1
|
Yu L, Wu Q, Jiang S, Liu J, Liu J, Chen G. Controversial Roles of Regenerating Family Proteins in Tissue Repair and Tumor Development. Biomedicines 2024; 13:24. [PMID: 39857608 PMCID: PMC11762848 DOI: 10.3390/biomedicines13010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Over the past 40 years since the discovery of regenerating family proteins (Reg proteins), numerous studies have highlighted their biological functions in promoting cell proliferation and resisting cell apoptosis, particularly in the regeneration and repair of pancreatic islets and exocrine glands. Successively, short peptides derived from Reg3δ and Reg3α have been employed in clinical trials, showing favorable therapeutic effects in patients with type I and type II diabetes. However, continued reports have been limited, presumably attributed to the potential side effects. Methods: This review summarizes extensive research on Reg proteins over the past decade, combined with our own related studies, proposing that Reg proteins exhibit dimorphic effects. Results: The activity of Reg proteins is not as simplistic as previously perceived but shows auto-immunogenicity depending on different pathophysiological microenvironments. The immunogenicity of Reg proteins could recruit immune cells leading to an anti-tumor effect. Such functional diversity is correlated with their structural characteristics: the N-terminal region contributes to autoantigenicity, while the C-type lectin fragment near the C-terminal determines the trophic action. It should be noted that B-cell masking antigens might also reside within the C-type lectin domain. Conclusions: Reg proteins have dual functional roles under various physiological and pathological conditions. These theoretical foundations facilitate the subsequent development of diagnostic reagents and therapeutic drugs targeting Reg proteins.
Collapse
Affiliation(s)
- Luting Yu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (L.Y.)
| | - Qingyun Wu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (L.Y.)
| | - Shenglong Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (L.Y.)
| | - Jia Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (L.Y.)
| | - Junli Liu
- MeDiC Program, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Guoguang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (L.Y.)
| |
Collapse
|
2
|
Budi HS, Farhood B. Tumor microenvironment remodeling in oral cancer: Application of plant derived-natural products and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 233:116432. [PMID: 37331557 DOI: 10.1016/j.envres.2023.116432] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Oral cancers consist of squamous cell carcinoma (SCC) and other malignancies in the mouth with varying degrees of invasion and differentiation. For many years, different modalities such as surgery, radiation therapy, and classical chemotherapy drugs have been used to control the growth of oral tumors. Nowadays, studies have confirmed the remarkable effects of the tumor microenvironment (TME) on the development, invasion, and therapeutic resistance of tumors like oral cancers. Therefore, several studies have been conducted to modulate the TME in various types of tumors in favor of cancer suppression. Natural products are intriguing agents for targeting cancers and TME. Flavonoids, non-flavonoid herbal-derived molecules, and other natural products have shown promising effects on cancers and TME. These agents, such as curcumin, resveratrol, melatonin, quercetin and naringinin have demonstrated potency in suppressing oral cancers. In this paper, we will review and discuss about the potential efficacy of natural adjuvants on oral cancer cells. Furthermore, we will review the possible therapeutic effects of these agents on the TME and oral cancer cells. Moreover, the potential of nanoparticles-loaded natural products for targeting oral cancers and TME will be reviewed. The potentials, gaps, and future perspectives for targeting TME by nanoparticles-loaded natural products will also be discussed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Kaushik M, Tiku AB. Molecular pathways modulated by phytochemicals in head and neck cancer. J Cell Commun Signal 2023; 17:469-483. [PMID: 36454443 PMCID: PMC10409696 DOI: 10.1007/s12079-022-00711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
In the last few years, natural dietary phytochemicals have shown immense potential in the suppression and incidence of Head and Neck Cancer (HNC). From various in-vitro, animal, and epidemiological studies it is now clear that intake of foods rich in dietary phytochemicals lower the risk of HNC. These phytochemicals have been reported to target different stages of Head and Neck cancer (initiation to promotion) by modulating many cellular signaling pathways. A single phytochemical may target different pathways simultaneously or a single pathway may be targeted by a diversity of phytochemicals. This review highlights the molecular pathways modulated by a large number of phytochemicals relevant to HNC with an intent to identify specific signaling pathways that could be therapeutically targeted. Therefore, relevant literature was screened and scrutinized for molecular details. We have focused on the complexity of the molecular mechanisms that are modulated by various phytochemicals and the role they can play in better clinical efficacy and management of head and neck cancer. In-depth knowledge of these molecular mechanisms can lead to innovative therapeutic strategies using phytochemicals alone or along with available treatments for various cancers including HNC. Molecular pathways modulated by Phytochemicals.
Collapse
Affiliation(s)
- Mahesh Kaushik
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashu Bhan Tiku
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Wang L, Quan Y, Zhu Y, Xie X, Wang Z, Wang L, Wei X, Che F. The regenerating protein 3A: a crucial molecular with dual roles in cancer. Mol Biol Rep 2021; 49:1491-1500. [PMID: 34811636 PMCID: PMC8825409 DOI: 10.1007/s11033-021-06904-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022]
Abstract
Introduction REG3A, a member of the third subclass of the Reg family, has been found in a variety of tissues but is not detected in immune cells. In the past decade, it has been determined that REG3A expression is regulated by injury, infection, inflammatory stimuli, and pro-cytokines via different signaling pathways, and it acts as a tissue-repair, bactericidal, and anti-inflammatory molecule in human diseases. Recently, the role of REG3A in cancer has received increasing attention. The present article aims to investigate the structure, expression, regulation, function of REG3A, and to highlight the potential role of REG3A in tumors. Methods A detailed literature search and data organization were conducted to find information about the role of REG3A in variety of physiological functions and tumors. Results Contradictory roles of REG3A have been reported in different tumor models. Some studies have demonstrated that high expression of REG3A in cancers can be oncogenic. Other studies have shown decreased REG3A expression in cancer cells as well as suppressed tumor growth. Conclusions Taken together, better understanding of REG3A may lead to new insights that make it a potentially useful target for cancer therapy.
Collapse
Affiliation(s)
- Liying Wang
- Department of Clinlical Medicine, Weifang Medical College, Weifang, China.,Department of Neurology, Linyi People's Hospital, Linyi, China
| | - Yanchun Quan
- Central Laboratory, Linyi People's Hospital, Linyi, China. .,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China. .,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China.
| | - Yanxi Zhu
- Central Laboratory, Linyi People's Hospital, Linyi, China.,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China.,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People's Hospital, Linyi, China.,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China.,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China
| | - Zhiqiang Wang
- Central Laboratory, Linyi People's Hospital, Linyi, China.,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China.,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China
| | - Long Wang
- Central Laboratory, Linyi People's Hospital, Linyi, China.,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China.,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China
| | - Xiuhong Wei
- Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, China. .,Central Laboratory, Linyi People's Hospital, Linyi, China. .,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China. .,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China.
| |
Collapse
|
5
|
OKAMOTO H, TAKASAWA S. Okamoto model for necrosis and its expansions, CD38-cyclic ADP-ribose signal system for intracellular Ca 2+ mobilization and Reg (Regenerating gene protein)-Reg receptor system for cell regeneration. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:423-461. [PMID: 34629354 PMCID: PMC8553518 DOI: 10.2183/pjab.97.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
In pancreatic islet cell culture models and animal models, we studied the molecular mechanisms involved in the development of insulin-dependent diabetes. The diabetogenic agents, alloxan and streptozotocin, caused DNA strand breaks, which in turn activated poly(ADP-ribose) polymerase/synthetase (PARP) to deplete NAD+, thereby inhibiting islet β-cell functions such as proinsulin synthesis and ultimately leading to β-cell necrosis. Radical scavengers protected against the formation of DNA strand breaks and inhibition of proinsulin synthesis. Inhibitors of PARP prevented the NAD+ depletion, inhibition of proinsulin synthesis and β-cell death. These findings led to the proposed unifying concept for β-cell damage and its prevention (the Okamoto model). The model met one proof with PARP knockout animals and was further extended by the discovery of cyclic ADP-ribose as the second messenger for Ca2+ mobilization in glucose-induced insulin secretion and by the identification of Reg (Regenerating gene) for β-cell regeneration. Physiological and pathological events found in pancreatic β-cells have been observed in other cells and tissues.
Collapse
Affiliation(s)
- Hiroshi OKAMOTO
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Shin TAKASAWA
- Department of Biochemistry, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
6
|
Intermittent Hypoxia Up-Regulates Gene Expressions of Peptide YY (PYY), Glucagon-like Peptide-1 (GLP-1), and Neurotensin (NTS) in Enteroendocrine Cells. Int J Mol Sci 2019; 20:ijms20081849. [PMID: 30991633 PMCID: PMC6514992 DOI: 10.3390/ijms20081849] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 11/26/2022] Open
Abstract
The patients with sleep apnea syndrome are exposed to intermittent hypoxia (IH) during sleep. We previously demonstrated the IH-induced up-regulation of the mRNA levels of anorexigenic peptides proopiomelanocortin (POMC), and cocaine- and amphetamine-regulated transcript (CART) in human neuronal cells. Appetite is regulated not only by the central nervous system but also by the peptides from gastrointestinal tract. Here, we investigated the effects of IH on the gene expression(s) of appetite-inhibiting gut hormones. Human enteroendocrine Caco-2 and mouse STC-1 cells were exposed to IH [64 cycles of 5 min hypoxia (1% O2) and 10 min normoxia (21% O2)] or normoxia for 24 h. Real-time RT-PCR revealed that IH significantly increased the mRNA levels of peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and neurotensin (NTS) in Caco-2 and STC-1 cells. ELISA showed that the concentrations of PYY, GLP-1, and NTS in the culture medium were significantly increased by IH. The mRNA levels of PYY, GLP-1, and NTS were significantly up-regulated even in normoxia by Trichostatin A (TSA) and were significantly decreased even in IH by 5-azacytidine (5AZC), suggesting that IH increases PYY, GLP-1, and NTS mRNAs via alterations in the chromatin structure in enteroendocrine cells. IH might have an anorexigenic influence on the enteric nervous system.
Collapse
|
7
|
A Sterol from Soft Coral Induces Apoptosis and Autophagy in MCF-7 Breast Cancer Cells. Mar Drugs 2018; 16:md16070238. [PMID: 30018246 PMCID: PMC6071057 DOI: 10.3390/md16070238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022] Open
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that plays a key role in regulating cellular metabolism, and is a therapeutic target for cancer therapy. To search for potential PPARγ activators, a compound library comprising 11 marine compounds was examined. Among them, a sterol, 3β,11-dihydroxy-9,11-secogorgost-5-en-9-one (compound 1), showed the highest PPARγ activity with an IC50 value of 8.3 μM for inhibiting human breast adenocarcinoma cell (MCF-7) growth. Western blotting experiments showed that compound 1 induces caspase activation and PARP cleavage. In addition, compound 1 modulated the expression of various PPARγ-regulated downstream biomarkers including cyclin D1, cyclin-dependent kinase (CDK)6, B-cell lymphoma 2 (Bcl-2), p38, and extracellular-signal-regulated kinase (ERK). Moreover, compound 1 increased reactive oxygen species (ROS) generation, upregulated the phosphorylation and expression of H2AX, and induced autophagy. Interestingly, pre-treatment with the autophagy inhibitor 3-methyladenine rescued cells from compound 1-induced growth inhibition, which indicates that the cytotoxic effect of compound 1 is, in part, attributable to its ability to induce autophagy. In conclusion, these findings suggest the translational potential of compound 1 in breast cancer therapy.
Collapse
|
8
|
Crooker K, Aliani R, Ananth M, Arnold L, Anant S, Thomas SM. A Review of Promising Natural Chemopreventive Agents for Head and Neck Cancer. Cancer Prev Res (Phila) 2018; 11:441-450. [PMID: 29602908 DOI: 10.1158/1940-6207.capr-17-0419] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/15/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) accounts for 300,000 deaths per year worldwide, and overall survival rates have shown little improvement over the past three decades. Current treatment methods including surgery, chemotherapy, and radiotherapy leave patients with secondary morbidities. Thus, treatment of HNSCC may benefit from exploration of natural compounds as chemopreventive agents. With excellent safety profiles, reduced toxicities, antioxidant properties, and general acceptance for use as dietary supplements, natural compounds are viewed as a desirable area of investigation for chemoprevention. Though most of the field is early in development, numerous studies display the potential utility of natural compounds against HNSCC. These compounds face additional challenges such as low bioavailability for systemic delivery, potential toxicities when consumed in pharmacologic doses, and acquired resistance. However, novel delivery vehicles and synthetic analogues have shown to overcome some of these challenges. This review covers 11 promising natural compounds in the chemoprevention of HNSCC including vitamin A, curcumin, isothiocyanate, green tea, luteolin, resveratrol, genistein, lycopene, bitter melon, withaferin A, and guggulsterone. The review discusses the therapeutic potential and associated challenges of these agents in the chemopreventive efforts against HNSCC. Cancer Prev Res; 11(8); 441-50. ©2018 AACR.
Collapse
Affiliation(s)
- Kyle Crooker
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Rana Aliani
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Megha Ananth
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Levi Arnold
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Shrikant Anant
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas. .,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
9
|
Optimization of Subcritical Water Extraction of Resveratrol from Grape Seeds by Response Surface Methodology. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7040321] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|