1
|
Zeng L, Zeng J, He J, Li Y, Li C, Lin Z, Chen G, Wu H, Zhou L. FCGBP functions as a tumor suppressor gene in head and neck squamous cell carcinoma. Discov Oncol 2024; 15:704. [PMID: 39580769 PMCID: PMC11586324 DOI: 10.1007/s12672-024-01607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
PURPOSE The pathogenesis of head and neck squamous cell carcinoma (HNSCC) was complex and the overall survival was not satisfying. It was urgent to uncover novel molecules that play vital role in HNSCC for disease monitoring and drug development. METHODS Distinguished expression of FCGBP mRNA in HNSCC was analyzed by TCGA-HNSC and three GEO datasets, the relationship between FCGBP and clinical stage and survival was analyzed by GEPIA 2, the immune infiltration pattern analysis was conducted by TIMER 2.0, pathways affected by FCGBP was conducted by GSEA and GO/KEGG. In vitro experiments (including qRT-PCR, siRNA transfection, CCK8, transwell assay and flow cytometry) were conducted to confirm bioinformatic analysis. RESULTS FCGBP was down-regulated in tumor samples compared with normal tissues at both mRNA and protein levels, and positively correlated with survival in HNSCC. Genes co-expressed with FCGBP were mainly enriched in immune-related biological processes and pathways. GSEA indicated that FCGBP was associated with activated immune reaction and inhibiting well-known pro-tumor pathways. GSE41613 validated FCGBP as an independent prognostic marker for HNSCC and FCGBP was down-regulated in HNSCC cell lines by qRT-PCR. Migration and invasion of SCC9 and CAL27 were enhanced by FCGBP-targeting siRNAs, the ratio of cytotoxic T lymphocytes were down-regulated while the ratio of myeloid-derived suppressor cells were increased by FCGBP-targeting siRNAs. CONCLUSION FCGBP was a tumor suppressor gene and was an independent prognostic marker for better survival. The underlying mechanism may be that FCGBP inhibited tumor migration and invasion and activated immune response against tumor cells.
Collapse
Affiliation(s)
- Lijuan Zeng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China
| | - Jun Zeng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China
- Department of General Dentistry and Oral Emergency, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China
| | - Jianfeng He
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China
| | - Yongqi Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China
| | - Chengwei Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China
| | - Zhiyan Lin
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China
| | - Guangwei Chen
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China
| | - Huilin Wu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China
| | - Libin Zhou
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, 195 Dongfengxi Road, Yuexiu District, Guangzhou, China.
| |
Collapse
|
2
|
Chen S, Long S, Liu Y, Wang S, Hu Q, Fu L, Luo D. Evaluation of a three-gene methylation model for correlating lymph node metastasis in postoperative early gastric cancer adjacent samples. Front Oncol 2024; 14:1432869. [PMID: 39484038 PMCID: PMC11524798 DOI: 10.3389/fonc.2024.1432869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Background Lymph node metastasis (LNM) has a profound impact on the treatment and prognosis of early gastric cancer (EGC), yet the existing evaluation methods lack accuracy. Recent research has underscored the role of precancerous lesions in tumor progression and metastasis. The objective of this study was to utilize the previously developed EGC LNM prediction model to further validate and extend the analysis in paired adjacent tissue samples. Methods We evaluated the model in a monocentric study using Methylight, a methylation-specific PCR technique, on postoperative fresh-frozen EGC samples (n = 129) and paired adjacent tissue samples (n = 129). Results The three-gene methylation model demonstrated remarkable efficacy in both EGC and adjacent tissues. The model demonstrated excellent performance, with areas under the curve (AUC) of 0.85 and 0.82, specificities of 85.1% and 80.5%, sensitivities of 83.3% and 73.8%, and accuracies of 84.5% and 78.3%, respectively. It is noteworthy that the model demonstrated superior performance compared to computed tomography (CT) imaging in the adjacent tissue group, with an area under the curve (AUC) of 0.86 compared to 0.64 (p < 0.001). Furthermore, the model demonstrated superior diagnostic capability in these adjacent tissues (AUC = 0.82) compared to traditional clinicopathological features, including ulceration (AUC = 0.65), invasional depth (AUC = 0.66), and lymphovascular invasion (AUC = 0.69). Additionally, it surpassed traditional models based on these features (AUC = 0.77). Conclusion The three-gene methylation prediction model for EGC LNM is highly effective in both cancerous and adjacent tissue samples in a postoperative setting, providing reliable diagnostic information. This extends its clinical utility, particularly when tumor samples are scarce, making it a valuable tool for evaluating LNM status and assisting in treatment planning.
Collapse
Affiliation(s)
- Shang Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- Laboratory Medicine Centre, Shenzhen Nanshan People’s Hospital, Shenzhen University, Shenzhen, China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Shoubin Long
- Laboratory Medicine Centre, Shenzhen Nanshan People’s Hospital, Shenzhen University, Shenzhen, China
| | - Yaru Liu
- Laboratory Medicine Centre, Shenzhen Nanshan People’s Hospital, Shenzhen University, Shenzhen, China
- School of the First Clinical Medical, Ningxia Medical University, Yinchuan, China
| | - Shenglong Wang
- Laboratory Medicine Centre, Shenzhen Nanshan People’s Hospital, Shenzhen University, Shenzhen, China
- School of the First Clinical Medical, Ningxia Medical University, Yinchuan, China
| | - Qian Hu
- Laboratory Medicine Centre, Shenzhen Nanshan People’s Hospital, Shenzhen University, Shenzhen, China
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Dixian Luo
- Laboratory Medicine Centre, Shenzhen Nanshan People’s Hospital, Shenzhen University, Shenzhen, China
- School of the First Clinical Medical, Ningxia Medical University, Yinchuan, China
- Department of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
3
|
Su YT, Chen CH, Kang JW, Kuo HY, Yang CC, Tian YF, Yeh CF, Chou CL, Chen SH. Predictive value of FCGBP expression for treatment response and survival in rectal cancer patients undergoing chemoradiotherapy. Aging (Albany NY) 2024; 16:7889-7901. [PMID: 38709264 PMCID: PMC11131975 DOI: 10.18632/aging.205791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 05/07/2024]
Abstract
Despite neoadjuvant chemoradiotherapy (CRT) being the established standard for treating advanced rectal cancer, clinical outcomes remain suboptimal, necessitating the identification of predictive biomarkers for improved treatment decisions. Previous studies have hinted at the oncogenic properties of the Fc fragment of IgG binding protein (FCGBP) in various cancers; however, its clinical significance in rectal cancer remains unclear. In this study, we first conducted an analysis of a public transcriptome comprising 46 rectal cancer patients. Focusing on cell adhesion during data mining, we identified FCGBP as the most upregulated gene associated with CRT resistance. Subsequently, we assessed FCGBP immunointensity using immunohistochemical staining on 343 rectal cancer tissue blocks. Elevated FCGBP immunointensity correlated with lymph node involvement before treatment (p = 0.001), tumor invasion, and lymph node involvement after treatment (both p < 0.001), vascular invasion (p = 0.001), perineural invasion (p = 0.041), and reduced tumor regression (p < 0.001). Univariate analysis revealed a significant association between high FCGBP immunoexpression and inferior disease-specific survival, local recurrence-free survival, and metastasis-free survival (all p ≤ 0.0002). Furthermore, high FCGBP immunoexpression independently emerged as an unfavorable prognostic factor for all three survival outcomes in the multivariate analysis (all p ≤ 0.025). Enriched pathway analysis substantiated the role of FCGBP in conferring resistance to radiation. In summary, our findings suggest that elevated FCGBP immunoexpression in rectal cancer significantly correlates with a poor response to CRT and diminished patient survival. FCGBP holds promise as a valuable prognostic biomarker for rectal cancer patients undergoing CRT.
Collapse
Affiliation(s)
- Yu-Ting Su
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jui-Wen Kang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
| | - Hsin-Yu Kuo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan 71004, Taiwan
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 71004, Taiwan
| | - Cheng-Fa Yeh
- Division of General Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Environment Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Chia-Lin Chou
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 71004, Taiwan
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Shang-Hung Chen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
| |
Collapse
|
4
|
Liu SS, Wan QS, Lv C, Wang JK, Jiang S, Cai D, Liu MS, Wang T, Zhang KH. Integrating trans-omics, cellular experiments and clinical validation to identify ILF2 as a diagnostic serum biomarker and therapeutic target in gastric cancer. BMC Cancer 2024; 24:465. [PMID: 38622522 PMCID: PMC11017608 DOI: 10.1186/s12885-024-12175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) lacks serum biomarkers with clinical diagnostic value. Multi-omics analysis is an important approach to discovering cancer biomarkers. This study aimed to identify and validate serum biomarkers for GC diagnosis by cross-analysis of proteomics and transcriptomics datasets. METHODS A cross-omics analysis was performed to identify overlapping differentially expressed genes (DEGs) between our previous aptamer-based GC serum proteomics dataset and the GC tissue RNA-Seq dataset in The Cancer Genome Atlas (TCGA) database, followed by lasso regression and random forest analysis to select key overlapping DEGs as candidate biomarkers for GC. The mRNA levels and diagnostic performance of these candidate biomarkers were analyzed in the original and independent GC datasets to select valuable candidate biomarkers. The valuable candidate biomarkers were subjected to bioinformatics analysis to select those closely associated with the biological behaviors of GC as potential biomarkers. The clinical diagnostic value of the potential biomarkers was validated using serum samples, and their expression levels and functions in GC cells were validated using in vitro cell experiments. RESULTS Four candidate biomarkers (ILF2, PGM2L1, CHD7, and JCHAIN) were selected. Their mRNA levels differed significantly between tumor and normal tissues and showed different diagnostic performances for GC, with areas under the receiver operating characteristic curve (AUROCs) of 0.629-0.950 in the TCGA dataset and 0.736-0.840 in the Gene Expression Omnibus (GEO) dataset. In the bioinformatics analysis, only ILF2 (interleukin enhancer-binding factor 2) gene levels were associated with immune cell infiltration, some checkpoint gene expression, chemotherapy sensitivity, and immunotherapy response. Serum levels of ILF2 were higher in GC patients than in controls, with an AUROC of 0.944 for the diagnosis of GC, and it was also detected in the supernatants of GC cells. Knockdown of ILF2 by siRNA significantly reduced the proliferation and colony formation of GC cells. Overexpression of ILF2 significantly promotes the proliferation and colony formation of gastric cancer cells. CONCLUSIONS Trans-omics analysis of proteomics and transcriptomics is an efficient approach for discovering serum biomarkers, and ILF2 is a potential diagnostic biomarker and therapeutic target of gastric cancer.
Collapse
Affiliation(s)
- Shao-Song Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Qin-Si Wan
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Cong Lv
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Jin-Ke Wang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Song Jiang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Dan Cai
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Mao-Sheng Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Ting Wang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Kun-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China.
| |
Collapse
|
5
|
Ma S, Hao R, Lu YW, Wang HP, Hu J, Qi YX. Identification and Validation of Novel Metastasis-Related Immune Gene Signature in Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:199-219. [PMID: 38634039 PMCID: PMC11021863 DOI: 10.2147/bctt.s448642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/31/2024] [Indexed: 04/19/2024]
Abstract
Background Distant metastasis remains the leading cause of death among patients with breast cancer (BRCA). The process of cancer metastasis involves multiple mechanisms, including compromised immune system. However, not all genes involved in immune function have been comprehensively identified. Methods Firstly 1623 BRCA samples, including transcriptome sequencing and clinical information, were acquired from Gene Expression Omnibus (GSE102818, GSE45255, GSE86166) and The Cancer Genome Atlas-BRCA (TCGA-BRCA) dataset. Subsequently, weighted gene co-expression network analysis (WGCNA) was performed using the GSE102818 dataset to identify the most relevant module to the metastasis of BRCA. Besides, ConsensusClusterPlus was applied to divide TCGA-BRCA patients into two subgroups (G1 and G2). In the meantime, the least absolute shrinkage and selection operator (LASSO) regression analysis was used to construct a metastasis-related immune genes (MRIGs)_score to predict the metastasis and progression of cancer. Importantly, the expression of vital genes was validated through reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). Results The expression pattern of 76 MRIGs screened by WGCNA divided TCGA-BRCA patients into two subgroups (G1 and G2), and the prognosis of G1 group was worse. Also, G1 exhibited a higher mRNA expression level based on stemness index score and Tumor Immune Dysfunction and Exclusion score. In addition, higher MRIGs_score represented the higher probability of progression in BRCA patients. It was worth mentioning that the patients in the G1 group had a high MRIGs_score than those in the G2 group. Importantly, the results of RT-qPCR and IHC demonstrated that fasciculation and elongation protein zeta 1 (FEZ1) and insulin-like growth factor 2 receptor (IGF2R) were risk factors, while interleukin (IL)-1 receptor antagonist (IL1RN) was a protective factor. Conclusion Our study revealed a prognostic model composed of eight immune related genes that could predict the metastasis and progression of BRCA. Higher score represented higher metastasis probability. Besides, the consistency of key genes in BRCA tissue and bioinformatics analysis results from mRNA and protein levels was verified.
Collapse
Affiliation(s)
- Shen Ma
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, People’s Republic of China
| | - Ran Hao
- Institutes of Health Research, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| | - Yi-Wei Lu
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, People’s Republic of China
| | - Hui-Po Wang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, People’s Republic of China
| | - Jie Hu
- Institutes of Health Research, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Department of Science and Technology, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| | - Yi-Xin Qi
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, People’s Republic of China
| |
Collapse
|
6
|
Wang L, Yang Z, Yu H, Lin W, Wu R, Yang H, Yang K. Predicting diagnostic gene expression profiles associated with immune infiltration in patients with lupus nephritis. Front Immunol 2022; 13:839197. [PMID: 36532018 PMCID: PMC9755505 DOI: 10.3389/fimmu.2022.839197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To identify potential diagnostic markers of lupus nephritis (LN) based on bioinformatics and machine learning and to explore the significance of immune cell infiltration in this pathology. Methods Seven LN gene expression datasets were downloaded from the GEO database, and the larger sample size was used as the training group to obtain differential genes (DEGs) between LN and healthy controls, and to perform gene function, disease ontology (DO), and gene set enrichment analyses (GSEA). Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), were applied to identify candidate biomarkers. The diagnostic value of LN diagnostic gene biomarkers was further evaluated in the area under the ROC curve observed in the validation dataset. CIBERSORT was used to analyze 22 immune cell fractions from LN patients and to analyze their correlation with diagnostic markers. Results Thirty and twenty-one DEGs were screened in kidney tissue and peripheral blood, respectively. Both of which covered macrophages and interferons. The disease enrichment analysis of DEGs in kidney tissues showed that they were mainly involved in immune and renal diseases, and in peripheral blood it was mainly enriched in cardiovascular system, bone marrow, and oral cavity. The machine learning algorithm combined with external dataset validation revealed that C1QA(AUC = 0.741), C1QB(AUC = 0.758), MX1(AUC = 0.865), RORC(AUC = 0.911), CD177(AUC = 0.855), DEFA4(AUC= 0.843)and HERC5(AUC = 0.880) had high diagnostic value and could be used as diagnostic biomarkers of LN. Compared to controls, pathways such as cell adhesion molecule cam, and systemic lupus erythematosus were activated in kidney tissues; cell cycle, cytoplasmic DNA sensing pathways, NOD-like receptor signaling pathways, proteasome, and RIG-1-like receptors were activated in peripheral blood. Immune cell infiltration analysis showed that diagnostic markers in kidney tissue were associated with T cells CD8 and Dendritic cells resting, and in blood were associated with T cells CD4 memory resting, suggesting that CD4 T cells, CD8 T cells and dendritic cells are closely related to the development and progression of LN. Conclusion C1QA, C1QB, MX1, RORC, CD177, DEFA4 and HERC5 could be used as new candidate molecular markers for LN. It may provide new insights into the diagnosis and molecular treatment of LN in the future.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hangxing Yu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Lin
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruoxi Wu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| |
Collapse
|
7
|
Mao Z, Lin D, Xu J. Hsa_circ_0001535 Regulates Colorectal Cancer Progression via the miR-433-3p/RBPJ Axis. Biochem Genet 2022; 61:861-878. [PMID: 36208372 DOI: 10.1007/s10528-022-10287-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
A large number of studies have shown that circular RNAs (circRNAs) are of great significance in the occurrence and development of colorectal cancer (CRC). The purpose of this study was to explore the mechanism of circ_0001535 in CRC. The expressions of circ_0001535, miR-433-3p and recombination signal-binding protein Jκ (RBPJ) mRNA and protein in CRC tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. The effect of circ_0001535 on cell proliferation was detected using the Cell Counting Kit-8 (CCK-8) assay, colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) assay. The effects of circ_0001535 on migration, invasion, angiogenesis and apoptosis were investigated by wound healing assay, transwell assay, tube formation assay and flow cytometry, respectively. The interactions between miR-433-3p and circ_0001535 or RBPJ were studied using dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Xenograft tumor assay was performed to verify the role of circ_0001535 in tumor growth in vivo. The results showed that circ_0001535 and RBPJ mRNA expression levels were up-regulated and miR-433-3p was down-regulated in CRC tissues and cells. Circ_0001535 knockdown inhibited cell proliferation, migration, invasion, angiogenesis as well as promoted apoptosis in CRC cells. After analysis, it was found that circ_0001535 acted as a competing endogenous RNA (ceRNA) to inhibit miR-433-3p and then up-regulate RBPJ in CRC cells. In addition, in vivo experiment had shown that circ_0001535 knockdown inhibited tumor growth by up-regulating miR-433-3p and inhibiting RBPJ expression. The circ_0001535/miR-433-3p/ RBPJ axis plays a catalytic role in the progression of CRC, which may provide new insights into the molecular mechanism of CRC.
Collapse
Affiliation(s)
- Zihan Mao
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang city, Liaoning Province, China
| | - Dapeng Lin
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang city, Liaoning Province, China
| | - Jian Xu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang city, Liaoning Province, China.
| |
Collapse
|
8
|
FCGBP Is a Promising Prognostic Biomarker and Correlates with Immunotherapy Efficacy in Oral Squamous Cell Carcinoma. J Immunol Res 2022; 2022:8443392. [PMID: 35733916 PMCID: PMC9207623 DOI: 10.1155/2022/8443392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies of the head and neck. In OSCC patients, the prognosis was dramatically different. In this research, we aimed to study the expressions and prognostic values of IgG Fc binding protein (FCGBP) in OSCC patients. The expression of FCGBP was analyzed using TCGA datasets and GEO datasets. FCGBP was evaluated for its predictive significance in OSCC patients by the use of a Kaplan-Meier and Cox regression model. Enrichment analysis for the GO and KEGG databases were conducted. CIBERSORT used TCGA datasets to show immune cell infiltration. In addition, researchers looked into the relationships between FCGBP and immune cells. The levels of FCGBP in OSCC cells was examined through the use of RT-PCR. FCGBP overexpression was tested for its effects on OSCC cell proliferation and invasion using CCK-8 and Transwell assays. We observed that FCGBP expressions were distinctly downregulated in OSCC specimens compared with nontumor tissues in both TCGA and GEO datasets, which was further confirmed by RT-PCR. OSCC patients with advanced clinical stages and poor prognoses had lower levels of FCGBP expression. Many immune-related biological activities and signaling pathways were found to be considerably abundant in KEGG tests and GO analysis results. The correlation analysis indicated that FCGBP was associated with a number of immune cells in a positive way. We found that FCGBP expressions were strongly and distinctly linked to the expressions of known immunological checkpoints, and FCGBP expression had significant positive connections with tumor mutational burden. FCGBP upregulation distinctly slowed the growth and invasion of OSCC cells in functional experiments. FCGBP has the potential to be a therapeutic target for OSCC and a biomarker for OSCC patients' prognosis.
Collapse
|
9
|
Tibolone Pre-Treatment Ameliorates the Dysregulation of Protein Translation and Transport Generated by Palmitic Acid-Induced Lipotoxicity in Human Astrocytes: A Label-Free MS-Based Proteomics and Network Analysis. Int J Mol Sci 2022; 23:ijms23126454. [PMID: 35742897 PMCID: PMC9223656 DOI: 10.3390/ijms23126454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Excessive accumulation and release of fatty acids (FAs) in adipose and non-adipose tissue are characteristic of obesity and are associated with the leading causes of death worldwide. Chronic exposure to high concentrations of FAs such as palmitic acid (pal) is a risk factor for developing different neurodegenerative diseases (NDs) through several mechanisms. In the brain, astrocytic dysregulation plays an essential role in detrimental processes like metabolic inflammatory state, oxidative stress, endoplasmic reticulum stress, and autophagy impairment. Evidence shows that tibolone, a synthetic steroid, induces neuroprotective effects, but its molecular mechanisms upon exposure to pal remain largely unknown. Due to the capacity of identifying changes in the whole data-set of proteins and their interaction allowing a deeper understanding, we used a proteomic approach on normal human astrocytes under supraphysiological levels of pal as a model to induce cytotoxicity, finding changes of expression in proteins related to translation, transport, autophagy, and apoptosis. Additionally, tibolone pre-treatment showed protective effects by restoring those same pal-altered processes and increasing the expression of proteins from cell survival processes. Interestingly, ARF3 and IPO7 were identified as relevant proteins, presenting a high weight in the protein-protein interaction network and significant differences in expression levels. These proteins are related to transport and translation processes, and their expression was restored by tibolone. This work suggests that the damage caused by pal in astrocytes simultaneously involves different mechanisms that the tibolone can partially revert, making tibolone interesting for further research to understand how to modulate these damages.
Collapse
|
10
|
Burge K, Eckert J, Wilson A, Trammell M, Lueschow SR, McElroy SJ, Dyer D, Chaaban H. Hyaluronic Acid 35 kDa Protects against a Hyperosmotic, Formula Feeding Model of Necrotizing Enterocolitis. Nutrients 2022; 14:nu14091779. [PMID: 35565748 PMCID: PMC9105773 DOI: 10.3390/nu14091779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022] Open
Abstract
Necrotizing enterocolitis (NEC), an inflammatory disease of the intestine, is a common gastrointestinal emergency among preterm infants. Intestinal barrier dysfunction, hyperactivation of the premature immune system, and dysbiosis are thought to play major roles in the disease. Human milk (HM) is protective, but the mechanisms underpinning formula feeding as a risk factor in the development of NEC are incompletely understood. Hyaluronic acid 35 kDa (HA35), a bioactive glycosaminoglycan of HM, accelerates intestinal development in murine pups during homeostasis. In addition, HA35 prevents inflammation-induced tissue damage in pups subjected to murine NEC, incorporating Paneth cell dysfunction and dysbiosis. We hypothesized HA35 treatment would reduce histological injury and mortality in a secondary mouse model of NEC incorporating formula feeding. NEC-like injury was induced in 14-day mice by dithizone-induced disruption of Paneth cells and oral gavage of rodent milk substitute. Mortality and histological injury, serum and tissue cytokine levels, stool bacterial sequencing, and bulk RNA-Seq comparisons were analyzed. HA35 significantly reduced the severity of illness in this model, with a trend toward reduced mortality, while RNA-Seq analysis demonstrated HA35 upregulated genes associated with goblet cell function and innate immunity. Activation of these critical protective and reparative mechanisms of the small intestine likely play a role in the reduced pathology and enhanced survival trends of HA-treated pups subjected to intestinal inflammation in this secondary model of NEC, providing potentially interesting translational targets for the human preterm disease.
Collapse
Affiliation(s)
- Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.); (A.W.)
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.); (A.W.)
| | - Adam Wilson
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.); (A.W.)
| | - MaJoi Trammell
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.T.); (D.D.)
| | - Shiloh R. Lueschow
- Department of Microbiology and Immunology, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA;
| | - Steven J. McElroy
- Department of Pediatrics, University of California Davis, Sacramento, CA 95817, USA;
| | - David Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.T.); (D.D.)
| | - Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.E.); (A.W.)
- Correspondence:
| |
Collapse
|
11
|
Yan T, Tian D, Chen J, Tan Y, Cheng Y, Ye L, Deng G, Liu B, Yuan F, Zhang S, Cai L, Chen Q. FCGBP Is a Prognostic Biomarker and Associated With Immune Infiltration in Glioma. Front Oncol 2022; 11:769033. [PMID: 35047393 PMCID: PMC8761730 DOI: 10.3389/fonc.2021.769033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
The Fc Fragment of IgG Binding Protein (FCGBP) has been proven to participate in intestinal tumor immunity. However, the biological role of FCGBP has remained unclear in glioma. The differential expression of FCGBP was explored by Oncomine and GEPIA databases. The effect of FCGBP on prognosis was analyzed via Kaplan–Meier plotter and GEPIA. The Tumor Immune Estimation Resource (TIMER) tool was used to determine the correlations of FCGBP expression with tumor immune infiltration. Firstly, FCGBP was highly expressed in glioma and correlated with a worse prognosis. Gene Ontology (GO) and KEGG pathway enrichment analyses revealed that the differentially expressed genes (DEGs) and co-expression genes of FCGBP were mainly involved in the immune response. Furthermore, FCGBP expression was positively associated with multiple immune cells infiltrates as well as the expression levels of multiple immune markers in glioma. FCGBP co-expression networks mostly participated in the regulation of immune response. Finally, immunohistochemistry (IHC) assays were conducted to explore the expression of FCGBP, PD-L1, CCL2 and CD8 in glioma and correlations between them. We found that PDL1 and FCGBP were synchronously upregulated in glioma tissues. These findings revealed a new mechanism by which FCGBP participates in the immune tolerance of glioma, and implied the potential of FCGBP as a therapeutic target or predictive marker for patients.
Collapse
Affiliation(s)
- Tengfeng Yan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daofeng Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junhui Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yinqiu Tan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yue Cheng
- Department of Radiology, Wuxi Clinical College of Nantong University, Nantong, China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linzhi Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Identification of hub genes in colorectal cancer based on weighted gene co-expression network analysis and clinical data from The Cancer Genome Atlas. Biosci Rep 2021; 41:229248. [PMID: 34308980 PMCID: PMC8314434 DOI: 10.1042/bsr20211280] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumors worldwide and is associated with high mortality. Here we performed bioinformatics analysis, which we validated using immunohistochemistry in order to search for hub genes that might serve as biomarkers or therapeutic targets in CRC. Based on data from The Cancer Genome Atlas (TCGA), we identified 4832 genes differentially expressed between CRC and normal samples (1562 up-regulated and 3270 down-regulated in CRC). Gene ontology (GO) analysis showed that up-regulated genes were enriched mainly in organelle fission, cell cycle regulation, and DNA replication; down-regulated genes were enriched primarily in the regulation of ion transmembrane transport and ion homeostasis. Weighted gene co-expression network analysis (WGCNA) identified eight gene modules that were associated with clinical characteristics of CRC patients, including brown and blue modules that were associated with cancer onset. Analysis of the latter two hub modules revealed the following six hub genes: adhesion G protein-coupled receptor B3 (BAI3, also known as ADGRB3), cyclin F (CCNF), cytoskeleton-associated protein 2 like (CKAP2L), diaphanous-related formin 3 (DIAPH3), oxysterol binding protein-like 3 (OSBPL3), and RERG-like protein (RERGL). Expression levels of these hub genes were associated with prognosis, based on Kaplan–Meier survival analysis of data from the Gene Expression Profiling Interactive Analysis database. Immunohistochemistry of CRC tumor tissues confirmed that OSBPL3 is up-regulated in CRC. Our findings suggest that CCNF, DIAPH3, OSBPL3, and RERGL may be useful as therapeutic targets against CRC. BAI3 and CKAP2L may be novel biomarkers of the disease.
Collapse
|
13
|
Zhuang Q, Shen A, Liu L, Wu M, Shen Z, Liu H, Cheng Y, Lin X, Wu X, Lin W, Li J, Han Y, Chen X, Chen Q, Peng J. Prognostic and immunological roles of Fc fragment of IgG binding protein in colorectal cancer. Oncol Lett 2021; 22:526. [PMID: 34055091 PMCID: PMC8138899 DOI: 10.3892/ol.2021.12787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Valuable diagnostic and prognostic biomarkers are urgently needed for colorectal cancer (CRC), which is one of the leading causes of mortality worldwide. Previous studies have reported altered expression of a mucin-like protein Fc fragment of IgG binding protein (FCGBP) in various types of cancer, but its potential diagnostic, prognostic and immunological roles in CRC remain to be determined. Therefore, the aim of current study was to investigate the potential roles of FCGBP in CRC. The present study investigated FCGBP mutations and changes in its expression levels using a combination of microarray and public dataset analyses, as well as immunohistochemistry. The results demonstrated a 10.5% mutation frequency in the FCGBP coding sequence in CRC tissues, and identified decreased FCGBP mRNA or protein expression levels in colorectal adenoma and CRC (compared with those in normal colorectal tissues from healthy control subjects), including pathologically advanced CRC (stage III+IV vs. I+II). Survival analysis using the GEPIA and Kaplan-Meier Plotter databases revealed that low FCGBP expression levels were associated with short overall, disease-free, relapse-free and event-free survival times in patients with CRC. Notably, analysis using the online Tumor IMmune Estimation Resource database revealed a positive correlation between FCGBP expression levels and the extent of infiltrating immune cells, such as B cells and dendritic cells. Consistently, the expression levels of most markers (51/57) for various types of immune cells were significantly correlated with FCGBP expression levels in CRC tissues. These findings suggested that FCGBP may serve as a diagnostic and prognostic biomarker, and that FCGBP may be associated with immune infiltration in CRC.
Collapse
Affiliation(s)
- Qunchuan Zhuang
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China.,Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhiqing Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Huixin Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaoying Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiangyan Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Wei Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jiapeng Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yuying Han
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaoping Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Qi Chen
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
14
|
Yuan Z, Zhao Z, Hu H, Zhu Y, Zhang W, Tang Q, Huang R, Gao F, Zou C, Wang G, Wang X. IgG Fc Binding Protein ( FCGBP) is Down-Regulated in Metastatic Lesions and Predicts Survival in Metastatic Colorectal Cancer Patients. Onco Targets Ther 2021; 14:967-977. [PMID: 33603401 PMCID: PMC7886382 DOI: 10.2147/ott.s285171] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background The liver is the most frequent site for metastatic spread in colorectal cancer (CRC) patients, and these patients have much poorer prognosis than those without metastasis. Previous studies have shown that IgG Fc binding protein (FCGBP) plays important roles in tumorigenesis, progression, and prognosis, but its role in CRC metastasis remains unclear. Purpose In this study, we are aimed to explore the significance of FCGBP in liver metastatic CRC (LMCRC) patients. Methods We analyzed the expression of FCGBP RNA between CRC primary samples and liver metastatic samples in the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA). Next, we assessed the expression of FCGBP protein in 135 paired primary CRC (PC) samples and LMCRC samples. Finally, we explored the relationship between the expression features and clinicopathological characteristics. Results The expression data of FCGBP were obtained from the GEO and TCGA databases. FCGBP RNA expression was evaluated between primary lesions (PC) and liver metastatic lesions (LM). FCGBP RNA was down-regulated in PC and LM, and especially lower in LM (p<0.001). Next, the expression of FCGBP protein was evaluated by an immunohistochemistry array in 135 paired primary tumor tissues and metastatic tissues. We found that FCGBP protein was down-regulated in primary lesions and metastatic lesions, especially in metastatic lesions. According to the immunohistochemistry score (SI), each cohort was divided into FCGBP-positive (SI=4–12) and FCGBP-negative (SI=0–3) groups. In both groups, the levels of CEA (PC group, 3.880 vs 77.049, p<0.001; LM group, 3.890 vs 14.239, p=0.008) and CA19-9 (PC group, 8.610 vs 111.700, p<0.001; LM group, 7.660 vs 19.380, p=0.037) were lower than those in the FCGBP-negative group. FCGBP positivity in the LM cohort was an independent risk factor in both overall survival (HR 1.573, 95% Cl [1.017–2.433], p=0.042) and disease-free survival (HR 1.869, 95% Cl [1.256–2.781], p=0.002). Conclusion This study found a relationship between FCGBP expression and clinical information of LMCRC patients, and found that FCGBP expression decreased with disease development. The expression of FCGBP in liver metastasis is associated with both the overall and progression-free survival. Our results show that FCGBP could be a promising prognostic factor for LMCRC.
Collapse
Affiliation(s)
- Ziming Yuan
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Zhixun Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hanqing Hu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yihao Zhu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Weiyuan Zhang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Qingchao Tang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Rui Huang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Feng Gao
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Chaoxia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Guiyu Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Xishan Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.,Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
15
|
Xue Y, Li PD, Tang XM, Yan ZH, Xia SS, Tian HP, Liu ZL, Zhou T, Tang XG, Zhang GJ. Cytochrome C Oxidase Assembly Factor 1 Homolog Predicts Poor Prognosis and Promotes Cell Proliferation in Colorectal Cancer by Regulating PI3K/AKT Signaling. Onco Targets Ther 2020; 13:11505-11516. [PMID: 33204105 PMCID: PMC7667209 DOI: 10.2147/ott.s279024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/22/2020] [Indexed: 01/22/2023] Open
Abstract
Purpose Colorectal cancer (CRC) is one of the most common malignancies in the world. The prognosis of advanced CRC is still poor. The purpose of this study was to identify a gene expression profile associated with CRC that may contribute to the early diagnosis of CRC and improve patient prognosis. Patients and Methods Five pairs of CRC tissues and paracancerous tissues were used to identify causative genes using microarray assays. The prognostic value of Cytochrome C Oxidase Assembly Factor 1 Homolog (COA1) in CRC was assessed in 90 CRC patients. Loss-of-function assays, cell proliferation assays using Celigo and MTT, colony formation assays, a subcutaneous xenograft mouse model, and apoptosis assays were used to define the effects of downregulation of COA1 in CRC cells in vitro and in vivo. The underlying molecular mechanisms of COA1 in CRC were also investigated. Results The causative gene COA1 was identified through microarray analysis. COA1 expression in CRC was notably associated with pathologic differentiation, tumor size, and tumor depth. COA1 expression may act as an independent prognostic factor for overall survival of CRC. Knockdown of COA1 inhibited the proliferation of CRC cells in vitro and the tumorigenicity of CRC cells in vivo. Decreased COA1 expression induced apoptosis of CRC cells. Based on the microarray assay results comparing HCT116 cells transfected with lentivirus encoding anti-COA1 shRNA or negative control shRNA, ingenuity pathway analysis (IPA) revealed that the PI3K/AKT signaling pathway was significantly enriched. Moreover, CCND1, mTOR, AKT1, and MDM2 were identified as the downstream genes of COA1. Conclusion These findings demonstrate that COA1 promotes CRC cell proliferation and inhibits apoptosis by regulating the PI3K/AKT signaling pathway. Our results implicate COA1 as a potential oncogene involved in tumor growth and progression of CRC.
Collapse
Affiliation(s)
- Yuan Xue
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Pei-Dong Li
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Xue-Mei Tang
- Department of Ultrasound, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Zai-Hua Yan
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Shu-Sen Xia
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Hong-Peng Tian
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Zuo-Liang Liu
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Tong Zhou
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Xue-Gui Tang
- Anorectal Department of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Guang-Jun Zhang
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| |
Collapse
|