witt DA, Anderson RCE, Niazi TN, Grant G, Souweidane M, Johnston JM, Jackson EM, Kleinschmidt-DeMasters BK, Handler MH, Tan AC, Gore L, Virasami A, Gonzalez-Meljem JM, Jacques TS, Martinez-Barbera JP, Foreman NK, Hankinson TC. Molecular Analyses Reveal Inflammatory Mediators in the Solid Component and Cyst Fluid of Human Adamantinomatous Craniopharyngioma. J Neuropathol Exp Neurol 2017; 76:779-788. [PMID: 28859336 DOI: 10.1093/jnen/nlx061] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pediatric adamantinomatous craniopharyngioma (ACP) is a highly solid and cystic tumor, often causing substantial damage to critical neuroendocrine structures such as the hypothalamus, pituitary gland, and optic apparatus. Paracrine signaling mechanisms driving tumor behavior have been hypothesized, with IL-6R overexpression identified as a potential therapeutic target. To identify potential novel therapies, we characterized inflammatory and immunomodulatory factors in ACP cyst fluid and solid tumor components. Cytometric bead analysis revealed a highly pro-inflammatory cytokine pattern in fluid from ACP compared to fluids from another cystic pediatric brain tumor, pilocytic astrocytoma. Cytokines and chemokines with particularly elevated concentrations in ACPs were IL-6, CXCL1 (GRO), CXCL8 (IL-8) and the immunosuppressive cytokine IL-10. These data were concordant with solid tumor compartment transcriptomic data from a larger cohort of ACPs, other pediatric brain tumors and normal brain. The majority of receptors for these cytokines and chemokines were also over-expressed in ACPs. In addition to IL-10, the established immunosuppressive factor IDO-1 was overexpressed by ACPs at the mRNA and protein levels. These data indicate that ACP cyst fluids and solid tumor components are characterized by an inflammatory cytokine and chemokine expression pattern. Further study regarding selective cytokine blockade may inform novel therapeutic interventions.
Collapse
Affiliation(s)
- Andrew M Donson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - John Apps
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andrea M Griesinger
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vladimir Amani
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Davis A Witt
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Richard C E Anderson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Toba N Niazi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gerald Grant
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mark Souweidane
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James M Johnston
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eric M Jackson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Bette K Kleinschmidt-DeMasters
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael H Handler
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aik-Choon Tan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lia Gore
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alex Virasami
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jose Mario Gonzalez-Meljem
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Thomas S Jacques
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Juan Pedro Martinez-Barbera
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Todd C Hankinson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Developmental Biology and Cancer Programme, Great Ormond Street UCL Institute of Child Health, London, UK; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Division of Pediatric Neurosurgery, Department of Neurosurgery, Miami Children's Hospital, University of Miami/Miller School of Medicine, Miami, Florida; Department of Neurosurgery, Stanford University Medical Center, Palo Alto, California; Department of Neurological Surgery, Weill Medical College of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Neurosurgery, Children's Hospital Alabama, Birmingham, Alabama; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology; Department of Neurosurgery; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Histopathology, Great Ormond Street Hospital, NHS Trust, London, UK; Morgan Adams Foundation Pediatric Brain Tumor Research Program; Pediatric Neurosurgery, Children's Hospital Colorado; and Adult and Child Center for Health Outcomes Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | |
Collapse
|
18
|
Abstract
INTRODUCTION Recent breakthrough advances in Multiple Myeloma (MM) immunotherapy have been achieved with the approval of the first two monoclonal antibodies, elotuzumab and daratumumab. Adoptive cell therapy (ACT) represents yet another, maybe the most powerful modality of immunotherapy, in which allogeneic or autologous effector cells are expanded and activated ex vivo followed by their re-infusion back into patients. Infused effector cells belong to two categories: naturally occurring, non-engineered cells (donor lymphocyte infusion, myeloma infiltrating lymphocytes, deltagamma T cells) or genetically- engineered antigen-specific cells (chimeric antigen receptor T or NK cells, TCR-engineered cells). Areas covered: This review article summarizes our up-to-date knowledge on ACT in MM, its promises, and upcoming strategies to both overcome its toxicity and to integrate it into future treatment paradigms. Expert opinion: Early results of clinical studies using CAR T cells or TCR- engineered T cells in relapsed and refractory MM are particularly exciting, indicating the potential of long-term disease control or even cure. Despite several caveats including toxicity, costs and restricted availability in particular, these forms of immunotherapy are likely to once more revolutionize MM therapy.
Collapse
Affiliation(s)
- Sonia Vallet
- a Department of Internal Medicine , Karl Landsteiner University of Health Sciences, University Hospital , Krems an der Donau , Austria
| | - Martin Pecherstorfer
- a Department of Internal Medicine , Karl Landsteiner University of Health Sciences, University Hospital , Krems an der Donau , Austria
| | - Klaus Podar
- a Department of Internal Medicine , Karl Landsteiner University of Health Sciences, University Hospital , Krems an der Donau , Austria
| |
Collapse
|
19
|
Dong LF, Xu SY, Long JP, Wan F, Chen YD. RNA-Sequence Analysis Reveals Differentially Expressed Genes (DEGs) in Patients Exhibiting Different Risks of Tumor Metastasis. Med Sci Monit 2017; 23:2842-2849. [PMID: 28601889 PMCID: PMC5475372 DOI: 10.12659/msm.904789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Breast cancer is one of the most common malignancies in women. In a previous study, we found that for two patients who had a high risk of lymphatic metastasis, lymphatic metastasis did not occur; whereas, for two patients who had a low risk of lymphatic metastasis, lymphatic metastasis did occur. Material/Methods We analyzed the differential gene expressions of these four patients by RNA-sequence. The data (HRNM_T versus HRNM_N, LRYM_T versus LRYM_N, and HRNM_T versus LRYM_T) was then processed using differentially expressed genes (DEGs) analysis, functional analysis for DEGs, and PPI network construct. Results For HRNM_T versus HRNM_N, there were 224 DEGs. There were 504 DEGs for LRYM_T versus LRYM_N, and 88 DEGs for LRYM_T versus LRYM_N. For HRNM_T versus HRNM_N, DEGs were up-regulated mainly in the cell cycle, the IL-17 signaling pathway, and the progesterone-mediated oocyte maturation; DEGs were down-regulated mainly in the IL-17 signaling pathway. For LRYM_T versus LRYM_N, DEGs were up-regulated mainly in protein digestion and absorption, and cytokine-cytokine receptor interaction; DEGs were down-regulated mainly in ECM-receptor interaction. For HRNM_T versus LRYM_T, DEGs were up-regulated mainly in the PPAR signaling pathway; DEGs were downregulated mainly in the adipocytokine signaling pathway. The DEGs were screened to construct PPI networks. Conclusions The GO and KEGG functional enrichments of HRNM_T versus HRNM_N, and LRYM_T versus LRYM_N were consistent with earlier studies. For HRNM_T versus LRYM_T, DEGs were up-regulated mainly in PPAR signaling; DEGs were down-regulated mainly in the adipocytokine pathway.
Collapse
Affiliation(s)
- Li-Feng Dong
- Department of Breast, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Shu-Ying Xu
- Physical Examination Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Jing-Pei Long
- Department of Breast, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Fang Wan
- Department of Breast, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Yi-Ding Chen
- Department of Surgical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
20
|
Tumor-Derived CXCL1 Promotes Lung Cancer Growth via Recruitment of Tumor-Associated Neutrophils. J Immunol Res 2016; 2016:6530410. [PMID: 27446967 PMCID: PMC4942661 DOI: 10.1155/2016/6530410] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/10/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
Neutrophils have a traditional role in inflammatory process and act as the first line of defense against infections. Although their contribution to tumorigenesis and progression is still controversial, accumulating evidence recently has demonstrated that tumor-associated neutrophils (TANs) play a key role in multiple aspects of cancer biology. Here, we detected that chemokine CXCL1 was dramatically elevated in serum from 3LL tumor-bearing mice. In vitro, 3LL cells constitutively expressed and secreted higher level of CXCL1. Furthermore, knocking down CXCL1 expression in 3LL cells significantly hindered tumor growth by inhibiting recruitment of neutrophils from peripheral blood into tumor tissues. Additionally, tumor-infiltrated neutrophils expressed higher levels of MPO and Fas/FasL, which may be involved in TAN-mediated inhibition of CD4+ and CD8+ T cells. These results demonstrate that tumor-derived CXCL1 contributes to TANs infiltration in lung cancer which promotes tumor growth.
Collapse
|