1
|
Janeczko M, Kochanowicz E, Górka K, Skrzypek T. Quinalizarin as a potential antifungal drug for the treatment of Candida albicans fungal infection in cancer patients. Microbiol Spectr 2024; 12:e0365223. [PMID: 38289929 PMCID: PMC10913734 DOI: 10.1128/spectrum.03652-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
This study aims to analyze the antifungal properties of quinalizarin, a plant-derived compound with proven anticancer effects. Quinalizarin exhibited antifungal activity against opportunistic pathogenic Candida species and Geotrichum capitatum. The treatment with this anthraquinone reduced hyphal growth, inhibited biofilm formation, and damaged mature Candida albicans biofilms. Real-time RT-PCR revealed that quinalizarin downregulated the expression of hyphae-related and biofilm-specific genes. The flow cytometry method used in the study showed that both apoptosis and necrosis were the physiological mechanisms of quinalizarin-induced C. albicans cell death, depending on the dose of the antifungal agent. A further study revealed an increase in the levels of intracellular reactive oxygen species and alterations in mitochondrial membrane potential after treatment with quinalizarin. Finally, quinalizarin was found to have low toxicity in a hemolytic test using human erythrocytes. In conclusion, we have identified quinalizarin as a potential antifungal compound.IMPORTANCEThis article is a study to determine the antifungal activity of quinalizarin (1,2,5,8-tetrahydroxyanthraquinone). Quinalizarin has potential antitumor properties and is effective in different types of tumor cells. The aim of the present study was to prove that quinalizarin can be used simultaneously in the treatment of cancer and in the treatment of intercurrent fungal infections. Quinalizarin was identified as a novel antifungal compound with low toxicity. These results may contribute to the development of a new drug with dual activity in the treatment of cancer-associated candidiasis.
Collapse
Affiliation(s)
- Monika Janeczko
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Elżbieta Kochanowicz
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Kamila Górka
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Mat Lazim N, Che Lah CI, Wan Juhari WK, Sulong S, Zilfalil BA, Abdullah B. The Role of Genetic Pathways in the Development of Chemoradiation Resistance in Nasopharyngeal Carcinoma (NPC) Patients. Genes (Basel) 2021; 12:1835. [PMID: 34828441 PMCID: PMC8619242 DOI: 10.3390/genes12111835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Management of nasopharyngeal carcinoma (NPC) remains elusive despite new developments and advancement that has been made in the current management approaches. A patient's survival and prognosis remain dismal especially for a late-stage disease. This is highly attribute to the chemoradiation resistance. Arrays of genes and molecular mechanisms underlie the development of chemoradiation resistance in NPC. Imperatively, unravelling the true pathogenesis of chemoradiation resistance is crucial as these significant proteins and genes can be modulated to produce an effective therapeutic target. It is pivotal to identify the chemoradiation resistance at the very beginning in order to combat the chemoradiation resistance efficiently. Intense research in the genetic ecosphere is critical, as the discovery and development of novel therapeutic targets can be used for screening, diagnosis, and treating the chemoradiation resistance aggressively. This will escalate the management trajectory of NPC patients. This article highlights the significance of genetic and molecular factors that play critical roles in the chemoradiation resistance and how these factors may be modified for next-generation targeted therapy products.
Collapse
Affiliation(s)
- Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (C.I.C.L.); (B.A.)
| | - Che Ismail Che Lah
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (C.I.C.L.); (B.A.)
| | - Wan Khairunnisa Wan Juhari
- Department of Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Malaysian Node of the Human Variome Project, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Bin Alwi Zilfalil
- Malaysian Node of the Human Variome Project, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Baharudin Abdullah
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (C.I.C.L.); (B.A.)
| |
Collapse
|
3
|
Luo YH, Li JQ, Zhang Y, Wang JR, Xu WT, Zhang Y, Feng YC, Li SZ, Jin CH. Quinalizarin induces cycle arrest and apoptosis via reactive oxygen species-mediated signaling pathways in human melanoma A375 cells. Drug Dev Res 2019; 80:1040-1050. [PMID: 31432559 DOI: 10.1002/ddr.21582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/13/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
Abstract
Quinalizarin, a bioactive and highly selective compound, is known to promote apoptosis in colon and lung cancer cells. However, studies evaluating quinalizarin-induced apoptosis in melanoma cells have not been conducted. In the present study, we investigated the underlying mechanisms of antimelanoma activity of quinalizarin in human melanoma A375 cells. The MTT assay and Trypan blue staining were used to evaluate the cell viability. The flow cytometry was used to detect cell cycle, apoptosis and reactive oxygen species (ROS). Western blot was used to detect the expression of cell cycle and apoptosis-related proteins, MAPK, and STAT3. The results revealed a significant dose and time dependent effect of quinalizarin on inhibiting proliferation in three kinds of human melanoma cells, and had no significant toxic effects on normal cells. Moreover, quinalizarin triggered G2/M phase cell arrest by modulating the protein expression levels of CDK 1/2, cyclin A, cyclin B, p21 and p27, and induced apoptosis by down-regulating the antiapoptotic protein Bcl-2 and upregulating the proapoptotic protein BAD, leading to the activation of caspase-3 and PARP in the caspase cascade in A375 cells. Quinalizarin treatment led to apoptosis of A375 cells via activation of MAPK and inhibition of STAT3 signaling pathways. In addition, quinalizarin increased the level of ROS, but ROS scavenger NAC inhibited quinalizarin-induced apoptosis by regulating MAPK and STAT3 signaling pathways. In summary, quinalizarin induces cell cycle arrest and apoptosis via ROS-mediated MAPK and STAT3 signaling pathways in human melanoma A375 cells, and quinalizarin may be used as a novel and effective antimelanoma therapeutic.
Collapse
Affiliation(s)
- Ying-Hua Luo
- Department of Animal Veterinary Medicine, College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jin-Qian Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yu-Chao Feng
- Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shi-Ze Li
- Department of Animal Veterinary Medicine, College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.,Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.,Department of coarse cereals special medical food basic research, National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China
| |
Collapse
|
4
|
Li Q, Li K, Zhang S, Zhou Y, Hong J, Zhou X, Li Z, Wu B, Wu G, Meng R. The effect of ionizing radiation on the subcellular localization and kinase activity of protein kinase CK2 in human non-small cell lung cancer cells. Int J Radiat Biol 2019; 95:1462-1471. [PMID: 31290713 DOI: 10.1080/09553002.2019.1642531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Protein kinase CK2 is a ubiquitously expressed kinase in eukaryotes, which is known to phosphorylate many protein substrates. Because CK2 is involved in the regulation of various signaling pathways, we wondered whether CK2 participated in the regulation of ionizing radiation (IR) induced biological process. In this study, we investigated the effect of IR on the subcellular localization and kinase activity in human non-small cell lung cancer (NSCLC) cells. Immunofluorescent results showed that CK2 subunits shuttle into the nucleus mostly beginning 1 h after IR and lasting more than 6 h. We also conducted in vitro kinase assay and observed an increase in CK2 kinase activity at 6 h after IR. Furthermore, an increase in S phase was observed at 6 h after IR. Colony formation assay results demonstrated that CK2 inhibitor CX-4945 significantly enhanced the effect of irradiation in NSCLC cells. These results indicated that CK2 may be implicated in the regulation of IR-induced biological process.
Collapse
Affiliation(s)
- Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Li
- Pharmacy Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoshu Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Li Q, Zong Y, Li K, Jie X, Hong J, Zhou X, Wu B, Li Z, Zhang S, Wu G, Meng R. Involvement of endothelial CK2 in the radiation induced perivascular resistant niche (PVRN) and the induction of radioresistance for non-small cell lung cancer (NSCLC) cells. Biol Res 2019; 52:22. [PMID: 30992075 PMCID: PMC6466699 DOI: 10.1186/s40659-019-0231-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/06/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Tumor microenvironment (TME) plays a vital role in determining the outcomes of radiotherapy. As an important component of TME, vascular endothelial cells are involved in the perivascular resistance niche (PVRN), which is formed by inflammation or cytokine production induced by ionizing radiation (IR). Protein kinase CK2 is a constitutively active serine/threonine kinase which plays a vital role in cell proliferation and inflammation. In this study, we investigated the potential role of CK2 in PVRN after IR exposure. RESULT Specific CK2 inhibitors, Quinalizarin and CX-4945, were employed to effectively suppressed the kinase activity of CK2 in human umbilical vein endothelial cells (HUVECs) without affecting their viability. Results showing that conditioned medium from IR-exposed HUVECs increased cell viability of A549 and H460 cells, and the pretreatment of CK2 inhibitors slowed down such increment. The secretion of IL-8 and IL-6 in HUVECs was induced after exposure with IR, but significantly inhibited by the addition of CK2 inhibitors. Furthermore, IR exposure elevated the nuclear phosphorylated factor-κB (NF-κB) p65 expression in HUVECs, which was a master factor regulating cytokine production. But when pretreated with CK2 inhibitors, such elevation was significantly suppressed. CONCLUSION This study indicated that protein kinase CK2 is involved in the key process of the IR induced perivascular resistant niche, namely cytokine production, by endothelial cells, which finally led to radioresistance of non-small cell lung cancer cells. Thus, the inhibition of CK2 may be a promising way to improve the outcomes of radiation in non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Li
- Pharmacy Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohua Jie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaxin Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoshu Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Meng LQ, Wang Y, Luo YH, Piao XJ, Liu C, Wang Y, Zhang Y, Wang JR, Wang H, Xu WT, Liu Y, Wu YQ, Sun HN, Han YH, Jin MH, Shen GN, Fang NZ, Jin CH. Quinalizarin Induces Apoptosis through Reactive Oxygen Species (ROS)-Mediated Mitogen-Activated Protein Kinase (MAPK) and Signal Transducer and Activator of Transcription 3 (STAT3) Signaling Pathways in Colorectal Cancer Cells. Med Sci Monit 2018; 24:3710-3719. [PMID: 29860266 PMCID: PMC6014151 DOI: 10.12659/msm.907163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Quinalizarin (1,2,5,8-tetrahydroxyanthraquinone) exhibits potentially useful anticancer effects by inducing apoptosis in several types of cancer, but its underlying mechanism of action remains unknown. The present study examined the effects of quinalizarin on the induction of cell cycle arrest, apoptosis, the generation of reactive oxygen species (ROS), other underlying mechanisms, and its role in modifying colorectal cancer cell lines. MATERIAL AND METHODS The MTT assay was used to evaluate the viability of SW480 and HCT-116 cells that had been treated with quinalizarin and 5-fluorouracil (5-FU). Cell cycle arrest and apoptosis were analyzed by flow cytometry. Western blotting was used to investigate the mitochondrial pathway; Akt, MAPK, and STAT3 signaling pathways were also investigated. The relationship between ROS generation and apoptosis was analyzed by flow cytometry and western blotting. RESULTS The results indicated that quinalizarin significantly inhibits the viability of SW480 and HCT-116 cells in a dose-dependent manner. Quinalizarin induced SW480 cell cycle arrest at G2/M by regulating cyclin B1 and CDK1/2. The apoptosis-related protein expression levels of p-p53, Bad, cleaved caspase-3, cleaved PARP and p-JNK were increased in quinalizarin-treated cells, while protein expression levels Bcl-2, p-Akt, p-ERK, and p-STAT3 were decreased. Quinalizarin induced apoptosis in colorectal cancer cells by regulating MAPK and STAT3 signaling pathways via ROS generation. CONCLUSIONS Quinalizarin induces apoptosis via ROS-mediated MAPK/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Ling-Qi Meng
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China (mainland)
| | - Yue Wang
- Key Laboratory of Animal Cell and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China (mainland)
| | - Ying-Hua Luo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China (mainland)
| | - Xian-Ji Piao
- Department of Gynecology and Obstetrics, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang, China (mainland)
| | - Chang Liu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China (mainland)
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China (mainland)
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China (mainland)
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China (mainland)
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China (mainland)
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China (mainland)
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China (mainland)
| | - Yi-Qin Wu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China (mainland)
| | - Hu-Nan Sun
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China (mainland)
| | - Ying-Hao Han
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China (mainland)
| | - Mei-Hua Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China (mainland)
| | - Gui-Nan Shen
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China (mainland)
| | - Nan-Zhu Fang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, China (mainland)
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China (mainland)
| |
Collapse
|
7
|
Li Q, Li K, Yang T, Zhang S, Zhou Y, Li Z, Xiong J, Zhou F, Zhou X, Liu L, Meng R, Wu G. Association of protein kinase CK2 inhibition with cellular radiosensitivity of non-small cell lung cancer. Sci Rep 2017; 7:16134. [PMID: 29170453 PMCID: PMC5700935 DOI: 10.1038/s41598-017-16012-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/07/2017] [Indexed: 01/14/2023] Open
Abstract
Protein kinase CK2 is a highly conserved protein Ser/Thr protein kinase and plays important roles in cell proliferation, protein translation and cell survival. This study investigated the possibility of using CK2 inhibition as a new approach for increasing the efficacy of radiotherapy in non-small cell lung cancer (NSCLC) and its underlying mechanisms. Kinase inhibition of CK2 was attempted either by using the specific CK2 inhibitor, Quinalizarin or by applying siRNA interference technology to silence the expression of the catalytic subunit of CK2 in A549 and H460 cells. The results showed that CK2α knockdown or Quinalizarin significantly enhanced the radiosensitivity of various NSCLC cells. The notable findings we observed after exposure to both CK2 inhibition and ionizing radiation (IR) were a prolonged delay in radiation-induced DNA double-strand breaks (DSB) repair, robust G2/M checkpoint arrest and increased apoptosis. In vivo studies further demonstrated that compared with each treatment alone, CK2 inhibition combined with IR reduced tumor growth in the H460 cell xenograft model. In conclusion, CK2 is a promising target for the enhancement of radiosensitivity in NSCLC.
Collapse
Affiliation(s)
- Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tianyang Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinrong Xiong
- Oncology Department, The Chinese People's Liberation Army 457 Hospital, Wuhan, 430012, China
| | - Fangzheng Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoshu Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|