1
|
Zamani Sani M, Mirzaei M, Mota A, Mohammadian J, Aboutalebi Vand Beilankouhi E, Rahmati M. MicroRNAs' Significance in Retinoblastoma Diagnosis and Treatment: The Little Heroes. Biochem Genet 2025; 63:1176-1197. [PMID: 39862293 DOI: 10.1007/s10528-024-10976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/09/2024] [Indexed: 01/27/2025]
Abstract
One in 16, 000 live births is affected by the retinal tumor RB (retinoblastoma), which is frequently found in a child's early years. Both of the RB1 alleles that have been locally mutated in the affected retina are present in 60 percent of cases. Retinoblastoma (RB) can be detected using a variety of techniques, including imaging of the brain and orbits, eye examinations under anesthesia (EUAs), and the discovery of cell-free tumor DNA in samples of aqueous humor or plasma. In addition to the conventional surgical, chemotherapy, and radiotherapy approaches to treating retinoblastoma, new approaches have also been developed. Oncogenes, genes of tumor suppressors, and other molecular elements involved in cell growth and division interact complexly during the pathogenesis of retinoblastoma. The development of new therapies depends on comprehending the function of these molecular components. As a small class of non-coding RNAs capable of altering gene expression, microRNAs (miRNA) are understood to represent potential targets for the treatment of cancer. This study aimed to describe the changes in microRNA expression in some types of cancer, with a particular focus on retinoblastoma.
Collapse
Affiliation(s)
- Maryam Zamani Sani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mirzaei
- Department of Ophthalmology, Nikoukari Eye Hospital, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mota
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Mohammadian
- School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Rahmati
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Chong ZX, Ho WY, Yeap SK. Deciphering the roles of non-coding RNAs in liposarcoma development: Challenges and opportunities for translational therapeutic advances. Noncoding RNA Res 2025; 11:73-90. [PMID: 39736850 PMCID: PMC11683247 DOI: 10.1016/j.ncrna.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 01/01/2025] Open
Abstract
Liposarcoma is one of the most prevalent forms of soft tissue sarcoma, and its prognosis is highly dependent on its molecular subtypes. Non-coding RNAs (ncRNAs) like microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) can bind various cellular targets to regulate carcinogenesis. By affecting the expressions and activities of their downstream targets post-transcriptionally, dysregulations of miRNAs can alter different oncogenic signalling pathways, mediating liposarcoma progression. On the contrary, lncRNAs can sponge miRNAs to spare their downstream targets from translational repression, indirectly affecting miRNA-regulated oncogenic activities. In the past 15 years, multiple fundamental and clinical research has shown that different ncRNAs play essential roles in modulating liposarcoma development. Yet, there is a lack of an effective review report that could summarize the findings from various studies. To narrow this literature gap, this review article aimed to compare the findings from different studies on the tumour-regulatory roles of ncRNAs in liposarcoma and to understand how ncRNAs control liposarcoma progression mechanistically. Additionally, the reported findings were critically reviewed to evaluate the translational potentials of various ncRNAs in clinical applications, including employing these ncRNAs as diagnostic and prognostic biomarkers or as therapeutic targets in the management of liposarcoma. Overall, over 15 ncRNAs were reported to play essential roles in modulating different cellular pathways, including apoptosis, WNT/β-catenin, TGF-β/SMAD4, EMT, interleukin, and YAP-associated pathways to influence liposarcoma development. 28 ncRNAs were reported to be upregulated in liposarcoma tissues or circulation, whereas 11 were downregulated, making them potential candidates as liposarcoma diagnostic biomarkers. Among these ncRNAs, measuring the tissues or circulating levels of miR-155 and miR-195 was reported to help detect liposarcoma, differentiate liposarcoma subtypes, and predict the survival and treatment response of liposarcoma patients. Overall, except for a few ncRNAs like miR-155 and miR-195, current evidence to support the use of discussed ncRNAs as biomarkers and therapeutic targets in managing liposarcoma is mainly based on a single-center study with relatively small sample sizes or cell-based studies. Hence, more large-scale multi-center studies should be conducted to further confirm the sensitivity, specificity, and safety of ncRNAs as biomarkers and therapeutic targets. Instead of furthering investigation to confirm the translational values of all the discussed ncRNAs, which can be time- and cost-consuming, it would be more practical to focus on a few ncRNAs, including miR-155 and miR-195, to evaluate if they are sensitive and safe to be used as liposarcoma biomarkers and therapeutic agents or targets.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| |
Collapse
|
3
|
Rajput S, Malviya R, Uniyal P. Advancements in the diagnosis, prognosis, and treatment of retinoblastoma. CANADIAN JOURNAL OF OPHTHALMOLOGY 2024; 59:281-299. [PMID: 38369298 DOI: 10.1016/j.jcjo.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Retinoblastoma (RB) is a prevalent primitive intraocular malignancy in children, particularly in those younger than age 3 years. RB is caused by mutations in the RB1 gene. In developing countries, mortality rates for this type of cancer are still high, whereas industrialized countries have achieved a survival rate of >95%-98%. Untreated, the condition can be fatal, underscoring the importance of early diagnosis. The existing treatments primarily consist of surgery, radiotherapy, and chemotherapy. The detrimental effects of radiation and chemotherapeutic drugs have been documented as factors that contribute to increased mortality rates and negatively affect the quality of life for patients. MicroRNA (miRNA), a type of noncoding RNA, exerts a substantial influence on RB development and the emergence of treatment resistance by regulating diverse cellular processes. This review highlights recent developments in the involvement of miRNAs in RB. This encompasses the clinical significance of miRNAs in the diagnosis, prognosis, and treatment of RB. Additionally, this paper examines the regulatory mechanisms of miRNAs in RB and explores potential therapeutic interventions. This paper provides an overview of the current and emerging treatment options for RB, focusing on recent studies investigating the application of different types of nanoparticles for the diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
4
|
Ma X, Li X, Sun Q, Luan F, Feng J. Molecular Biological Research on the Pathogenic Mechanism of Retinoblastoma. Curr Issues Mol Biol 2024; 46:5307-5321. [PMID: 38920989 PMCID: PMC11202574 DOI: 10.3390/cimb46060317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Retinoblastoma (RB) is the most common intraocular malignant tumor in children, primarily attributed to the bi-allelic loss of the RB1 gene in the developing retina. Despite significant progress in understanding the basic pathogenesis of RB, comprehensively unravelling the intricate network of genetics and epigenetics underlying RB tumorigenesis remains a major challenge. Conventional clinical treatment options are limited, and despite the continuous identification of genetic loci associated with cancer pathogenesis, the development of targeted therapies lags behind. This review focuses on the reported genomic and epigenomic alterations in retinoblastoma, summarizing potential therapeutic targets for RB and providing insights for research into targeted therapies.
Collapse
Affiliation(s)
| | | | | | - Fuxiao Luan
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (X.M.); (X.L.); (Q.S.)
| | - Jing Feng
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (X.M.); (X.L.); (Q.S.)
| |
Collapse
|
5
|
Maitisha G, Zhou J, Zhao Y, Han S, Zhao Y, Abliz A, Liu G. Network pharmacology-based approach to investigate the molecular targets of essential oil obtained from lavender for treating breast cancer. Heliyon 2023; 9:e21759. [PMID: 38034788 PMCID: PMC10681924 DOI: 10.1016/j.heliyon.2023.e21759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Lavender essential oil (LEO) is known for its medicinal use in the development of pharmaceuticals. Further investigations were demonstrated that LEO has many biological properties including apoptosis. However, The anti-breast cancer activity and mechanism of LEO are still unclear. we aim to elucidate the elusive anti-breast cancer activity and mechanism of LEO by unveiling the intricate molecular targets that it engages with, thereby priming it for effective therapeutic intervention against breast carcinoma. In this paper, we extracted LEO from lavender and analyzed it's chemical constituents by using hydro-distillation and gas chromatography-mass spectrometry (GS-MS/MS) method, respectively. The active components against breast cancer and it's molecular targets were selected and biological process, molecular function, cellular component and involving pathways were evaluated via network pharmacology approach. Cell viability, apoptosis and cell cycle assay were used to evaluate anti-breast cancer effect of LEO. Employing the western blotting method to validate target protein expression following LEO treatment in vitro. We found the 21 effective components and 213 drug-disease common targets of LEO. Amoung them, 7 active components and 19 targets were identified as potential therapeutic targets. Gene ontology results revealed that the drug-disease common targets of LEO were mainly distributed in membrane region, involved in peptide-tyrosine phosphorylation, and primarily associated with protein tyrosine kinase. We also found that drug-disease common targets might contribute to the regulation of PI3K-AKT signaling pathway by using KEGG pathway analysis. Besides, our study demonstrated reduced cell viability, induced apoptosis in MCF-7 and MDA-MB-231 treated with LEO while cell cycle arrest was not altered. The AKT1 expression down-regulated while PIK3CA expression was increased in both cell lines. Our findings indicate that LEO has the ability to induce apoptosis by modulating the expression of PI3K-AKT signaling pathway in these cell lines.
Collapse
Affiliation(s)
- Guzhalinuer Maitisha
- Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430061, China
| | - Junhao Zhou
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yan Zhao
- Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430061, China
| | - Shuxia Han
- Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430061, China
| | - Youyun Zhao
- Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430061, China
| | - Ablikim Abliz
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430061, China
| | - Guangzhong Liu
- Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430061, China
| |
Collapse
|
6
|
Doghish AS, Moustafa HAM, Elballal MS, Sarhan OM, Darwish SF, Elkalla WS, Mohammed OA, Atta AM, Abdelmaksoud NM, El-Mahdy HA, Ismail A, Abdel Mageed SS, Elrebehy MA, Abdelfatah AM, Abulsoud AI. miRNAs as potential game-changers in retinoblastoma: Future clinical and medicinal uses. Pathol Res Pract 2023; 247:154537. [PMID: 37216745 DOI: 10.1016/j.prp.2023.154537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Retinoblastoma (RB) is a rare tumor in children, but it is the most common primitive intraocular malignancy in childhood age, especially those below three years old. The RB gene (RB1) undergoes mutations in individuals with RB. Although mortality rates remain high in developing countries, the survival rate for this type of cancer is greater than 95-98% in industrialized countries. However, it is lethal if left untreated, so early diagnosis is essential. As a non-coding RNA, miRNA significantly impacts RB development and treatment resistance because it can control various cellular functions. In this review, we illustrate the recent advances in the role of miRNAs in RB. That includes the clinical importance of miRNAs in RB diagnosis, prognosis, and treatment. Moreover, the regulatory mechanisms of miRNAs in RB and therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Samar F Darwish
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Wagiha S Elkalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia
| | - Asmaa M Atta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | | | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Amr M Abdelfatah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo, Badr, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
7
|
Fayzullina D, Tsibulnikov S, Stempen M, Schroeder BA, Kumar N, Kharwar RK, Acharya A, Timashev P, Ulasov I. Novel Targeted Therapeutic Strategies for Ewing Sarcoma. Cancers (Basel) 2022; 14:cancers14081988. [PMID: 35454895 PMCID: PMC9032664 DOI: 10.3390/cancers14081988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Ewing sarcoma is an uncommon cancer that arises in mesenchymal tissues and represents the second most widespread malignant bone neoplasm after osteosarcoma in children. Therapy has increased the 5-year survival rate in the last 40 years, although the recurrence rate has remained high. There is an immediate and unmet need for the development of novel Ewing sarcoma therapies. We offer new prospective targets for the therapy of Ewing sarcoma. The EWSR1/FLI1 fusion protein, which is identified in 85–90% of Ewing sarcoma tumors, and its direct targets are given special focus in this study. Experimantal therapy that targets multiple signaling pathways activated during ES progression, alone or in combination with existing regimens, may become the new standard of care for Ewing sarcoma patients, improving patient survival. Abstract Ewing sarcoma (ES) is an uncommon cancer that arises in mesenchymal tissues and represents the second most widespread malignant bone neoplasm after osteosarcoma in children. Amplifications in genomic, proteomic, and metabolism are characteristics of sarcoma, and targeting altered cancer cell molecular processes has been proposed as the latest promising strategy to fight cancer. Recent technological advancements have elucidated some of the underlying oncogenic characteristics of Ewing sarcoma. Offering new insights into the physiological basis for this phenomenon, our current review examines the dynamics of ES signaling as it related to both ES and the microenvironment by integrating genomic and proteomic analyses. An extensive survey of the literature was performed to compile the findings. We have also highlighted recent and ongoing studies integrating metabolomics and genomics aimed at better understanding the complex interactions as to how ES adapts to changing biochemical changes within the tumor microenvironment.
Collapse
Affiliation(s)
- Daria Fayzullina
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
| | - Sergey Tsibulnikov
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
| | - Mikhail Stempen
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
| | - Brett A. Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA;
| | - Naveen Kumar
- Tumor Immunology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (N.K.); (A.A.)
| | - Rajesh Kumar Kharwar
- Endocrine Research Lab, Department of Zoology, Kutir Post Graduate College, Chakkey, Jaunpur 222146, India;
| | - Arbind Acharya
- Tumor Immunology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (N.K.); (A.A.)
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
- Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.F.); (S.T.); (M.S.); (P.T.)
- Correspondence:
| |
Collapse
|
8
|
Wen S, Hu M, Xiong Y. Effect of Eriodictyol on Retinoblastoma via the PI3K/Akt Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6091585. [PMID: 34804455 PMCID: PMC8601792 DOI: 10.1155/2021/6091585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022]
Abstract
Retinoblastoma (RB) is one of the most common intraocular malignancies in children, which causes vision loss and even threatens life. Eriodictyol is a natural flavonoid with strong anticancer activity. Some studies have shown that eriodictyol exerts anticancer effects in glioma, colon cancer, and lung cancer; however, no studies have reported the anticancer effects of eriodictyol on RB. Therefore, the aim of this study was to investigate the anticancer activity of eriodictyol against the RB Y79 cell line and its potential mechanism of action. Interestingly, we found that eriodictyol inhibited the proliferation, migration, and invasion of Y79 cells in a dose-dependent manner and decreased the expression of MMP-2 and MMP-9 proteins in the cells. In addition, eriodictyol-induced apoptosis in Y79 cells was assessed by flow cytometry and immunoblotting. Here, our study revealed that eriodictyol dose dependently inhibited the activation of the PI3K/Akt signaling pathway. Notably, the effect of eriodictyol on RB apoptosis was reversed by a PI3K agonist 740 Y-P. In conclusion, our study shows that eriodictyol effectively inhibits proliferation, migration, and invasion and induces apoptosis in RB cell lines, which may be the result of blocking the PI3K/Akt signaling pathway. Thus, eriodictyol may provide a new theoretical basis for exploring targeted antitumor natural therapies.
Collapse
Affiliation(s)
- Shu Wen
- Department of Ophthalmology, Jingmen No. 1 People's Hospital, Xiangshan Road, Jingmen, Hubei, China
| | - Meng Hu
- Department of Ophthalmology, Jingmen No. 1 People's Hospital, Xiangshan Road, Jingmen, Hubei, China
| | - Yan Xiong
- Department of Ophthalmology, Jingmen No. 1 People's Hospital, Xiangshan Road, Jingmen, Hubei, China
| |
Collapse
|
9
|
Shi K, Zhu X, Wu J, Chen Y, Zhang J, Sun X. Centromere protein E as a novel biomarker and potential therapeutic target for retinoblastoma. Bioengineered 2021; 12:5950-5970. [PMID: 34482803 PMCID: PMC8806431 DOI: 10.1080/21655979.2021.1972080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Retinoblastoma is the most common intraocular malignancy during childhood. Currently, there is no effective treatment for metastatic retinoblastoma. We investigated potential biomarkers of retinoblastoma by utilizing three datasets from a public database. Functional enrichment analysis, including gene ontology, Kyoto encyclopedia of genes and genomes, gene set enrichment analysis and variation analysis, suggested that differentially expressed genes in retinoblastoma were enriched in accelerated cell cycle events. Protein-protein interaction analysis constructed a network consisting of six hub genes, including benzimidazoles 1 (BUB1), cyclin dependent kinase 1 (CDK1), centromere protein E (CENPE), kinesin family member 20A (KIF20A), PDZ binding kinase (PBK), and targeting protein for xklp2 (TPX2). Drug sensitivity analysis showed that nelarabine was positively correlated with five hub genes. All six genes were expressed differently in six immune subtypes and were positively correlated with stemness indices in most human cancer types. Since CENPE is the least known hub gene in retinoblastoma, we further analyzed the potential non-coding RNAs and transcription factors that regulate CENPE and built interaction networks of competing endogenous RNA and transcription factors. Immune cell infiltration, especially by plasma and B cells, was enhanced in samples with high CENPE expression. Pan-cancer analysis illustrated that CENPE was highly expressed in a wide range of human tumors. In vitro validation revealed that CENPE was significantly upregulated at both the mRNA and protein levels in retinoblastoma cells. In conclusion, CENPE, along with other hub genes, could serve as a potential biomarker and intervention target for retinoblastoma.
Collapse
Affiliation(s)
- Ke Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xinyue Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jiali Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yuhong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|