1
|
Costa Cerqueira M, Silva A, Martins Sousa S, Pinto-Ribeiro F, Baltazar F, Afonso J, Freitas Costa M. Chromene-based compounds as drug candidates for renal and bladder cancer therapy - A systematic review. Bioorg Chem 2024; 153:107865. [PMID: 39393199 DOI: 10.1016/j.bioorg.2024.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Renal (RC) and bladder cancers (BC) are common urological malignancies prevalent in the male population. Incidence and mortality rates are expected to increase in the near future. Drug toxicity and development of drug resistance in both diseases are major obstacles to achieve successful treatments. Chromenes are heterocyclic compounds constituted by a benzene ring fused to a pyran nucleus. Natural and synthetic chromene-based compounds have proven to be promising anticancer agents. Additionally, re-sensitization of cancer cells to classical treatments has also been demonstrated. Thus, the aim of this systematic review is to assess the potential of chromene-based compounds in the treatment of RC and BC. Study collection was performed in six different databases, to compile existing information on preclinical (in vitro and in vivo) and clinical studies developed to date. Overall, multiple chromene-based compounds showed potent anticancer effects, affecting several biological features such as reduction in cell viability, proliferation, migration and invasion in vitro, and induction of cell cycle arrest and cell death. Tumor volume and weight were generally decreased in vivo upon chromene-based treatment. Modest results have been obtained in two clinical trials, with reports of a partial response and two objective responses in RC patients. Thus, the chromene family can be considered an attractive chemical scaffold, harboring promising drug candidates for RC and BC therapeutics.
Collapse
Affiliation(s)
- Mónica Costa Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Ana Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sofia Martins Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Marta Freitas Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal.
| |
Collapse
|
2
|
Al Azzani M, Nizami ZN, Magramane R, Sekkal MN, Eid AH, Al Dhaheri Y, Iratni R. Phytochemical-mediated modulation of autophagy and endoplasmic reticulum stress as a cancer therapeutic approach. Phytother Res 2024; 38:4353-4385. [PMID: 38961675 DOI: 10.1002/ptr.8283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Autophagy and endoplasmic reticulum (ER) stress are conserved processes that generally promote survival, but can induce cell death when physiological thresholds are crossed. The pro-survival aspects of these processes are exploited by cancer cells for tumor development and progression. Therefore, anticancer drugs targeting autophagy or ER stress to induce cell death and/or block the pro-survival aspects are being investigated extensively. Consistently, several phytochemicals have been reported to exert their anticancer effects by modulating autophagy and/or ER stress. Various phytochemicals (e.g., celastrol, curcumin, emodin, resveratrol, among others) activate the unfolded protein response to induce ER stress-mediated apoptosis through different pathways. Similarly, various phytochemicals induce autophagy through different mechanisms (namely mechanistic target of Rapamycin [mTOR] inhibition). However, phytochemical-induced autophagy can function either as a cytoprotective mechanism or as programmed cell death type II. Interestingly, at times, the same phytochemical (e.g., 6-gingerol, emodin, shikonin, among others) can induce cytoprotective autophagy or programmed cell death type II depending on cellular contexts, such as cancer type. Although there is well-documented mechanistic interplay between autophagy and ER stress, only a one-way modulation was noted with some phytochemicals (carnosol, capsaicin, cryptotanshinone, guangsangon E, kaempferol, and δ-tocotrienol): ER stress-dependent autophagy. Plant extracts are sources of potent phytochemicals and while numerous phytochemicals have been investigated in preclinical and clinical studies, the search for novel phytochemicals with anticancer effects is ongoing from plant extracts used in traditional medicine (e.g., Origanum majorana). Nonetheless, the clinical translation of phytochemicals, a promising avenue for cancer therapeutics, is hindered by several limitations that need to be addressed in future studies.
Collapse
Affiliation(s)
- Mazoun Al Azzani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rym Magramane
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed N Sekkal
- Department of Surgery, Specialty Orthopedic, Tawam Hospital, Al Ain, United Arab Emirates
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Han X, Liang L, He C, Ren Q, Su J, Cao L, Zheng J. A real-world study and network pharmacology analysis of EGFR-TKIs combined with ZLJT to delay drug resistance in advanced lung adenocarcinoma. BMC Complement Med Ther 2023; 23:422. [PMID: 37990309 PMCID: PMC10664478 DOI: 10.1186/s12906-023-04213-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/12/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE This study aimed to explore the efficacy and safety of combining epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) with ZiLongJin Tablet (ZLJT) in delaying acquired resistance in advanced EGFR-mutant lung adenocarcinoma (LUAD) patients. Furthermore, we employed network pharmacology and molecular docking techniques to investigate the underlying mechanisms. METHODS A retrospective comparative study was conducted on stage IIIc/IV LUAD patients treated with EGFR-TKIs alone or in combination with ZLJT at the Second Affiliated Hospital of the Air Force Medical University between January 1, 2017, and May 1, 2023. The study evaluated the onset of TKI resistance, adverse reaction rates, safety indicators (such as aspartate aminotransferase, alanine aminotransferase, and creatinine), and inflammatory markers (neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio) to investigate the impact of EGFR-TKI combined with ZLJT on acquired resistance and prognostic indicators. Additionally, we utilized the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine, PubChem, UniProt, and Swiss Target Prediction databases to identify the active ingredients and targets of ZLJT. We obtained differentially expressed genes related to EGFR-TKI sensitivity and resistance from the Gene Expression Omnibus database using the GSE34228 dataset, which included sensitive (n = 26) and resistant (n = 26) PC9 cell lines. The "limma" package in R software was employed to detect DEGs. Based on this, we constructed a protein‒protein interaction network, performed gene ontology and KEGG enrichment analyses, and conducted pathway network analysis to elucidate the correlation between the active ingredients in ZLJT and signaling pathways. Finally, molecular docking was performed using AutoDockVina, PYMOL 2.2.0, and Discovery Studio Client v19.1.0 software to simulate spatial and energy matching during the recognition process between predicted targets and their corresponding compounds. RESULTS (1) A total of 89 patients were included, with 40 patients in the EGFR-TKI combined with ZLJT group (combination group) and 49 patients in the EGFR-TKI alone group (monotherapy group). The baseline characteristics of the two groups were comparable. There was a significant difference in the onset of resistance between the combination group and the monotherapy group (P < 0.01). Compared to the monotherapy group, the combination group showed a prolongation of 3.27 months in delayed acquired resistance. There was also a statistically significant difference in the onset of resistance to first-generation TKIs between the two groups (P < 0.05). (2) In terms of safety analysis, the incidence of adverse reactions related to EGFR-TKIs was 12.5% in the combination group and 14.3% in the monotherapy group, but this difference was not statistically significant (P > 0.05). There were no statistically significant differences in serum AST, ALT, CREA, TBIL, ALB and BUN levels between the two groups after medication (P > 0.05). (3) Regarding inflammatory markers, there were no statistically significant differences in the changes in neutrophil-to-lymphocyte Ratio(NLR) and Platelet-to-lymphocyte Ratio(PLR) values before and after treatment between the two groups (P > 0.05). (4) Network pharmacology analysis identified 112 active ingredients and 290 target genes for ZLJT. From the GEO database, 2035 differentially expressed genes related to resistant LUAD were selected, and 39 target genes were obtained by taking the intersection. A "ZLJT-compound-target-disease" network was successfully constructed using Cytoscape 3.7.0. GO enrichment analysis revealed that ZLJT mainly affected biological processes such as adenylate cyclase-modulating G protein-coupled receptor. In terms of cellular components, ZLJT was associated with the cell projection membrane. The molecular function primarily focused on protein heterodimerization activity. KEGG enrichment analysis indicated that ZLJT exerted its antitumor and anti-drug resistance effects through pathways such as the PI3K-Akt pathway. Molecular docking showed that luteolin had good binding activity with FOS (-9.8 kJ/mol), as did tanshinone IIA with FOS (-9.8 kJ/mol) and quercetin with FOS (-8.7 kJ/mol). CONCLUSION ZLJT has potential antitumor progression effects. For patients with EGFR gene-mutated non-small cell LUAD, combining ZLJT with EGFR-TKI treatment can delay the occurrence of acquired resistance. The underlying mechanisms may involve altering signal transduction pathways, blocking the tumor cell cycle, inhibiting tumor activity, enhancing cellular vitality, and improving the bioavailability of combination therapy. The combination of EGFR-TKI and ZLJT represents an effective approach for the treatment of tumors using both Chinese and Western medicine.
Collapse
Affiliation(s)
- Xue Han
- Shaanxi University of Chinese Medicine, Shiji Avenue, Xixian new area, Xianyang, Shaanxi, China
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China
| | - Lan Liang
- Shaanxi University of Chinese Medicine, Shiji Avenue, Xixian new area, Xianyang, Shaanxi, China
| | - Chenming He
- Shaanxi University of Chinese Medicine, Shiji Avenue, Xixian new area, Xianyang, Shaanxi, China
| | - Qinyou Ren
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China
| | - Jialin Su
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China
| | - Liang Cao
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China.
| | - Jin Zheng
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Alam SSM, Samanta A, Uddin F, Ali S, Hoque M. Tanshinone IIA targeting cell signaling pathways: a plausible paradigm for cancer therapy. Pharmacol Rep 2023:10.1007/s43440-023-00507-y. [PMID: 37440106 DOI: 10.1007/s43440-023-00507-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Natural compounds originating from plants offer a wide range of pharmacological potential and have traditionally been used to treat a wide range of diseases including cancer. Tanshinone IIA (Tan IIA), a bioactive molecule found in the roots of the Traditional Chinese Medicine (TCM) herb Salvia miltiorrhiza, has been shown to have remarkable anticancer properties through several mechanisms, such as inhibition of tumor cell growth and proliferation, metastasis, invasion, and angiogenesis, as well as induction of apoptosis and autophagy. It has demonstrated excellent anticancer efficacy against cell lines from breast, cervical, colorectal, gastric, lung, and prostate cancer by modulating multiple signaling pathways including PI3K/Akt, JAK/STAT, IGF-1R, and Bcl-2-Caspase pathways. This review focuses on the role of Tan IIA in the treatment of various cancers, as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Arijit Samanta
- Applied Biochemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India
| | - Faizan Uddin
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Safdar Ali
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India
| | - Mehboob Hoque
- Applied Biochemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India.
| |
Collapse
|
5
|
Beltran-Huarac J, Yamaleyeva DN, Dotti G, Hingtgen S, Sokolsky-Papkov M, Kabanov AV. Magnetic Control of Protein Expression via Magneto-mechanical Actuation of ND-PEGylated Iron Oxide Nanocubes for Cell Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19877-19891. [PMID: 37040569 PMCID: PMC10143622 DOI: 10.1021/acsami.3c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Engineered cells used as smart vehicles for delivery of secreted therapeutic proteins enable effective treatment of cancer and certain degenerative, autoimmune, and genetic disorders. However, current cell-based therapies use mostly invasive tools for tracking proteins and do not allow for controlled secretion of therapeutic proteins, which could result in unconstrained killing of surrounding healthy tissues or ineffective killing of host cancer cells. Regulating the expression of therapeutic proteins after success of therapy remains elusive. In this study, a noninvasive therapeutic approach mediated by magneto-mechanical actuation (MMA) was developed to remotely regulate the expression of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein, which is secreted by transduced cells. Stem cells, macrophages, and breast cancer cells were transduced with a lentiviral vector encoding the SGpL2TR protein. SGpL2TR comprises TRAIL and GpLuc domains optimized for cell-based applications. Our approach relies on the remote actuation of cubic-shape highly magnetic field responsive superparamagnetic iron oxide nanoparticles (SPIONs) coated with nitrodopamine PEG (ND-PEG), which are internalized within the cells. Cubic ND-PEG-SPIONs actuated by superlow frequency alternating current magnetic fields can translate magnetic forces into mechanical motion and in turn spur mechanosensitive cellular responses. Cubic ND-PEG-SPIONs were artificially designed to effectively operate at low magnetic field strengths (<100 mT) retaining approximately 60% of their saturation magnetization. Compared to other cells, stems cells were more sensitive to the interaction with actuated cubic ND-PEG-SPIONs, which clustered near the endoplasmic reticulum (ER). Luciferase, ELISA, and RT-qPCR analyses revealed a marked TRAIL downregulation (secretion levels were depleted down to 30%) when intracellular particles at 0.100 mg/mL Fe were actuated by magnetic fields (65 mT and 50 Hz for 30 min). Western blot studies indicated actuated, intracellular cubic ND-PEG-SPIONs can cause mild ER stress at short periods (up to 3 h) of postmagnetic field treatment thus leading to the unfolded protein response. We observed that the interaction of TRAIL polypeptides with ND-PEG can also contribute to this response. To prove the applicability of our approach, we used glioblastoma cells, which were exposed to TRAIL secreted from stem cells. We demonstrated that in the absence of MMA treatment, TRAIL essentially killed glioblastoma cells indiscriminately, but when treated with MMA, we were able to control the cell killing rate by adjusting the magnetic doses. This approach can expand the capabilities of stem cells to serve as smart vehicles for delivery of therapeutic proteins in a controlled manner without using interfering and expensive drugs, while retaining their potential to regenerate damaged tissue after treatment. This approach brings forth new alternatives to regulate protein expression noninvasively for cell therapy and other cancer therapies.
Collapse
Affiliation(s)
- Juan Beltran-Huarac
- Center
for Nanotechnology in Drug Delivery and Division of Pharmacoengineering
and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department
of Physics, Howell Science Complex, East
Carolina University, Greenville, North Carolina 27858, United States
| | - Dina N. Yamaleyeva
- Joint
UNC/NC State Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gianpietro Dotti
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Shawn Hingtgen
- Division
of Pharmacoengineering and Molecular Therapeutics, Eshelman School
of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Marina Sokolsky-Papkov
- Center
for Nanotechnology in Drug Delivery and Division of Pharmacoengineering
and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Alexander V. Kabanov
- Center
for Nanotechnology in Drug Delivery and Division of Pharmacoengineering
and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
6
|
An Q, Wu M, Yang C, Feng Y, Xu X, Su H, Zhang G. Salviae miltiorrhiza against human lung cancer: A review of its mechanism (Review). Exp Ther Med 2023; 25:139. [PMID: 36845955 PMCID: PMC9947574 DOI: 10.3892/etm.2023.11838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/10/2023] [Indexed: 02/15/2023] Open
Abstract
Lung cancer is one of the commonest malignant tumors in the world today, causing millions of mortalities every year. New methods to treat lung cancer are urgently needed. Salviae miltiorrhiza Bunge is a common Chinese medicine, often used for promoting blood circulation. In the past 20 years, Salviae miltiorrhiza has made significant progress in the treatment of lung cancer and is considered to be one of the most promising methods to fight against the disease. A great amount of research has shown that the mechanism of Salviae miltiorrhiza against human lung cancer mainly includes inhibiting the proliferation of lung cancer cells, promoting lung cancer cell apoptosis, inducing cell autophagy, regulating immunity and resisting angiogenesis. Research has shown that Salviae miltiorrhiza has certain effects on the resistance to chemotherapy drugs. The present review discussed the status and prospects of Salviae miltiorrhiza against human lung cancer.
Collapse
Affiliation(s)
- Qingwen An
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Mengting Wu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Chuqi Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Yewen Feng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Xuefei Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Hang Su
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China,Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, P.R. China,Traditional Chinese Medicine ‘Preventing Disease’ Wisdom Health Project Research Center of Zhejiang, Hangzhou, Zhejiang 310053, P.R. China,Correspondence to: Professor Guangji Zhang, School of Basic Medical Sciences, Zhejiang Chinese Medical University, 526 Binwen Road, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
7
|
Tian Y, Sun H, Bao Y, Feng H, Pang J, En R, Jiang H, Wang T. ERp44 Regulates the Proliferation, Migration, Invasion, and Apoptosis of Gastric Cancer Cells Via Activation of ER Stress. Biochem Genet 2022; 61:809-822. [PMID: 36178559 DOI: 10.1007/s10528-022-10281-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies worldwide. Endoplasmic reticulum (ER) stress plays a key role in the progression of GC. Rapid proliferation of tumor cells interferes with ER homeostasis, leading to ER stress and triggering unfolded protein response. Therefore, it is very necessary to investigate abnormally expressed ER resident proteins (ERp) in cancer cells. This study aimed to investigate the possible roles of ERp44. The mRNA and protein expression of genes were detected using qRT-PCR and western blot. Cell apoptosis was calculated using flow cytometry. Cell proliferation was determined using CCK-8 and colony formation assay. Cell migration was detected by wound healing, and cell invasion was measured by transwell assay. We found that ERp44 was obviously decreased in GC tissues. Furthermore, ERp44 overexpression distinctly suppressed the proliferation, migration, and invasion of MGC-803 and KATO III cells. In contrast, apoptosis was promoted by ERp44 overexpression. Furthermore, mechanistic studies revealed that overexpression of ERp44 inhibited malignant biological processes by regulating the eIF-2α/CHOP signaling pathway. Taken together, our data demonstrated that ERp44 regulated the proliferation, migration, invasion, and apoptosis via ERp44/eIF-2α/CHOP axis in GC. Targeting the ERp44and ER stress may be a promising strategy for GC.
Collapse
Affiliation(s)
- Yongjing Tian
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Haibin Sun
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Yinshengboer Bao
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Haiping Feng
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Jian Pang
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Riletu En
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Hongliang Jiang
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Tengqi Wang
- Department of Cancer Center, Inner Mongolia Bayannur Hospital, No. 98, Ulan Buhe Road, Bayan Nur, Inner Mongolia, 015000, China.
| |
Collapse
|
8
|
Wang B, Gu X, Xiang BL, Zhao JQ, Zhang CH, Huang PD, Zhang ZH. eEF-2K knockdown synergizes with STS treatment to inhibit cell proliferation, migration, and invasion via the TG2/ERK pathway in A549 cells. J Biochem Mol Toxicol 2022; 36:e23158. [PMID: 35844142 DOI: 10.1002/jbt.23158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/12/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
Emerging research has suggested the anticancer potential of tanshinone IIA, the bioactive ingredient isolated from the traditional Chinese herb Salvia miltiorrhiza. However, the molecular mechanism of sodium tanshinone IIA sulfonate (STS) antilung cancer effect is not very clear. In this study, our purpose is to investigate the roles of STS and elongation factor-2 kinase (eEF-2K) in regulating the proliferation, migration, and invasion of A549 cells and explore the implicated pathways. We found that STS suppressed A549 cell survival and proliferation in a time- and xdose-dependent manner. Knockdown of eEF-2K and treatment with STS synergistically exerted antiproliferative, -migratory, and -invasive effects on A549 cells. These effects were caused by attenuation of the extracellular signal-regulated kinase (ERK) pathway via inhibition of tissue transglutaminase (TG2). In summary, the inhibition of eEF-2K synergizes with STS treatment, exerting anticancer effects on lung adenocarcinoma cells through the TG2/ERK signaling pathway, which provides a potential therapeutic target for treating lung adenocarcinoma.
Collapse
Affiliation(s)
- Bu Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei, PR China
| | - Xin Gu
- Department of Neurology, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei, PR China
| | - Bao-Li Xiang
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei, PR China
| | - Jian-Qing Zhao
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei, PR China
| | - Chang-Hong Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei, PR China
| | - Pan-Deng Huang
- Department of Geriatrics, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei, PR China
| | - Zhi-Hua Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei, PR China
| |
Collapse
|
9
|
Ahn Y, Lee EJ, Luo E, Choi J, Kim JY, Kim S, Kim SH, Bae YJ, Park S, Lee J, Oh SH. Particulate Matter Promotes Melanin Production through Endoplasmic Reticulum Stress‒Mediated IRE1α Signaling. J Invest Dermatol 2022; 142:1425-1434.e6. [PMID: 34678155 DOI: 10.1016/j.jid.2021.08.444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
Particulate matter (PM) is believed to be related to cardiovascular and respiratory diseases. The skin is also known to be affected by PM exposure as a result of skin barrier dysfunction, cutaneous inflammation, and apoptotic cell death. Epidemiological studies have suggested that PM is related to pigment spots. Recently, diesel exhaust particles are reported to cause a tanning response mediated by oxidative stress. However, the direct effects of PM on melanogenesis and the related mechanisms have not yet been clarified. Our study showed that PM can increase melanin production in melanocyte, mouse skin, and human skin models. RNA-sequencing analyses of melanocytes revealed that the expressions of unfolded protein response molecules were increased after PM exposure. In particular, IRE1α signaling pathway, which was consistently upregulated, was related to PM-triggered melanogenesis. In addition, PM-induced melanogenesis was abrogated by an IRE1α inhibitor. Therefore, our findings corroborate previous findings in melanocytes and in mouse and human models and also illuminate the involvement of the IRE1α pathway as a mechanism of PM-induced melanogenesis.
Collapse
Affiliation(s)
- Yuri Ahn
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Enzhi Luo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Ji Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Suho Kim
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Se-Hwa Kim
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon, South Korea; Department of Medical Physics, University of Science and Technology, Daejeon, South Korea
| | - Yu Jeong Bae
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sujin Park
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
10
|
Wang Y, Liu L, Qu Z, Wang D, Huang W, Kong L, Yan L. Tanshinone Ameliorates Glucocorticoid-Induced Bone Loss via Activation of AKT1 Signaling Pathway. Front Cell Dev Biol 2022; 10:878433. [PMID: 35419360 PMCID: PMC8995529 DOI: 10.3389/fcell.2022.878433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022] Open
Abstract
Purpose: Osteoporosis, a common disorder especially prevalent in the postmenopausal women and the elderly, is becoming a worldwide public health problem. Osteoporosis can cause severe joint pain, fragility fractures, and other symptoms, which can seriously impair the daily lives of affected patients. Currently, no gold-standard drug is available that can completely cure osteoporosis. Tanshinone is a traditional Chinese medicine, which can exhibit multiple biological activities. It might also display a protective effect on osteoporosis. However, the molecular mechanism through which tanshinone can improve osteoporosis remain unclear. The objective of our study is to explore the underlying mechanism behind the protective actions of tanshinone. Methods: The common KEGG pathways of tanshinone-targeted genes and osteoporosis were analyzed by using bioinformatics analysis. The bioinformatics analysis results were further validated both by in vitro and in vivo experiments. Results: 21 common KEGG pathways were identified between osteoporosis and tanshinone-targeted genes. It was further found that tanshinone could induce expression of AKT1, promote the proliferation of MSCs, and ultimately suppress their apoptosis. Conclusion: Taken together, our findings indicate that tanshinone can alleviate osteoporosis, its effect was potentially mediated through modulating AKT1 expression. Thus, tanshinone could serve as a promising treatment option for osteoporosis.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, China
| | - Lin Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, China
| | - Zechao Qu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, China
| | - Dong Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, China
| | - Wangli Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, China
| |
Collapse
|
11
|
Zhang W, Liu C, Li J, Lu Y, Li H, Zhuang J, Ren X, Wang M, Sun C. Tanshinone IIA: New Perspective on the Anti-Tumor Mechanism of A Traditional Natural Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:209-239. [PMID: 34983327 DOI: 10.1142/s0192415x22500070] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The search for natural and efficacious antineoplastic drugs, with minimal toxicity and side effects, is an important part of antitumor drug research and development. Tanshinone IIA is the most evaluated lipophilic active component of Salvia miltiorrhiza. Tanshinone IIA is a path-breaking traditional drug applied in cardiovascular treatment. It has also been found that tanshinone IIA plays an important role in the digestive, respiratory and circulatory systems, as well as in other tumor diseases. Tanshinone IIA significantly inhibits the proliferation of several types of tumors, blocks the cell cycle, induces apoptosis and autophagic death, in addition to inhibiting cell migration and invasion. Among these, the regulation of tumor-cell apoptosis signaling pathways is the key breakthrough point in several modes of antitumor therapy. The PI3K/AKT/MTOR signaling pathway and the JNK pathway are the key pathways for tanshinone IIA to induce tumor cell apoptosis. In addition to glycolysis, reactive oxygen species and signal transduction all play an active role with the participation of tanshinone IIA. Endogenous apoptosis is considered the main mechanism of tumor apoptosis induced by tanshinone IIA. Multiple pathways and targets play a role in the process of endogenous apoptosis. Tanshinone IIA can protect chemotherapy drugs, which is mainly reflected in the protection of the side effects of chemotherapy drugs, such as neurotoxicity and inhibition of the hematopoietic system. Tanshinone IIA also has a certain regulatory effect on tumor angiogenesis, which is mainly manifested in the control of hypoxia. Our findings indicated that tanshinone IIA is an effective treatment agent in the cardiovascular field and plays a significant role in antitumor therapeutics. This paper reviews the pharmacological potential and inhibitory effect of tanshinone IIA on cancer. It is greatly anticipated that tanshinone IIA will be employed as an adjuvant in the treatment of various cancers.
Collapse
Affiliation(s)
- Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China.,School of Traditional Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, P. R. China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Jie Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Yiping Lu
- Integrated Traditional Chinese and Western Medicine Center, Department of Medicine, Qingdao University, Qingdao Shandong 266000, P. R. China
| | - Huayao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P. R. China
| | - Xin Ren
- Clinical Medical Colleges, Weifang Medical University, Weifang, Shandong 261000, P. R. China
| | - Mengmeng Wang
- Clinical Medical Colleges, Weifang Medical University, Weifang, Shandong 261000, P. R. China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P. R. China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, P. R. China
| |
Collapse
|
12
|
Tanshinone IIA sensitizes TRAIL-induced apoptosis in glioblastoma through inducing the expression of death receptors (and suppressing STAT3 activation). Brain Res 2021; 1766:147515. [PMID: 33984327 DOI: 10.1016/j.brainres.2021.147515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/12/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE This work was designed to explore whether the combination of Tanshinone IIA (T-IIA) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has a direct anti-cancer effect in glioblastoma (GBM) and the possible mechanisms. METHODS GBM cells (U-87 and U-251 MG) were treated with T-IIA or/and TRAIL, or the expression of death receptors (DRs), DR4 and DR5, was suppressed in GBM cells. The activity of GBM cells was determined by MTT, and the apoptosis was assessed by Hoechst33342 staining and flow cytometry. The expression levels of cleaved caspase-3/8/9, phosphorylated (p)-STAT3 as well as DR4 and DR5 in GBM cells were assessed by Western blotting. A nude mouse xenograft model was constructed to evaluate the effects of T-IIA and TRAIL cotreatment on tumor growth and apoptosis in vivo. RESULTS After T-IIA treatment, GBM cells resumed the sensitivity to TRAIL-induced apoptosis dependent on inhibition of p-STAT3 and activation of DR4, DR5 and caspases. DR4 or/and DR5 knockdown significantly abated the co-effect of T-IIA and TRAIL on GBM cell apoptosis and proliferation. Furthermore, T-IIA and TRAIL cotreatment markedly inhibited the growth of transplanted tumor and activated U87 cell apoptosis in nude mice. CONCLUSION T-IIA increases TRAIL-induced apoptosis by downregulating STAT3 and upregulating DR4 and DR5, indicating T-IIA therapy as a novel treatment strategy for TRAIL-resistant GBM.
Collapse
|
13
|
Sun Y, Gong C, Ni Z, Hu D, Ng W, Zhu X, Wang L, Si G, Yan X, Zhao C, Yao C, Zhu S. Tanshinone IIA enhances susceptibility of non-small cell lung cancer cells to NK cell-mediated lysis by up-regulating ULBP1 and DR5. J Leukoc Biol 2021; 110:315-325. [PMID: 33909909 DOI: 10.1002/jlb.5ma1120-776rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/10/2022] Open
Abstract
Natural killer (NK) cells have a great potential in cancer immunotherapy. However, their therapeutic efficacy is clinically limited owing to cancer cell immune escape. Therefore, it is urgently necessary to develop novel method to improve the antitumor immunity of NK cells. In the present study, it was found that the natural product tanshinone IIA (TIIA) enhanced NK cell-mediated killing of non-small cell lung cancer (NSCLC) cells. TIIA in combination with adoptive transfer of NK cells synergistically suppressed the tumor growth of NSCLC cells in an immune-incompetent mouse model. Furthermore, TIIA significantly inhibited the tumor growth of Lewis lung cancer (LLC) in an immune-competent syngeneic mouse model, and such inhibitory effect was reversed by the depletion of NK cells. Moreover, TIIA increased expressions of ULBP1 and DR5 in NSCLC cells, and inhibition of DR5 and ULBP1 reduced the enhancement of NK cell-mediated lysis by TIIA. Besides, TIIA increased the levels of p-PERK, ATF4 and CHOP. Knockdown of ATF4 completely reversed the up-regulation of ULBP1 and DR5 by TIIA in all detected NSCLC cells, while knockdown of CHOP only partly reduced these enhanced expressions in small parts of NSCLC cells. These results demonstrated that TIIA could increase the susceptibility of NSCLC cells to NK cell-mediated lysis by up-regulating ULBP1 and DR5, suggesting that TIIA had a promising potential in cancer immunotherapy, especially in NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yufang Sun
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Chenyuan Gong
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Zhongya Ni
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Dan Hu
- School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Wanyi Ng
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiaowen Zhu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Lixin Wang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Guifan Si
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xuewei Yan
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Chen Zhao
- School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Chao Yao
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Shiguo Zhu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
14
|
Wen T, Song L, Hua S. Perspectives and controversies regarding the use of natural products for the treatment of lung cancer. Cancer Med 2021; 10:2396-2422. [PMID: 33650320 PMCID: PMC7982634 DOI: 10.1002/cam4.3660] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related mortality both in men and women and accounts for 18.4% of all cancer‐related deaths. Although advanced therapy methods have been developed, the prognosis of lung cancer patients remains extremely poor. Over the past few decades, clinicians and researchers have found that chemical compounds extracted from natural products may be useful for treating lung cancer. Drug formulations derived from natural compounds, such as paclitaxel, doxorubicin, and camptothecin, have been successfully used as chemotherapeutics for lung cancer. In recent years, hundreds of new natural compounds that can be used to treat lung cancer have been found through basic and sub‐clinical research. However, there has not been a corresponding increase in the number of drugs that have been used in a clinical setting. The probable reasons may include low solubility, limited absorption, unfavorable metabolism, and severe side effects. In this review, we present a summary of the natural compounds that have been proven to be effective for the treatment of lung cancer, as well as an understanding of the mechanisms underlying their pharmacological effects. We have also highlighted current controversies and have attempted to provide solutions for the clinical translation of these compounds.
Collapse
Affiliation(s)
- Tingting Wen
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Lei Song
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Shucheng Hua
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
15
|
Fang ZY, Zhang M, Liu JN, Zhao X, Zhang YQ, Fang L. Tanshinone IIA: A Review of its Anticancer Effects. Front Pharmacol 2021; 11:611087. [PMID: 33597880 PMCID: PMC7883641 DOI: 10.3389/fphar.2020.611087] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Tanshinone IIA (Tan IIA) is a pharmacologically lipophilic active constituent isolated from the roots and rhizomes of the Chinese medicinal herb Salvia miltiorrhiza Bunge (Danshen). Tan IIA is currently used in China and other neighboring countries to treat patients with cardiovascular system, diabetes, apoplexy, arthritis, sepsis, and other diseases. Recently, it was reported that tan IIA could have a wide range of antitumor effects on several human tumor cell lines, but the research of the mechanism of tan IIA is relatively scattered in cancer. This review aimed to summarize the recent advances in the anticancer effects of tan IIA and to provide a novel perspective on clinical use of tan IIA.
Collapse
Affiliation(s)
- Zhong-Ying Fang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China.,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miao Zhang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Jia-Ning Liu
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Xue Zhao
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Yong-Qing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Fang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China.,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Zhang J, Zhou Y, Li N, Liu W, Liang J, Sun Y, Zhang W, Fang R, Huang S, Sun Z, Wang Y, He Q. Curcumol Overcomes TRAIL Resistance of Non-Small Cell Lung Cancer by Targeting NRH:Quinone Oxidoreductase 2 (NQO2). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002306. [PMID: 33240775 PMCID: PMC7675185 DOI: 10.1002/advs.202002306] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/01/2020] [Indexed: 05/09/2023]
Abstract
Resistance to tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) of cancer cell remains a key obstacle for clinical cancer therapies. To overcome TRAIL resistance, this study identifies curcumol as a novel safe sensitizer from a food-source compound library, which exhibits synergistic lethal effects in combination with TRAIL on non-small cell lung cancer (NSCLC). SILAC-based cellular thermal shift profiling identifies NRH:quinone oxidoreductase 2 (NQO2) as the key target of curcumol. Mechanistically, curcumol directly targets NQO2 to cause reactive oxygen species (ROS) generation, which triggers endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP) death receptor (DR5) signaling, sensitizing NSCLC cell to TRAIL-induced apoptosis. Molecular docking analysis and surface plasmon resonance assay demonstrate that Phe178 in NQO2 is a critical site for curcumol binding. Mutation of Phe178 completely abolishes the function of NQO2 and augments the TRAIL sensitization. This study characterizes the functional role of NQO2 in TRAIL resistance and the sensitizing function of curcumol by directly targeting NQO2, highlighting the potential of using curcumol as an NQO2 inhibitor for clinical treatment of TRAIL-resistant cancers.
Collapse
Affiliation(s)
- Jing Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
- The First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Ye Zhou
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Wan‐Ting Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Jun‐Ze Liang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yue Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Wei‐Xia Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Run‐Dong Fang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Sheng‐Ling Huang
- The First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Zheng‐Hua Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Qing‐Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
- The First Affiliated HospitalJinan UniversityGuangzhou510632China
| |
Collapse
|
17
|
Wu B, Xiong J, Zhou Y, Wu Y, Song Y, Wang N, Chen L, Zhang J. Luteolin enhances TRAIL sensitivity in non-small cell lung cancer cells through increasing DR5 expression and Drp1-mediated mitochondrial fission. Arch Biochem Biophys 2020; 692:108539. [PMID: 32777260 DOI: 10.1016/j.abb.2020.108539] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/21/2020] [Accepted: 08/02/2020] [Indexed: 12/28/2022]
Abstract
Cancer cells exhibit extreme sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) over normal cells, highlighting TRAIL's potential as a novel and effective cancer drug. However, the therapeutic effect of TRAIL is limited due to drug resistance. In the present study, we sought to investigate the potential effects of luteolin as a TRAIL sensitizer in non-small cell lung cancer (NSCLC) cells. A549 and H1975 cells had low sensitivity or were resistant to TRAIL. Luteolin alone or in combination with TRAIL decreased cell viability and increased apoptosis. Furthermore, luteolin alone or in combination with TRAIL enhanced death receptor 5 (DR5) expression and dynamin-related protein 1 (Drp1)-dependent mitochondrial fission. However, the synergistic effect of luteolin on cell viability and apoptosis was reversed by DR5 and Drp1 inhibition, suggesting that DR5 upregulation and mitochondrial dynamics may be essential for luteolin as a sensitizer of TRAIL-based therapy in NSCLC. Moreover, luteolin treatment alone or in combination with TRAIL increased the phosphorylation of c-Jun N-terminal kinase (JNK), while SP600125 (the JNK inhibitor) significantly abolished the synergistic effect on DR5 expression and Drp1 translocation, indicating that JNK signaling activation was greatly associated with the synergistic effect exerted by luteolin in NSCLC cells. Therefore, TRAIL combined with luteolin could be as an effective chemotherapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Bin Wu
- Department of Respiratory and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jie Xiong
- Department of Respiratory and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ying Zhou
- Department of Respiratory and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yingtong Wu
- Department of Respiratory and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yun Song
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ning Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Lihua Chen
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Jian Zhang
- Department of Respiratory and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
18
|
Quinonoids: Therapeutic Potential for Lung Cancer Treatment. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2460565. [PMID: 32337232 PMCID: PMC7166295 DOI: 10.1155/2020/2460565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Owing to its high incidence and mortality, the development and discovery of novel anticancer drugs is of great importance. In recent years, many breakthroughs have been achieved in the search for effective anticancer substances from natural products. Many anticancer drugs used clinically and proven to be effective are derived from natural products. Quinonoids, including naphthoquinones, phenanthrenequinones, benzoquinones, and anthraquinones, constitute a large group of natural bioactive compounds that widely exist in higher and lower plant species. Given that most of these compounds possess anticancer effects, they are applied in many cancer studies, especially in lung cancer research. They can promote apoptosis, induce autophagy, and inhibit proliferation, angiogenesis, and cell invasion and migration. Some drugs can enhance anticancer effects when combined with other drugs. Thus, quinonoids have broad application prospects in the treatment of lung cancer. Here, we summarize the previous studies on the antilung cancer activities of quinonoids together with their underlying mechanisms and analyze the common research targets with different effects so as to provide references for the discovery of quinonoids against lung cancer.
Collapse
|
19
|
Zhang Y, Ge T, Xiang P, Zhou J, Tang S, Mao H, Tang Q. Tanshinone IIA Reverses Oxaliplatin Resistance In Human Colorectal Cancer Via Inhibition Of ERK/Akt Signaling Pathway. Onco Targets Ther 2019; 12:9725-9734. [PMID: 32009805 PMCID: PMC6859961 DOI: 10.2147/ott.s217914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background Oxaliplatin (OXA)-based chemotherapy is generally used to treat human cancers, whereas OXA resistance is a main obstacle for the treatment of colorectal cancer (CRC). Evidence has shown that tanshinone IIA (Tan IIA) could induce apoptosis in CRC cells. However, the role of combination of OXA and Tan IIA on OXA-resistance CRC cells remains unknown. Thus, this study aimed to investigate the effects of Tan IIA in combination with OXA on OXA-resistance CRC cells. Methods MTT assay, Ki67 immunofluorescence staining and flow cytometry were used to detect viability, proliferation and apoptosis in OXA-resistant cell line SW480/OXA, respectively. The expressions of Bcl-2, Bax, active caspase 3, p-Akt and p-ERK in SW480/OXA cells were detected with Western blot. In vivo animal study was performed finally. Results In this study, the inhibitory effects of OXA on the proliferation and invasion of SW480/OXA cells were significantly enhanced by Tan IIA. In addition, Tan IIA obviously enhanced the anti-apoptosis effects of OXA on SW480/OXA cells via decreasing the levels of Bcl-2, p-Akt and p-ERK, and increasing the levels of Bax and active caspase 3. In vivo experiments confirmed that Tan IIA enhanced OXA sensitivity in SW480/OXA xenograft model. Conclusion We found that Tan IIA could reverse OXA resistance in OXA-resistance CRC cells. Therefore, OXA combined with Tan IIA might be considered as a therapeutic approach for the treatment of OXA-resistant CRC.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Tingrui Ge
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Ping Xiang
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Jingyi Zhou
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Shumin Tang
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Haibing Mao
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Qiang Tang
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu 222061, People's Republic of China
| |
Collapse
|
20
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
21
|
Zhang L, Lin W, Chen X, Wei G, Zhu H, Xing S. Tanshinone IIA reverses EGF- and TGF-β1-mediated epithelial-mesenchymal transition in HepG2 cells via the PI3K/Akt/ERK signaling pathway. Oncol Lett 2019; 18:6554-6562. [PMID: 31807174 PMCID: PMC6876303 DOI: 10.3892/ol.2019.11032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/12/2019] [Indexed: 01/23/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is an essential phenotypic conversion involved in cancer progression. Epidermal growth factor (EGF) and transforming growth factor (TGF)-β1 are potent inducers of the EMT. Tanshinone IIA (Tan IIA) is a phenanthrenequinone extracted from the root of Salvia miltiorrhiza Bunge, and its anticancer activity has been demonstrated in numerous studies. However, the mechanisms of action underlying Tan IIA in EGF- and TGF-β1-induced EMT in HepG2 cells remain unknown. Multiple assays were utilized in the present study, including colony formation, wound healing, Transwell invasion, immunofluorescence staining and western blotting, in order to assess the influence of Tan IIA on HepG2 cells induced by 20 ng/ml EGF and 10 ng/ml TGF-β1. The present study reported that Tan IIA treatment decreased EGF- and TGF-β1-enhanced cell colony numbers, migration and invasion, and inhibited EGF- and TGF-β1-induced decreases in the expression levels of E-cadherin, and increases in the expression levels of matrix metalloproteinase-2, N-cadherin, vimentin and Snail. In addition, it was observed that Tan IIA decreased the expression levels of phosphorylated (p)-Akt and p-ERK1/2 induced by EGF and TGF-β1. Furthermore, western blot analysis confirmed that blocking the function of PI3K/Akt and ERK with LY294002 and U0126 resulted in upregulation of E-cadherin expression, and downregulation of vimentin and Snail expression in EGF- and TGF-β1-treated HepG2 cells. In conclusion, to the best of our knowledge, the results of the present study are the first to indicate that Tan IIA may suppress EGF- and TGF-β1-induced EMT in HepG2 cells by deactivating the PI3K/Akt/ERK pathway.
Collapse
Affiliation(s)
- Longkai Zhang
- Traditional Chinese Medicine Quality Evaluation and Testing Center, Hong Zheng Dao (China) Traditional Chinese Medicine Research Company Ltd., Guangzhou, Guangdong 510006, P.R. China
| | - Weibin Lin
- Traditional Chinese Medicine Quality Evaluation and Testing Center, Hong Zheng Dao (China) Traditional Chinese Medicine Research Company Ltd., Guangzhou, Guangdong 510006, P.R. China
| | - Xiaodan Chen
- Traditional Chinese Medicine Quality Evaluation and Testing Center, Hong Zheng Dao (China) Traditional Chinese Medicine Research Company Ltd., Guangzhou, Guangdong 510006, P.R. China
| | - Gang Wei
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hailong Zhu
- Traditional Chinese Medicine Quality Evaluation and Testing Center, Hong Zheng Dao (China) Traditional Chinese Medicine Research Company Ltd., Guangzhou, Guangdong 510006, P.R. China
| | - Shangping Xing
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
22
|
MEIm XD, Cao YF, Che YY, Li J, Shang ZP, Zhao WJ, Qiao YJ, Zhang JY. Danshen: a phytochemical and pharmacological overview. Chin J Nat Med 2019; 17:59-80. [PMID: 30704625 DOI: 10.1016/s1875-5364(19)30010-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 12/27/2022]
Abstract
Danshen, the dried root or rhizome of Salvia miltiorrhiza Bge., is a traditional and folk medicine in Asian countries, especially in China and Japan. In this review, we summarized the recent researches of Danshen in traditional uses and preparations, chemical constituents, pharmacological activities and side effects. A total of 201 compounds from Danshen have been reported, including lipophilic diterpenoids, water-soluble phenolic acids, and other constituents, which have showed various pharmacological activities, such as anti-inflammation, anti-oxidation, anti-tumor, anti-atherogenesis, and anti-diabetes. This article intends to provide novel insight information for further development of Danshen, which could be of great value to its improvement of utilization.
Collapse
Affiliation(s)
- Xiao-Dan MEIm
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan-Feng Cao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan-Yun Che
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Jing Li
- College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Zhan-Peng Shang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wen-Jing Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan-Jiang Qiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jia-Yu Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
23
|
Wang H, Su X, Fang J, Xin X, Zhao X, Gaur U, Wen Q, Xu J, Little PJ, Zheng W. Tanshinone IIA Attenuates Insulin Like Growth Factor 1 -Induced Cell Proliferation in PC12 Cells through the PI3K/Akt and MEK/ERK Pathways. Int J Mol Sci 2018; 19:ijms19092719. [PMID: 30213025 PMCID: PMC6165471 DOI: 10.3390/ijms19092719] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
The insulin like growth factor 1 (IGF-1) and its receptor (IGF-1R) facilitate tumor proliferation and progression. Tanshinone IIA (TSN) is an active diterpene quinone isolated from the roots of the herbal plant Salvia miltiorrhiza. TSN inhibits the proliferation of various types of cancer cells but its role in the IGF-1R-induced proliferation of pheochromocytoma (PC12) cells and the potential mechanisms are largely unknown. This study aims to investigate the anti-proliferative effect of TSN in PC12 cells and its role on IGF-1R signaling transduction. PC12 cells were treated with IGF-1 with or without TSN, methyl thiazolytetrazolium (MTT) assay, and cell counting kit-8 and flow cytometry were used to evaluate the proliferation of PC12 cells. The role of TSN on the apoptosis of PC12 cells were detected by flow cytometry as well. The effects of TSN and IGF-1 on the phosphorylation of IGF-1R, protein kinase B (Akt), extracellular-signal related kinase 1/2 (ERK1/2) and other downstream targets were analyzed by Western blotting analysis. Our results showed that IGF-1 promoted the growth of PC12 cells in a dose-dependent manner and increased the phosphorylation of IGF-1R, whereas TSN attenuated the effect of IGF-1. Interestingly, TSN did not induce cell apoptosis in PC12 cells. Moreover, TSN attenuated the phosphorylation of Akt and ERK1/2 induced by IGF-1, and the phosphorylation of glycogen synthase kinase-3β, forkhead box O3a (FOXO3a) and c-Raf were also inhibited by TSN. Furthermore, TSN inhibited cell growth induced by IGF-1 and blocked the activation of IGF-1R in SH-SY5Y cells. Taken together, TSN has an inhibitory effect on the proliferation of PC12 cells via down-regulation of the phosphorylated IGF-1R and its downstream signaling.
Collapse
Affiliation(s)
- Haitao Wang
- Faculty of Health Science, University of Macau, Taipa, Macau 999078, China.
- School of Pharmaceutical Sciences, Sothern Medical University, Guangzhou 510515, China.
| | - Xiaoying Su
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (X.S.).
| | - Jiankang Fang
- Faculty of Health Science, University of Macau, Taipa, Macau 999078, China.
| | - Xingan Xin
- Faculty of Health Science, University of Macau, Taipa, Macau 999078, China.
| | - Xia Zhao
- Faculty of Health Science, University of Macau, Taipa, Macau 999078, China.
| | - Uma Gaur
- Faculty of Health Science, University of Macau, Taipa, Macau 999078, China.
| | - Qiang Wen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (X.S.).
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Sothern Medical University, Guangzhou 510515, China.
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia.
| | - Wenhua Zheng
- Faculty of Health Science, University of Macau, Taipa, Macau 999078, China.
| |
Collapse
|
24
|
Fang C, Xie L, Liu C, Fu C, Ye W, Liu H, Zhang B. Tanshinone IIA improves hypoxic ischemic encephalopathy through TLR‑4‑mediated NF‑κB signal pathway. Mol Med Rep 2018; 18:1899-1908. [PMID: 29956801 PMCID: PMC6072156 DOI: 10.3892/mmr.2018.9227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/30/2018] [Indexed: 12/23/2022] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) is the most common brain injury following hypoxia and/or ischemia caused by various factors during the perinatal period, resulting in detrimental neurological deficits in the nervous system. Tanshinone IIA (Tan‑IIA) is a potential agent for the treatment of cardiovascular and cerebrovascular diseases. In this study, the efficacy of Tan‑IIA was investigated in a newborn mouse model of HIE. The dynamic mechanism of Tan‑IIA was also investigated in the central nervous system of neonate mice. Intravenous injection of Tan‑IIA (5 mg/kg) was administered and changes in oxidative stress, inflammation and apoptosis‑associated proteins in neurons. Histology and immunohistochemistry was used to determine infarct volume and the number of damaged neurons by Fluoro‑Jade C staining. The effects of Tan‑IIA on mice with HIE were evaluated by body weight, brain water content, neurobehavioral tests and blood‑brain barrier permeability. The results demonstrated that the apoptosis rate was decreased following Tan‑IIA administration. Expression levels of pro‑apoptotic proteins, caspase‑3 and caspase‑9 and P53 were downregulated. Expression of Bcl‑2 anti‑apoptotic proteins was upregulated by Tan‑IIA treatment in neuro. Results also found that Tan‑IIA treatment decreased production of inflammatory cytokines such as interleukin‑1, tumor necrosis factor‑α, C‑X‑C motif chemokine 10, and chemokine (C‑C motif) ligand 12. Oxidative stress was also reduced by Tan‑IIA in neurons, as determined by the expression levels of superoxide dismutase, glutathione and catalase, and the production of reactive oxygen species. The results demonstrated that Tan‑IIA treatment reduced the infarct volume and the number of damaged neurons. Furthermore, body weight, brain water content and blood‑brain barrier permeability were markedly improved by Tan‑IIA treatment of newborn mice following HIE. Furthermore, the results indicated that Tan‑IIA decreased Toll‑like receptor‑4 (TLR‑4) and nuclear factor‑κB (NF‑κB) expression in neurons. TLR‑4 treatment of neuronal cell in vitro addition stimulated NF‑κB activity, and further enhanced the production of inflammatory cytokines and oxidative stress levels in neurons. In conclusion, these results suggest that Tan‑IIA treatment is beneficial for improvement of HIE through TLR‑4‑mediated NF‑κB signaling.
Collapse
Affiliation(s)
- Chengzhi Fang
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lili Xie
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chunmei Liu
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chunhua Fu
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Ye
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong Liu
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Binghong Zhang
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
25
|
Fakiruddin KS, Ghazalli N, Lim MN, Zakaria Z, Abdullah S. Mesenchymal Stem Cell Expressing TRAIL as Targeted Therapy against Sensitised Tumour. Int J Mol Sci 2018; 19:ijms19082188. [PMID: 30060445 PMCID: PMC6121609 DOI: 10.3390/ijms19082188] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Tapping into the ability of engineered mesenchymal stem cells (MSCs) to mobilise into the tumour has expanded the scope of cancer treatment. Engineered MSCs expressing tumour necrosis factor (TNF)-related apoptosis inducing ligand (MSC-TRAIL) could serve as a platform for an efficient and targeted form of therapy. However, the presence of cancer stem cells (CSCs) that are resistant to TRAIL and apoptosis may represent a challenge for effective treatment. Nonetheless, with the discovery of small molecular inhibitors that could target CSCs and tumour signalling pathways, a higher efficacy of MSC-TRAIL mediated tumour inhibition can be achieved. This might pave the way for a more effective form of combined therapy, which leads to a better treatment outcome. In this review, we first discuss the tumour-homing capacity of MSCs, its effect in tumour tropism, the different approach behind genetically-engineered MSCs, and the efficacy and safety of each agent delivered by these MSCs. Then, we focus on how sensitisation of CSCs and tumours using small molecular inhibitors can increase the effect of these cells to either TRAIL or MSC-TRAIL mediated inhibition. In the conclusion, we address a few questions and safety concerns regarding the utilization of engineered MSCs for future treatment in patients.
Collapse
Affiliation(s)
- Kamal Shaik Fakiruddin
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia.
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nadiah Ghazalli
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Moon Nian Lim
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia.
| | - Zubaidah Zakaria
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia.
| | - Syahril Abdullah
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
26
|
Zhu S, Wei W, Liu Z, Yang Y, Jia H. Tanshinone‑IIA attenuates the deleterious effects of oxidative stress in osteoporosis through the NF‑κB signaling pathway. Mol Med Rep 2018; 17:6969-6976. [PMID: 29568934 PMCID: PMC5928650 DOI: 10.3892/mmr.2018.8741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 05/16/2017] [Indexed: 02/04/2023] Open
Abstract
Osteoclasts are responsible for bone resorption caused by bone microstructural damage and bone-related disorders. Evidence shows that tanshinone IIA (Tan‑IIA), a traditional Chinese medicine, is used clinically as a drug for the treatment of cardiovascular and cerebrovascular diseases. However, the efficacy and mechanism underlying the effect of Tan‑IIA on the viability of osteoclasts remain to be fully elucidated. The present study investigated the therapeutic effects of Tan‑IIA on osteoblast differentiation and oxidative stress in vitro and in vivo. Cell viability was analyzed and oxidative stress was examined in the osteoblasts. Wnt1sw/sw mice were used to investigate the therapeutic effects of Tan‑IIA on spontaneous tibia fractures and severe osteopenia. The bone strength, collagen and mineral were examined in the tibia. Osteoblast activity was also analyzed in the experimental mice. The Tan‑IIA‑induced differentiation of osteoclasts and the mechanism of action were investigated in osteocytes. The data showed that Tan‑IIA treatment improved cell viability. The data also demonstrated that Tan‑IIA decreased the levels of H2O2, accumulation of reactive oxygen species and apoptosis of osteoblasts. Tan‑IIA inhibited the deleterious outcomes triggered by oxidative stress. In addition, Tan‑IIA inhibited the activation of nuclear factor (NF)‑κB and its target genes, tumor necrosis factor (TNF)‑α, inducible nitric oxide synthase and cyclooxygenase 2, and increased the levels of TNF receptor‑associated factor 1 and inhibitor of apoptosis protein‑1/2 in the osteocytes. Furthermore, it was shown that Tan‑IIA reduced the propensity to fractures and severe osteopenia in mice with osteoporosis. Tan‑IIA also exhibited improved bone strength, mineral and collagen in the bone matrix of the experimental mice. It was found that the Tan‑IIA‑mediated benefits on osteoblast activity and function were through the NF‑κB signaling pathway. Taken together, the data obtained in the present study suggested that Tan‑IIA had protective effects against oxidative stress in osteoblastic differentiation in mice with osteoporosis by regulating the NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Shaowen Zhu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wanfu Wei
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Zhiwei Liu
- Basic Medicine Institution, Public Health Center, Peking University, Beijing 100871, P.R. China
| | - Yang Yang
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Haobo Jia
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| |
Collapse
|
27
|
Zheng L, Guan ZJ, Pan WT, Du TF, Zhai YJ, Guo J. Tanshinone Suppresses Arecoline-Induced Epithelial-Mesenchymal Transition in Oral Submucous Fibrosis by Epigenetically Reactivating the p53 Pathway. Oncol Res 2017; 26:483-494. [PMID: 28550687 PMCID: PMC7844836 DOI: 10.3727/096504017x14941825760362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Oral submucous fibrosis (OSF) induced by chewing of the areca nut has been considered to be a precancerous lesion with a high probability of developing oral squamous cell carcinoma. Tanshinone (TSN) is the main component extracted from Salvia miltiorrhiza, a traditional Chinese medicine, which was found to have diverse pharmacological effects, such as anti-inflammatory and antitumor. In the current study, we aimed to identify the inhibitory effects and the underlying mechanism of TSN on OSF progress. We found that treatment with TSN inhibited the arecoline-mediated proliferation of primary human oral mucosal fibroblasts and reversed the promotive effects of arecoline on the EMT process. By RNA deep sequencing, we screened two possible targets for TSN: LSD1 and p53. We confirmed that p53 is much lower in OSF than in normal mucous tissues. In addition, p53 and its downstream molecules were decreased by arecoline treatment in oral mucosal fibroblasts, which was reversed by treatment with TSN in a dose-dependent manner. Our results also revealed that arecoline stimulation resulted in hypermethylation of the promoter of TP53 and subsequent downregulation of p53 levels, which was reversed by TSN. Furthermore, we identified that LSD1 could epigenetically activate TP53 by recruiting H3K27me1 and H3K4m2 to its promoter. Our findings provide new insights into the mechanism by which TSN influences arecoline-induced OSF and rationale for the development of clinical intervention strategies for OSF and even oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Lian Zheng
- Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
| | - Zhen-Jie Guan
- Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
| | - Wen-Ting Pan
- Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
| | - Tian-Feng Du
- Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
| | - Yu-Jia Zhai
- Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
| | - Jia Guo
- Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
| |
Collapse
|
28
|
Chinese Herbal Extractions for Relieving Radiation Induced Lung Injury: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2141645. [PMID: 28465702 PMCID: PMC5390604 DOI: 10.1155/2017/2141645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/09/2017] [Indexed: 11/17/2022]
Abstract
Background. Radiation induced lung injury (RILI) is one of the most common and severe side effects of thoracic radiotherapy. In this meta-analysis, the effects of Chinese herbal extractions (CHE) for preventing and treating RILI are evaluated. Methods. Randomized Controlled Trials (RCTs) from five databases were identified. Studies were evaluated and the relevant data were extracted by two authors independently. Differences were resolved by a third party. Meta-analysis was conducted using RevMan 5.0. Results. In total, 2734 participants receiving thoracic radiotherapy were included in 28 RCTs, and 16 CHE were evaluated. Meta-analysis showed that CHE intervention significantly reduced the incidence of acute radiation pneumonitis (RP) and radiation induced pulmonary fibrosis (RIPF). In CHE group, total effective rate and remission rate of RILI patients were significantly higher. Patient's quality of life (Qol) and clinical symptoms and signs were improved significantly. Inflammatory cytokines decreased, and thymus dependent lymphocytes subgroups were improved. Conclusion. CHE intervention may have clinical effectiveness for relieving RILI and related symptoms and signs and lead to improvement of Qol. However, more double-blind, multicenter, large-scale RCTs are needed to support this theory. Trial Registration. PROSPERO International prospective register of systematic reviews has registration number CRD42016043538.
Collapse
|
29
|
Yu J, Wang X, Li Y, Tang B. Tanshinone IIA suppresses gastric cancer cell proliferation and migration by downregulation of FOXM1. Oncol Rep 2017; 37:1394-1400. [PMID: 28184921 PMCID: PMC5364872 DOI: 10.3892/or.2017.5408] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022] Open
Abstract
Tanshinone IIA (TSN) exhibits a variety of anticancer effects. However, whether it inhibits gastric cancer (GC) cell proliferation and migration and the mechanism remain unclear. In the present study, different concentrations of TSN were co-incubated with SGC-7901 cells. The pcDNA-FOXM1 or FOXM1-siRNA plasmid was transfected into cells before treatment with 5 µg/l TSN. The proliferation and migration abilities of the SGC-7901 cells were tested by MTT and wound healing assays. Western blotting was used to investigate the expression levels of P21, Ki-67, PCNA, MMP-2, MMP-9 and FOXM1. We found that compared with the control, the proliferation and migration abilities of the SGC-7901 cells were decreased after incubation with different concentrations of TSN in a dose-dependent manner (p<0.01). Moreover, the expression levels of Ki-67, PCAN, MMP-2, MMP-9 and FOXM1 were decreased, and P21 was increased in the TSN-treated SGC-7901 cells (p<0.01). In addition, downregulation of FOXM1 by FOXM1-siRNA had the same effect as TSN on SGC-7901 cells, and overexpression of FOXM1 partly abrogated TSN-mediated inhibition of SGC-7901 cell proliferation and migration. These results suggested that TSN inhibits SGC-7901 cell proliferation and migration by downregulation of FOXM1.
Collapse
Affiliation(s)
- Jiao Yu
- Linyi Hospital of Traditional Chinese Medicine, Linyi, Shandong 276000, P.R. China
| | - Xiaoxia Wang
- Linyi Tumor Hospital, Linyi, Shandong 276000, P.R. China
| | - Yuhua Li
- Linyi Hospital of Traditional Chinese Medicine, Linyi, Shandong 276000, P.R. China
| | - Bin Tang
- Lanzhou Hengdao Chinese Medicine Institute, Lanzhou, Shandong 730000, P.R. China
| |
Collapse
|