1
|
Ratajczak W, Jones AG, Atkinson SD, Kelly C. Type 1 Diabetes Risk Variants Reduce Beta Cell Function. Genes (Basel) 2025; 16:172. [PMID: 40004501 PMCID: PMC11855905 DOI: 10.3390/genes16020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
INTRODUCTION The variants rs10517086 and rs1534422 are predictive of type 1 diabetes mellitus (T1DM) development and poor residual β cell function within the first year of diagnosis. However, the mechanism by which risk is conferred is unknown. We explored the impact of both variants on β cell function in vitro and assessed their relationship with C-peptide in people with T1DM and type 2 diabetes mellitus (T2DM). METHODS Using CRISPR/Cas9, the variants were introduced into a β cell line (BRIN-BD11) and a T cell line (Jurkat cells) from which the conditioned media was applied to otherwise healthy β cells to model the inflammatory environment associated with these variants. RESULTS Both variants significantly reduced glucose-stimulated insulin secretion, increased production of pro-inflammatory cytokines and reduced expression of several β cell markers and transcription factors (KCNJ11, KCNQ1, SCL2A2, GCK, NKX6.1, Pdx1 NGN3). However, HNF1A was significantly upregulated in the presence of both variants. We subsequently silenced HNF1A in variant expressing BRIN-BD11 cells using siRNA and found that gene expression profiles were normalised. Induction of each variant significantly increased expression of the lncRNAs they encode, which was normalised upon HNF1A silencing. Analysis of the DARE (Diabetes Alliance for Research in England) study revealed an association of rs10517086_A genotype with C-peptide in 153 individuals with T1DM, but not in 417 people with T2DM. CONCLUSIONS These data suggest that rs1534422 and rs10517086 exert multiple insults on the β cell through excessive upregulation of HNF1A and induction of pro-inflammatory cytokines, and highlight their utility as prognostic markers of β cell function.
Collapse
Affiliation(s)
- Wiktoria Ratajczak
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Hospital Campus, Glenshane Road, Derry BT48 7JL, UK;
| | - Angus G. Jones
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Barrack Road, Exeter EX1 2LU, UK;
| | - Sarah D. Atkinson
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK;
| | - Catriona Kelly
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Hospital Campus, Glenshane Road, Derry BT48 7JL, UK;
| |
Collapse
|
2
|
Pu C, Liu Y, Lan S, Fan H, Liu L, Liu J, Guo Y. Enhancing therapeutic efficacy in homologous recombination-proficient pancreatic cancer via the combination of PARP1-PROTAC and a BRD4 inhibitor. Bioorg Med Chem 2024; 115:117970. [PMID: 39476572 DOI: 10.1016/j.bmc.2024.117970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Currently, poly (ADP-ribose) polymerase inhibitors (PARPi) have been approved by U.S. Food and Drug Administration for BRCA-mutated pancreatic cancer therapy. However, limited indications hinder their further application. Repression of bromodomain-containing protein 4 (BRD4) can block the homologous recombination (HR) repair pathway and has the potential to enhance the response to PARPi in HR-proficient pancreatic cancer therapy. In addition, proteolysis targeting chimeras (PROTACs) can hijack E3 ligase within the cell to ubiquitinate degradation-targeted proteins effectively and quickly, thus enhancing the therapeutic effect on tumors. In the present study, the LB23 compound, which induces PARP1 degradation, was employed in combination with the BRD4 inhibitor JQ1, confirming their synergistic effect in HR-proficient pancreatic cancer through various methods. Moreover, compared to the JQ1 and PARPi olaparib combination, PARP1-PROTAC and JQ1 had more notable synergistic effects. Further research into the synergistic mechanism demonstrated that combination therapy enhanced DNA damage and suppressed DNA repair by inducing cell cycle arrest and cell apoptosis. The present study therefore provides the experimental data for this type of combination therapy, which is expected to be an innovative approach for the treatment of HR-proficient pancreatic cancer.
Collapse
Affiliation(s)
- Chunlan Pu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, China
| | - Yuanyuan Liu
- Sichuan Technical Inspection Center for Medical Products, Sichuan Technical Inspection Center for Vaccine, Chengdu, Sichuan 610015, China
| | - Suke Lan
- College of Chemistry & Environment Protection Engineering, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Hengrui Fan
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, China
| | - Lvye Liu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, China
| | - Jianyu Liu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, China.
| | - Yuanbiao Guo
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, China.
| |
Collapse
|
3
|
Cao Y, Xing R, Yang F, Zhang Y, Zhou X. Establishment of a prognostic model for pancreatic cancer based on vesicle-mediated transport protein-related genes. Comput Methods Biomech Biomed Engin 2024:1-11. [PMID: 38967327 DOI: 10.1080/10255842.2024.2367739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
This study attempted to build a prognostic riskscore model for pancreatic cancer (PC) patients based on vesicle-mediated transport protein-related genes (VMTGs). We initially conducted differential expression analysis and Cox regression analysis, followed by the construction of a riskscore model to classify PC patients into high-risk (HR) and low-risk (LR) groups. The GEO GSE62452 dataset further validated the model. Kaplan-Meier survival analysis was employed to analyze the survival rate of the HR group and LR group. Cox analysis confirmed the independent prognostic ability of the riskscore model. Additionally, we evaluated immune status in both HR and LR groups, utilizing data from the GDSC database to predict drug response among PC patients. We identified six PC-specific genes from 724 VMTGs. Survival analysis revealed that the survival rate of the HR group was lower than that of the LR group (P<0.05). Cox analysis confirmed that the prognostic riskscore model could independently predict the survival status of PC patients (P<0.001). Immunological analysis revealed that the ESTIMATE score, immune score, and stroma score of the HR group were considerably lower than those of the LR group, and the tumor purity score of the HR group was higher. The IC50 values of Gemcitabine, Irinotecan, Oxaliplatin, and Paclitaxel in the LR group were considerably lower than those in the HR group (P<0.001). In summary, the VMTG-based prognostic riskscore model could stratify PC risk and effectively predict the survival of PC patients.
Collapse
Affiliation(s)
- Yanfang Cao
- Department of Gastroenterology, Taizhou Municipal Hospital, Taizhou City, Zhejiang Province, China
| | - Renwei Xing
- Department of Hepatobiliary Surgery, Taizhou Municipal Hospital, Taizhou City, Zhejiang Province, China
| | - Fan Yang
- Department of Hepatobiliary Surgery, Taizhou Municipal Hospital, Taizhou City, Zhejiang Province, China
| | - Yang Zhang
- Department of Hepatobiliary Surgery, Taizhou Municipal Hospital, Taizhou City, Zhejiang Province, China
| | - Xianfei Zhou
- Department of Hepatobiliary Surgery, Taizhou Municipal Hospital, Taizhou City, Zhejiang Province, China
| |
Collapse
|
4
|
Feng Y, Zhou C, Zhao F, Ma T, Xiao Y, Peng K, Xia R. ZEB2 alleviates Hirschsprung's-associated enterocolitis by promoting the proliferation and differentiation of enteric neural precursor cells via the Notch-1/Jagged-2 pathway. Gene 2024; 912:148365. [PMID: 38485033 DOI: 10.1016/j.gene.2024.148365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Hirschsprung's-associated enterocolitis (HAEC) is a prevalent complication of Hirschsprung's disease (HSCR). Zinc finger E-box binding homeobox 2 (ZEB2) and Notch-1/Jagged-2 are dysregulated in HSCR, but their role in HAEC progression remains poorly understood. We aimed to explore the role and underlying mechanism of enteric neural precursor cells (ENPCs) and the ZEB2/Notch-1/Jagged-2 pathway in HAEC development. METHODS Colon tissues were collected from HSCR and HAEC patients. ENPCs were isolated from the HAEC group and stimulated by lipopolysaccharide (LPS). The expressions of ZEB2/Notch-1/Jagged-2 were measured using RT-qPCR and Western blot. Immunofluorescence and cell counting kit-8 assays were performed to assess the differentiation and proliferation of ENPCs. Inflammatory factors were measured by ELISA kits. Co-immunoprecipitation and bioinformatic analysis were used to explore the interaction between ZEB2 and Notch-1. Small interfering RNA and overexpression vectors were used to investigate the role and mechanism of ZEB2 and Notch-1 in regulating ENPCs' proliferation and differentiation during HAEC progression. RESULTS We observed increased LPS in the colon tissues of HAEC, with downregulated ZEB2 expression and upregulated Notch-1/Jagged-2 expression. ZEB2 interacts with Notch-1. LPS treatment downregulated ZEB2 expression, upregulated Notch-1/Jagged-2 expression, and induced proliferation and differentiation disorders in ENPCs, which were reversed by the knockdown of Notch-1. Furthermore, overexpression of ZEB2 inhibited Notch-1/Jagged-2 signaling and ameliorated inflammation and dysfunction in LPS-induced ENPCs. Notch-1 overexpression enhanced LPS-induced dysfunction, but this effect was antagonized by the overexpression of ZEB2. CONCLUSION Overexpression of ZEB2 ameliorates LPS-induced ENPCs' dysfunction via the Notch-1/Jagged-2 pathway, thus playing a role in HAEC.
Collapse
Affiliation(s)
- Yong Feng
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, Changsha 410007, China
| | - Chonggao Zhou
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, Changsha 410007, China
| | - Fan Zhao
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, Changsha 410007, China
| | - Tidong Ma
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, Changsha 410007, China
| | - Yong Xiao
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, Changsha 410007, China
| | - Kun Peng
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, Changsha 410007, China
| | - Renpeng Xia
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, Changsha 410007, China.
| |
Collapse
|
5
|
Yang H, Zhao L, Li D, An C, Fang X, Chen Y, Liu J, Xiao T, Wang Z. Subtype-WGME enables whole-genome-wide multi-omics cancer subtyping. CELL REPORTS METHODS 2024; 4:100781. [PMID: 38761803 PMCID: PMC11228280 DOI: 10.1016/j.crmeth.2024.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/05/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
We present an innovative strategy for integrating whole-genome-wide multi-omics data, which facilitates adaptive amalgamation by leveraging hidden layer features derived from high-dimensional omics data through a multi-task encoder. Empirical evaluations on eight benchmark cancer datasets substantiated that our proposed framework outstripped the comparative algorithms in cancer subtyping, delivering superior subtyping outcomes. Building upon these subtyping results, we establish a robust pipeline for identifying whole-genome-wide biomarkers, unearthing 195 significant biomarkers. Furthermore, we conduct an exhaustive analysis to assess the importance of each omic and non-coding region features at the whole-genome-wide level during cancer subtyping. Our investigation shows that both omics and non-coding region features substantially impact cancer development and survival prognosis. This study emphasizes the potential and practical implications of integrating genome-wide data in cancer research, demonstrating the potency of comprehensive genomic characterization. Additionally, our findings offer insightful perspectives for multi-omics analysis employing deep learning methodologies.
Collapse
Affiliation(s)
- Hai Yang
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Zhao
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dongdong Li
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Congcong An
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyang Fang
- Cornell Tech, Cornell University, New York, NY 14853, USA
| | - Yiwen Chen
- Center for Continuing and Lifelong Education, National University of Singapore, Singapore 119077, Singapore
| | - Jingping Liu
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ting Xiao
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhe Wang
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Yang G, Su F, Han BX, Su HX, Guo CH, Yu SH, Guan QL, Hou XM. HNF1A induces glioblastoma by upregulating EPS8 and activating PI3K/AKT signaling pathway. Biochem Pharmacol 2024; 223:116133. [PMID: 38494066 DOI: 10.1016/j.bcp.2024.116133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Despite the exact biological role of HNF1 homolog A (HNF1A) in the regulatory mechanism of glioblastoma (GBM), the molecular mechanism, especially the downstream regulation as a transcription factor, remains to be further elucidated. Immunohistochemistry was used to detect the expression and clinical relevance of HNF1A in GBM patients. CCK8, TUNEL, and subcutaneous tumor formation in nude mice were used to evaluate the effect of HNF1A on GBM in vitro and in vivo. The correction between HNF1A and epidermal growth factor receptor pathway substrate 8 (EPS8) was illustrated by bioinformatics analysis and luciferase assay. Further mechanism was explored that the transcription factor HNF1A regulated the expression of EPS8 and downstream signaling pathways by directly binding to the promoter region of EPS8. Our comprehensive analysis of clinical samples in this study showed that upregulated expression of HNF1A was associated with poor survival in GBM patients. Further, we found that knockdown of HNF1A markedly suppressed the malignant phenotype of GBM cells in vivo and in vitro as well as promoted apoptosis of tumor cells, which was reversed by upregulation of HNF1A. Mechanistically, HNF1A could significantly activate PI3K/AKT signaling pathway by specifically binding to the promoter regions of EPS8. Moreover, overexpression of EPS8 was able to reverse the apoptosis of tumor cells caused by HNF1A knockdown, thereby exacerbating the GBM progression. Correctively, our study has clarified the explicit mechanism by which HNF1A promotes GBM malignancy and provides a new therapeutic target for further clinical application.
Collapse
Affiliation(s)
- Gang Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Fei Su
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Bin-Xiao Han
- Gansu Institute of Medical Information, Institute of Gansu Medical Science Research, Lanzhou, Gansu 730000, PR China
| | - Hong-Xin Su
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Chen-Hao Guo
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Shao-Hua Yu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Quan-Lin Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China.
| | - Xiao-Ming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
7
|
Li LB, Yang LX, Liu L, Liu FR, Li AH, Zhu YL, Wen H, Xue X, Tian ZX, Sun H, Li PC, Zhao XG. Targeted inhibition of the HNF1A/SHH axis by triptolide overcomes paclitaxel resistance in non-small cell lung cancer. Acta Pharmacol Sin 2024; 45:1060-1076. [PMID: 38228910 PMCID: PMC11053095 DOI: 10.1038/s41401-023-01219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024]
Abstract
Paclitaxel resistance is associated with a poor prognosis in non-small cell lung cancer (NSCLC) patients, and currently, there is no promising drug for paclitaxel resistance. In this study, we investigated the molecular mechanisms underlying the chemoresistance in human NSCLC-derived cell lines. We constructed paclitaxel-resistant NSCLC cell lines (A549/PR and H460/PR) by long-term exposure to paclitaxel. We found that triptolide, a diterpenoid epoxide isolated from the Chinese medicinal herb Tripterygium wilfordii Hook F, effectively enhanced the sensitivity of paclitaxel-resistant cells to paclitaxel by reducing ABCB1 expression in vivo and in vitro. Through high-throughput sequencing, we identified the SHH-initiated Hedgehog signaling pathway playing an important role in this process. We demonstrated that triptolide directly bound to HNF1A, one of the transcription factors of SHH, and inhibited HNF1A/SHH expression, ensuing in attenuation of Hedgehog signaling. In NSCLC tumor tissue microarrays and cancer network databases, we found a positive correlation between HNF1A and SHH expression. Our results illuminate a novel molecular mechanism through which triptolide targets and inhibits HNF1A, thereby impeding the activation of the Hedgehog signaling pathway and reducing the expression of ABCB1. This study suggests the potential clinical application of triptolide and provides promising prospects in targeting the HNF1A/SHH pathway as a therapeutic strategy for NSCLC patients with paclitaxel resistance. Schematic diagram showing that triptolide overcomes paclitaxel resistance by mediating inhibition of the HNF1A/SHH/ABCB1 axis.
Collapse
Affiliation(s)
- Ling-Bing Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Ling-Xiao Yang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Lei Liu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Fan-Rong Liu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Alex H Li
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10010, USA
| | - Yi-Lin Zhu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Hao Wen
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Zhong-Xian Tian
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
- Key Laboratory of Chest Cancer, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Hong Sun
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10010, USA
| | - Pei-Chao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China.
- Key Laboratory of Chest Cancer, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China.
| | - Xiao-Gang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China.
- Key Laboratory of Chest Cancer, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China.
| |
Collapse
|
8
|
Rao J, Sinn M, Pelzer U, Riess H, Oettle H, Demir IE, Friess H, Jäger C, Steiger K, Muckenhuber A. KRT81 and HNF1A expression in pancreatic ductal adenocarcinoma: investigation of predictive and prognostic value of immunohistochemistry-based subtyping. J Pathol Clin Res 2024; 10:e12377. [PMID: 38750616 PMCID: PMC11096282 DOI: 10.1002/2056-4538.12377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Even after decades of research, pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal disease and responses to conventional treatments remain mostly poor. Subclassification of PDAC into distinct biological subtypes has been proposed by various groups to further improve patient outcome and reduce unnecessary side effects. Recently, an immunohistochemistry (IHC)-based subtyping method using cytokeratin-81 (KRT81) and hepatocyte nuclear factor 1A (HNF1A) could recapitulate some of the previously established molecular subtyping methods, while providing significant prognostic and, to a limited degree, also predictive information. We refined the KRT81/HNF1A subtyping method to classify PDAC into three distinct biological subtypes. The prognostic value of the IHC-based method was investigated in two primary resected cohorts, which include 269 and 286 patients, respectively. In the second cohort, we also assessed the predictive effect for response to erlotinib + gemcitabine. In both PDAC cohorts, the new HNF1A-positive subtype was associated with the best survival, the KRT81-positive subtype with the worst, and the double-negative with an intermediate survival (p < 0.001 and p < 0.001, respectively) in univariate and multivariate analyses. In the second cohort (CONKO-005), the IHC-based subtype was additionally found to have a potential predictive value for the erlotinib-based treatment effect. The revised IHC-based subtyping using KRT81 and HNF1A has prognostic significance for PDAC patients and may be of value in predicting treatment response to specific therapeutic agents.
Collapse
Affiliation(s)
- Jia Rao
- Institute of PathologyTechnical University of MunichMunichGermany
| | - Marianne Sinn
- Department of Haematology, Oncology and Tumour Immunology, CONKO‐Study‐GroupCharité – University Medicine BerlinBerlinGermany
- Department of Internal Medicine IIUniversity Medical Center of Hamburg‐EppendorfHamburgGermany
| | - Uwe Pelzer
- Department of Haematology, Oncology and Tumour Immunology, CONKO‐Study‐GroupCharité – University Medicine BerlinBerlinGermany
| | - Hanno Riess
- Department of Haematology, Oncology and Tumour Immunology, CONKO‐Study‐GroupCharité – University Medicine BerlinBerlinGermany
| | - Helmut Oettle
- Department of Haematology, Oncology and Tumour Immunology, CONKO‐Study‐GroupCharité – University Medicine BerlinBerlinGermany
| | - Ihsan E Demir
- Department of Surgery, Klinikum rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
- Else Kröner Clinician Scientist Professor for Translational Pancreatic SurgeryMunichGermany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
| | - Carsten Jäger
- Department of Surgery, Klinikum rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
| | - Katja Steiger
- Institute of PathologyTechnical University of MunichMunichGermany
| | | |
Collapse
|
9
|
Wang G, Chen J, Dai S, Zhang J, Gao Y, Yin L, Jiang K, Miao Y, Lu Z. High pyroptosis activity in pancreatic adenocarcinoma: poor prognosis and oxaliplatin resistance. Apoptosis 2024; 29:344-356. [PMID: 37848674 DOI: 10.1007/s10495-023-01901-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Pyroptosis, as a type of inflammatory programmed cell death, has been studied in inflammatory diseases and numerous cancers but its role in pancreatic ductal adenocarcinoma (PDAC) remains further exploration. METHODS A TCGA-PDAC cohort was enrolled for bioinformatics analysis to investigate the effect of pyroptosis on the prognosis and drug sensitivity of patients. PA-TU-8988T and CFPAC-1 cells were selected for investigating the role of GSDMC in PDAC. RESULTS A distinct classification pattern of PDAC mediated by 21 pyroptosis-related genes (PRGs) was identified. It was suggested that higher pyroptosis activity was associated with poor prognosis of patients and higher tumor proliferation rates. We further established a prognostic model based on three PRGs (GSDMC, CASP4 and NLRP1) and the TCGA-PDAC cohort was classified into low and high-risk subgroups. It is noteworthy that the high-risk group showed significantly higher tumor proliferation rates and was proved to be highly correlated with oxaliplatin resistance. Further experiments suggested that overexpression of GSDMC promoted the proliferation and oxaliplatin resistance of PA-TU-8988T cells in vitro and vivo, while downregulation of GSDMC showed opposite effects in CFPAC-1 cells. Finally, we found that the activation of pentose phosphate pathway (PPP) was the mechanism by which GSDMC overexpression promoted the proliferation and oxaliplatin resistance of pancreatic cancer cells. CONCLUSIONS In this study, we found that higher pyroptosis activity is associated with worse prognosis and oxaliplatin resistance of PDAC patients. In addition, as a core effector of pyroptosis, GSDMC promoted proliferation and oxaliplatin resistance of pancreatic cancer cells, which will provide new therapeutic target for PDAC patients.
Collapse
Affiliation(s)
- Guangfu Wang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Jin Chen
- Department of Gynecological Oncology, Jiangsu Cancer Hospital, Nanjing, China
| | - Shangnan Dai
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Jinfan Zhang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yong Gao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Lingdi Yin
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Kuirong Jiang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
- Pancreas Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| | - Zipeng Lu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Scianò F, Terrana F, Pecoraro C, Parrino B, Cascioferro S, Diana P, Giovannetti E, Carbone D. Exploring the therapeutic potential of focal adhesion kinase inhibition in overcoming chemoresistance in pancreatic ductal adenocarcinoma. Future Med Chem 2024; 16:271-289. [PMID: 38269431 DOI: 10.4155/fmc-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer-related deaths worldwide. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase often overexpressed in PDAC. FAK has been linked to cell migration, survival, proliferation, angiogenesis and adhesion. This review first highlights the chemoresistant nature of PDAC. Second, the role of FAK in PDAC cancer progression and resistance is carefully described. Additionally, it discusses recent developments of FAK inhibitors as valuable drugs in the treatment of PDAC, with a focus on diamine-substituted-2,4-pyrimidine-based compounds, which represent the most potent class of FAK inhibitors in clinical trials for the treatment of PDAC disease. To conclude, relevant computational studies performed on FAK inhibitors are reported to highlight the key structural features required for interaction with the protein, with the aim of optimizing this novel targeted therapy.
Collapse
Affiliation(s)
- Fabio Scianò
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Francesca Terrana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Barbara Parrino
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Patrizia Diana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) De Boelelaan 1117, Amsterdam, 1081HV, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, Pisa, 56017, Italy
| | - Daniela Carbone
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| |
Collapse
|