1
|
Selvi S, Real CM, Gentiluomo M, Balounova K, Vokacova K, Cumova A, Mohlenikova-Duchonova B, Rizzato C, Halasova E, Vodickova L, Smolkova B, Hemminki K, Campa D, Vodicka P. Genomic instability, DNA damage response and telomere homeostasis in pancreatic cancer. Semin Cancer Biol 2025; 113:59-73. [PMID: 40378535 DOI: 10.1016/j.semcancer.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/16/2025] [Accepted: 05/04/2025] [Indexed: 05/19/2025]
Abstract
Pancreatic cancer (PC) is becoming one of the most serious health problems at present, but its causes and risk factors are still unclear. One of the drivers in pancreatic carcinogenesis is altered genomic (DNA) integrity with subsequent genomic instability in cancer cells. The latter comprises a) DNA damage response and DNA repair mechanisms, b) DNA replication and mitosis, c) epigenetic regulation, and d) telomere maintenance. In our review we addressed the above aspects in relation to the most abundant and severe form of PC, pancreatic ductal adenocarcinoma (PDAC). In summary, the interactions between the DNA damage response, telomere homeostasis and mitotic regulation are not comprehensively understood at present, including the epigenetic factors entering the trait of genomic stability maintenance. In addition, the complexity of telomere homeostasis in relation to PDAC risk, prognosis and prediction also warrants further investigations.
Collapse
Affiliation(s)
- Saba Selvi
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague 12800, Czech Republic
| | - Carmen Macías Real
- Cancer Predisposition and Biomarkers Group, Instituto de Investigacion Sanitaria de Santiago, Santiago de Compostela, Spain
| | | | - Katerina Balounova
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Klara Vokacova
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Andrea Cumova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84505, Slovakia
| | | | - Cosmeri Rizzato
- Department of Biology, University of Pisa, Pisa 56123, Italy
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, Martin 03601, Slovakia
| | - Ludmila Vodickova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, Martin 03601, Slovakia; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, Pilsen 32300, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, Prague 12800, Czech Republic
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84505, Slovakia
| | - Kari Hemminki
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, Pilsen 32300, Czech Republic; Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, FRG 69120, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa 56123, Italy
| | - Pavel Vodicka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, Martin 03601, Slovakia; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, Pilsen 32300, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, Prague 12800, Czech Republic.
| |
Collapse
|
2
|
Lee SH, Song DS, Kim UC, Jee SH, Lee K. The Causal Relationship between Telomere Length and Cancer Risk: A Two-Sample Mendelian Randomization. Cancer Epidemiol Biomarkers Prev 2025; 34:737-743. [PMID: 40079752 PMCID: PMC12046325 DOI: 10.1158/1055-9965.epi-24-1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/02/2024] [Accepted: 03/10/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Telomere length (TL) shortens with age and is associated with an increased risk of numerous chronic diseases. However, the causal direction of the association between TL and cancer risk remains uncertain. This study aimed to assess the causal impact of TL on cancer risk using Mendelian randomization (MR) analysis. METHODS Genome-wide association studies from Singapore and China data, the Korean Cancer Prevention Study II (KCPS-II), the Korean Genome Epidemiologic Study, and the Biobank of Japan were utilized. A two-sample MR study was performed using summary-level genome-wide association study data from individuals of East Asian ancestry. SNPs associated with TL were used as instrumental variables. RESULTS Longer TL per 1-SD increase due to germline genetic variants was associated with a higher risk of site-specific cancer. In the KCPS-II and Korean Genome Epidemiologic Study, the strongest association was observed with thyroid cancer {OR, 2.49 [95% confidence interval (CI), 1.79-3.47] and 2.27 (1.49-3.46)}, followed by lung cancer [OR, 2.19 (95% CI, 1.60-3.08) and 1.45 (1.12-1.87)]. Similar results were observed in the Biobank of Japan, with OR, 2.92 (95% CI, 1.75-4.88) for thyroid cancer and 2.04 (1.41-2.94) for lung cancer. In histologic subgroup analysis of KCPS-II, a significant relationship was found with lung adenocarcinoma [OR, 2.26 (95% CI, 1.55-3.31)] but not with lung squamous cell carcinoma (1.21, 0.47-3.06). After removing outlier SNPs in the radial MR analysis, significant associations were identified for both lung adenocarcinoma [OR, 1.88 (95% CI, 1.25-2.82)] and lung squamous cell carcinoma (2.29, 1.05-4.98). CONCLUSIONS Our findings suggest that longer TL increases the risk of various cancers in East Asian populations. IMPACT Genetically determined longer TL may contribute to a risk of certain cancers.
Collapse
Affiliation(s)
- Su Hyun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, South Korea
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
- Department of Public Health, Graduate School, Yonsei University, Seoul, Korea
| | - Dae Sub Song
- Division of Population Health Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Republic of Korea
| | - Un Chong Kim
- Department of Biostatistics and Computing, College of Medicine, Yonsei University, Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Kyoungho Lee
- Division of Population Health Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Republic of Korea
| |
Collapse
|
3
|
Zhang H, Zhou J, Cao Y, Zhang X, Chang H, Zhao Y, Bo Y, Zhang H, Yu Z, Zhao X. Association between telomere length and psychiatric disorders: a bidirectional Mendelian randomization study. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-025-02008-w. [PMID: 40278882 DOI: 10.1007/s00406-025-02008-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
Observational studies have suggested that shorter telomere length (TL) may be a risk factor for psychiatric disorders. However, whether this association underlie causal effects remains unknown. This study aims to investigate the potential association between TL and psychiatric disorders by conducting a bidirectional Mendelian randomization (MR) study. Summary statistics for TL were obtained from the UK Biobank (n = 472,174), while summary statistics for ten psychiatric disorders were acquired from the Psychiatric Genomics Consortium (PGC). The inverse-variance weighted (IVW) method was used as primary analysis, with the MR-Egger, weighted median, MR-PRESSO, simple mode, and weighted mode approaches were utilized as sensitivity analyses. Our findings indicated a potential association between genetic predisposition to attention deficit hyperactivity disorder (ADHD) and shortened TL (Beta = - 0.039, SE = 0.011, P = 4.00E-04). Additionally, posttraumatic stress disorder (PTSD) may be was potentially associated with TL (Beta = - 0.014, SE = 0.006, P = 0.019). Our findings suggest a potential correlation between ADHD and TL, yet no significant association exists between TL and other psychiatric disorders. Nevertheless, considering the small effect size and the fact that it might have limited practical clinical significance, TL may not function as a biomarker for psychiatric disorders.
Collapse
Affiliation(s)
- Han Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jing Zhou
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yuan Cao
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hui Chang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Zhao
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yacong Bo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Huanhuan Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zengli Yu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xin Zhao
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Kramna D, Machaczka O, Riedlova P, Janulkova T, Ostrizkova S, Siemiatkowski G, Osrodka L, Krajny E, Jirik V. Exploring the relationship between air pollution and telomere length: Baseline findings from a comprehensive ambispective cohort study. Int J Hyg Environ Health 2025; 267:114577. [PMID: 40220459 DOI: 10.1016/j.ijheh.2025.114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Telomere length is a biomarker of cellular aging, influenced by various environmental and lifestyle factors. Air pollution is a known environmental stressor that may impact telomere dynamics. This study aimed to investigate the effect of age, lifetime exposure to air pollution, inflammatory parameters and selected lifestyle factors on telomere length. METHODS The study included 356 participants aged 35-65 living in two regions with varying pollution. Telomere length was measured using qPCR. Individual lifetime exposures to PM10, PM2.5, NO2, benzo(a)pyrene and benzene were calculated based on historical air quality data. Statistical analysis of age, pollution exposure, inflammatory parameters, and lifestyle factors on telomere length was performed using logistic regression and generalized linear models, with odds ratios calculated. RESULTS Unexpectedly, higher air pollutants lifetime exposures were associated with longer telomeres, particularly for PM10 51-55 μg/m3 (OR = 5.67, p < 0.001), PM2.5 42-45 μg/m3 (OR = 6.56, p < 0.001), B(a)P 6.9-8.3 ng/m3 (OR = 5.25, p = 0.002), NO2 26-27 μg/m3 (OR = 5.22, p = 0.001) and benzene 2.45-2.75 μg/m3 (OR = 6.13, p < 0.001). Age significantly affected telomere length, with older individuals having shorter telomeres. Socioeconomic factors such as college education were positively associated with longer telomeres, while lifestyle factors did not show significant associations. IL-8 was identified as a significant inflammatory marker negatively associated with very long telomeres. CONCLUSION These baseline findings bring new perspective to the relationship between air pollution and telomere length. Contrary to traditional views, the results suggest potential adaptive responses, highlighting the need for further longitudinal research to explore telomere dynamics over time in conjunction with other factors.
Collapse
Affiliation(s)
- Dagmar Kramna
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava, Czech Republic; Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava, Czech Republic
| | - Ondrej Machaczka
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava, Czech Republic
| | - Petra Riedlova
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava, Czech Republic; Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava, Czech Republic
| | - Tereza Janulkova
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava, Czech Republic; Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava, Czech Republic
| | - Silvie Ostrizkova
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava, Czech Republic
| | | | - Leszek Osrodka
- Institute of Meteorology and Water Management National Research Institute, 01-673, Warsaw, Poland
| | - Ewa Krajny
- Institute of Meteorology and Water Management National Research Institute, 01-673, Warsaw, Poland
| | - Vitezslav Jirik
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava, Czech Republic; Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava, Czech Republic.
| |
Collapse
|
5
|
Campa D, Felici A, Corradi C, Peduzzi G, Gentiluomo M, Farinella R, Rizzato C. Long or short? Telomere length and pancreatic cancer and its precursor lesions, a narrative review. Mutagenesis 2025; 40:39-47. [PMID: 37976300 DOI: 10.1093/mutage/gead034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and lethal form of pancreatic cancer, with a survival approaching only 11% at 5 years after diagnosis. In the last 15 years, telomere length (TL) measured in leukocyte (LTL) has been studied in relation to PDAC risk. The majority of the studies reported an association between short LTL and increased PDAC risk, but the results are heterogeneous. Genome-wide association studies have identified several single-nucleotide polymorphisms (SNPs) in the telomerase reverse transcriptase (TERT) gene as susceptibility loci for PDAC. Polygenic risk scores computed using SNPs associated with LTL have been tested in relation to PDAC susceptibility with various methods and giving contrasting results. The aim of this review is to analyze all publications carried out specifically on LTL, considering LTL measured with qPCR and with genetic proxies, and PDAC risk. Additionally, we will give an overview of the most relevant associations between SNPs in telomere-associated genes and PDAC, to answer the question shorter or longer? Which one of the two is associated with PDAC risk?
Collapse
Affiliation(s)
- Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Andreikos D, Spandidos DA, Georgakopoulou VE. Telomeres and telomerase in mesothelioma: Pathophysiology, biomarkers and emerging therapeutic strategies (Review). Int J Oncol 2025; 66:23. [PMID: 39981889 PMCID: PMC11844339 DOI: 10.3892/ijo.2025.5729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Malignant mesothelioma (MM) is a rare but aggressive cancer linked to asbestos exposure and characterized by advanced‑stage disease at presentation. Despite advances in treatment, prognosis remains abysmal, highlighting the imperative for the development of novel biomarkers and treatment approaches. Telomere biology plays a pivotal role in the tumorigenic process and has emerged as a key area in oncology research. Short telomeres have been associated with genomic instability, and substantially shorter telomere length (TL) has been identified in MM, showcasing the potential of TL in risk assessment, early detection, and disease progression monitoring. MM predominantly maintains TL through telomerase activity (TA), which in research has been identified in >90% of MM cases, underscoring the potential of TA as a biomarker in MM. Telomerase reverse transcriptase (TERT) polymorphisms may serve as valuable biomarkers, with research identifying associations between single nucleotide polymorphisms (SNPs) and the risk and prognosis of MM. Additionally, TERT promoter mutations have been associated with poor prognosis and advanced‑stage disease, with the non‑canonical functions of TERT hypothesized to contribute to the development of MM. TERT promoter mutations occur in ~12% of MM cases; C228T, C250T and A161C are the most common, while the distribution and frequency differ depending on histological subtype. Research reveals the promise of the various approaches therapeutically targeting telomerase, with favorable results in pre‑clinical models and inconclusive findings in clinical trials. The present review examines the role of telomere biology in MM and its implications in diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Dimitrios Andreikos
- School of Medicine, Democritus University of Thrace, 68110 Alexandroupolis, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
7
|
Sabaie H, Taghavi Rad A, Shabestari M, Seddiq S, Saadattalab T, Habibi D, Saeidian AH, Abbasi M, Mirtavoos-Mahyari H. Deciphering the bidirectional impact of leukocyte telomere length on multiple sclerosis progression: A Mendelian randomization study. Mult Scler Relat Disord 2025; 94:106277. [PMID: 39842387 DOI: 10.1016/j.msard.2025.106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/28/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Observational studies have suggested a link between leukocyte telomere length (LTL) and multiple sclerosis (MS) progression, but the causal relationship remains uncertain. This study investigates the causal association between LTL and MS progression using a bidirectional two-sample Mendelian randomization (MR) approach. We analyzed genome-wide association summary statistics data from 472,174 individuals for LTL and 12,584 MS patients for disease progression. The primary method was the inverse variance weighted (IVW) approach, supported by sensitivity analyses to ensure robustness. The forward analysis revealed a significant positive causal relationship between LTL and MS progression (β = 0.107, 95 % CI = 0.006 to 0.209, P = 0.037). Conversely, the reverse analysis indicated a negative causal relationship (β = -0.010, 95 % CI = -0.020 to -0.001, P = 0.037). No heterogeneity or horizontal pleiotropy was found, and the sensitivity analyses confirmed consistent results. These findings suggest that telomere dynamics play a complex role in MS progression and highlight their potential as therapeutic targets. Further research is essential to uncover the biological mechanisms underlying the influence of telomeres on MS progression.
Collapse
Affiliation(s)
- Hani Sabaie
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Taghavi Rad
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Motahareh Shabestari
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Sahar Seddiq
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Toktam Saadattalab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Danial Habibi
- Department of Epidemiology and Biostatistics, School of Public Health, Babol University of Medical Sciences, Babol, Iran.
| | - Amir Hesam Saeidian
- Department of Surgery, Rasool-E Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohadeseh Abbasi
- Department of Biology and Biochemistry, University of Houston (UH).
| | - Hanifeh Mirtavoos-Mahyari
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Kumari D, Kumar M, Upadhyay AD, Malhotra N, Mahey R, Dadhwal V, Sehgal T, Mishra R, Dada R. Unveiling Therapeutic Potential of Yoga Mitigating Oxidative Stress and Mitochondrial Dysfunction in PCOS: A Randomized Controlled Trial. Int J Yoga 2025; 18:45-57. [PMID: 40365366 PMCID: PMC12068466 DOI: 10.4103/ijoy.ijoy_212_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 05/15/2025] Open
Abstract
Background Hormonal imbalance, mitochondrial dysfunctions, and oxidative stress (OS) have been implicated in the pathogenesis of polycystic ovarian syndrome (PCOS) and its associated clinical features. A sedentary lifestyle, exposure to air pollutants, prenatal exposure to endocrine-disrupting chemicals, processed and nutritionally depleted food, rich in trans fats, salts, and sugars, and high BMI specifically in visceral adiposity induce OS. OS damages the mitochondrial DNA, lipids, and proteins that impair mitochondrial function. Sequentially, dysfunctional mitochondria produce more reactive oxygen species that aggravate the OS. Mitochondria is pivotal for ovarian cell functioning for instance steroidogenesis, ovarian follicle development, and energy metabolism. Dysfunctional mitochondria can alter the ovarian follicle functioning leading to ovulatory dysfunction and infertility in PCOS. Aims and Objectives This study is designed to investigate the effect of 12-week yoga practice on endocrine parameters, OS, and mitochondrial health, comparing outcomes in yoga and non-yoga groups. Material and Methods A total of 75 participants, 32 PCOS females who completed yoga intervention in the yoga group and 29 in the nonyoga group. Hormonal levels were assessed through an immunoassay, while mitochondrial health markers, such as mtDNA copy number (mtDNA CN), reactive oxygen species, and lipid peroxidation were measured through quantitative polymerase chain reaction (qPCR), chemiluminescence, and ELISA respectively. Gene expression related to mitochondrial integrity, respiratory chain, and inflammation was analyzed via reverse transcription qPCR. Additionally, depression severity was also assessed using beck depression inventory II. Result The Yoga group showed a significant increase in mtDNA-CN and upregulation of transcripts responsible for maintaining mitochondrial integrity and the mitochondrial respiratory chain. In addition, the post-yoga group shows a reduction in, lipid peroxidation, inflammatory, OS markers, and an improvement in telomere length. Conclusion Yoga positively affects hormonal balance, mitochondrial health, OS, and inflammation in women with PCOS. It also alleviates depression symptoms, highlighting yoga as an effective adjunct therapy for managing PCOS. Regular yoga practice could prevent, delay, and help in managing PCOS symptoms.
Collapse
Affiliation(s)
- Deepika Kumari
- Department of Anatomy, Laboratory for Molecular Reproduction and Genetics, AIIMS, New Delhi, India
| | - Manoj Kumar
- Department of Anatomy, Laboratory for Molecular Reproduction and Genetics, AIIMS, New Delhi, India
| | | | - Neena Malhotra
- Department of Laboratory Medicine, AIIMS, New Delhi, India
| | - Reeta Mahey
- Department of Laboratory Medicine, AIIMS, New Delhi, India
| | | | - Tushar Sehgal
- Department of Obstetrics and Gynaecology, AIIMS, New Delhi, India
| | - Richa Mishra
- Department of Anatomy, Laboratory for Molecular Reproduction and Genetics, AIIMS, New Delhi, India
| | - Rima Dada
- Department of Anatomy, Laboratory for Molecular Reproduction and Genetics, AIIMS, New Delhi, India
| |
Collapse
|
9
|
Liu S, Fu Z, Liu H, Wang Y, Zhou M, Ding Z, Feng Z. Lipid Profiles, Telomere Length, and the Risk of Malignant Tumors: A Mendelian Randomization and Mediation Analysis. Biomedicines 2024; 13:13. [PMID: 39857597 PMCID: PMC11760878 DOI: 10.3390/biomedicines13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The relationship between lipid profiles, telomere length (TL), and cancer risk remains unclear. Methods: This study employed two-sample Mendelian randomization (MR) with mediation analysis to investigate their causal relationships, examining lipid profiles as exposure, TL as mediator, and nine cancer types as outcomes. We conducted our analysis using two-stage least squares (2SLS) regression integrated with inverse variance weighted (IVW) methods to address potential endogeneity and strengthen our causal inference. Results: we found that unfavorable lipid profiles were causally linked to increased TL (p < 0.05). TL showed positive causal associations with lung and hematologic cancers (OR > 1, p < 0.05). Direct associations were observed between total and low-density lipoprotein (LDL) cholesterol and gastric cancer (OR < 1, p < 0.05), and between remnant cholesterol and colorectal cancer (OR > 1, p < 0.05). Mediation analysis revealed TL as a significant mediator in the pathway from lipid profiles to cancer development (p < 0.05). No horizontal pleiotropy was detected. Conclusions: Our findings suggest that lipid metabolism disorders may influence cancer development through telomere regulation, particularly in lung and hematologic cancers. This emphasizes the importance of lipid management in cancer prevention and treatment, especially for these cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenhua Ding
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Radiation Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.L.); (Z.F.); (H.L.); (Y.W.); (M.Z.)
| | - Zhijun Feng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Radiation Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.L.); (Z.F.); (H.L.); (Y.W.); (M.Z.)
| |
Collapse
|
10
|
Alwehaidah MS, Al-Awadhi R, AlRoomy M, Baqer TA. Impact of telomere length for risk assessment and prognosis in papillary thyroid cancer depending on the clinicopathological features. Mol Genet Genomics 2024; 300:2. [PMID: 39704849 DOI: 10.1007/s00438-024-02207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVE . Despite the establishment of a link between telomere status and carcinogenesis, lack of a consensus in the cancer specific pattern of telomere length has a severe impact on the use of relative telomere length (RTL) in cancer diagnosis. The disparity in assessing the relationship between telomere length and cancer risk is complex and may vary as it is influenced by other factors. The objective of this study is to thoroughly examine the intricate relationship between telomere length and cancer incidence in Papillary Thyroid Cancer (PTC) depending on the tumor type, stage, patients' sex and age. Therefore, the current study is focused on the association of RTL in PTC patients with different clinicopathological characteristics and compared with controls to determine the risk of PTC and expected survival time after surgery. METHOD . This study included 126 patients with PTC and 80 controls. RTL in thyroid tissues was measured using quantitative (q) PCR. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using logistic regression analysis. Kaplan-Meier and Cox regression were used to analyze postsurgical outcomes. RESULT . The RTL of patients was significantly shorter than that of controls. A short RTL was significantly correlated with an elevated risk of PTC in patients aged ≥ 55 years, female sex, classic subtype, and tumor size > 2 cm. A short RTL did not affect the overall survival of patients with PTC; however, it was associated with poor survival in patients with tumor size > 2 cm and tumor invasion. CONCLUSION . This unique study combines the use of RTL with various clinicopathological features of patients with PTC. In conclusion, RTL is a promising tumor marker that correlates with the clinical characteristics of patients with PTC. Specifically, RTL < 0.6 could be used with age, sex, tumor size > 2 cm and tumor invasion to predict the risk of PTC development and prognosis of the disease. This study will open new horizon in the use of molecular marker such as RTL for understanding its association with increased cancer risk in patients with different clinicopathological features.
Collapse
Affiliation(s)
- Materah Salem Alwehaidah
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Jabriyah City, State of Kuwait.
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, PO Box: 31470, Sulaibikhat, 90805, Kuwait.
| | - Rana Al-Awadhi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Jabriyah City, State of Kuwait
| | - Moody AlRoomy
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Jabriyah City, State of Kuwait
| | - Tahani Al Baqer
- Histopathology Laboratory, Kuwait Cancer Control Center (KCCC), Sabah Health Area, Ministry of Health, Shuwaikh, State of Kuwait
| |
Collapse
|
11
|
El Azzouzi M, El Ahanidi H, Hassan I, Tetou M, Ameur A, Bensaid M, Al Bouzidi A, Oukabli M, Alaoui CH, Addoum B, Chaoui I, Benbacer L, Mzibri ME, Attaleb M. Comprehensive behavioural assessment of TERT in bladder cancer. Urol Oncol 2024; 42:451.e19-451.e29. [PMID: 39147693 DOI: 10.1016/j.urolonc.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Telomerase activity plays a crucial role in cancer development and progression. Thus, telomerase activation through the interplay of mutations and epigenetic alterations in the telomerase reverse transcriptase (TERT) promoter may provide further insight into bladder cancer induction and progression. METHODS In this study 100 bladder tumour tissues were selected, and four molecular signatures were analysed: THOR methylation status, TERT promotor mutation, telomere length, and TERT expression. RESULTS In our study, 88% of bladder cancer patients had an hypermethylation of the THOR region and 60% had mutations in the TERT promoter region. TERT promoter methylation was observed in all stages and grades of bladder cancer. While, TERT promoter mutations were detected in advanced stages and grades. In our cohort, high levels of TERT expression and long telomeres have been found in noninvasive cases of bladder cancer, with a significant association between TERT expression and Telomere length. Interestingly, patients with low TERT expression and cases with long telomeres had significantly longer Disease-free survival and overall survival. CONCLUSION The methylation and mutations occurring in the TERT promoter are implicated in bladder carcinogenesis, offering added prognostic and supplying novel insight into telomere biology in cancer.
Collapse
Affiliation(s)
- Meryem El Azzouzi
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Hajar El Ahanidi
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Ilias Hassan
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Department of Urology, Military Hospital Mohammed V, Rabat, Morocco
| | - Mohammed Tetou
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Department of Urology, Military Hospital Mohammed V, Rabat, Morocco
| | - Ahmed Ameur
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Department of Urology, Military Hospital Mohammed V, Rabat, Morocco
| | - Mounia Bensaid
- Laboratory of Pathological Anatomy, Military Hospital Mohamed V, Rabat, Morocco; Royal School of Military Health Service, Rabat, Morocco
| | | | - Mohamed Oukabli
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco; Laboratory of Pathological Anatomy, Military Hospital Mohamed V, Rabat, Morocco
| | - Chaimae Hafidi Alaoui
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | | | - Imane Chaoui
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco
| | - Laila Benbacer
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco
| | | | | |
Collapse
|
12
|
Jiang G, Cao L, Wang Y, Li L, Wang Z, Zhao H, Qiu Y, Feng B. Causality between Telomere Length and the Risk of Hematologic Malignancies: A Bidirectional Mendelian Randomization Study. CANCER RESEARCH COMMUNICATIONS 2024; 4:2815-2822. [PMID: 39373625 PMCID: PMC11513617 DOI: 10.1158/2767-9764.crc-24-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Growing evidence indicates a relationship between telomere length (TL) and the stage, prognosis, and treatment responsiveness of hematopoietic malignancies. However, the relationship between TL and the risk of hematologic malignancies remains unclear, considering the vulnerability of observational studies to potential confounding and reverse causation. A two-sample bidirectional Mendelian randomization (MR) analysis was conducted utilizing publicly available genome-wide association study data to assess whether TL was causally associated with the risk of hematologic malignancies. The inverse variance weighted approach was used as the primary assessment approach to evaluate the effects of the causes, augmented by the weighted median and MR-Egger methods. Cochran's Q test, MR-Egger intercept test, MR-Pleiotropy Residual Sum and Outlier test, and leave-one-out analysis were performed to evaluate sensitivity, heterogeneity, and pleiotropy. According to forward MR estimations, longer TL was related to an increased risk of acute lymphocytic leukemia (OR = 2.690; P = 0.041), chronic lymphocytic leukemia (OR = 2.155; P = 0.005), multiple myeloma (OR = 1.845; P = 0.024), Hodgkin lymphoma (OR = 1.697; P = 0.014), and non-Hodgkin lymphoma (OR = 1.737; P = 0.009). Specific types of non-Hodgkin lymphoma were also associated with TL. The reverse MR results revealed that hematologic malignancies had no effect on TL. This MR analysis revealed an association between longer TL and an increased risk of specific hematologic malignancies, indicating a potential role of TL in risk evaluation and management in hematologic malignancies. SIGNIFICANCE In contrast to observational studies, this study uncovered the reliable causal relationships between TL and hematologic malignancies, emphasizing the potential role of telomeres in tumor development. TL maintenance may offer a promising strategy to reduce the risk of hematologic malignancies.
Collapse
Affiliation(s)
- Guoyun Jiang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - LingXiao Cao
- Department of Neurology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Li Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zie Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hui Zhao
- Department of Medical Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yang Qiu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Feng
- Department of Medical Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
13
|
Loukopoulou C, Nikolouzakis T, Koliarakis I, Vakonaki E, Tsiaoussis J. Telomere Length and Telomerase Activity as Potential Biomarkers for Gastrointestinal Cancer. Cancers (Basel) 2024; 16:3370. [PMID: 39409990 PMCID: PMC11482595 DOI: 10.3390/cancers16193370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Gastrointestinal (GI) cancers, such as colorectal and gastric cancers, pose significant global health challenges due to their high rates of incidence and mortality. Even with advancements in treatment and early detection, many patients still face poor outcomes, highlighting the critical need for new biomarkers and therapeutic targets. Telomere length (TL) and telomerase activity (TA) have gained attention in this context. Telomeres, protective nucleotide sequences at chromosome ends, shorten with each cell division, leading to cellular aging. Telomerase, a ribonucleoprotein enzyme, counteracts this shortening by adding telomeric repeats, a process tightly regulated in normal cells but often dysregulated in cancer. This review critically evaluates the role of TL and TA in the pathogenesis of GI cancers, examining their potential as diagnostic, prognostic, and predictive biomarkers. It explores how alterations in telomere biology contribute to the initiation and progression of GI tumors and assesses the therapeutic implications of targeting telomerase. By integrating findings from diverse studies, this review aims to elucidate the intricate relationship between telomere dynamics and gastrointestinal carcinogenesis, offering insights into how TL and TA could be leveraged to enhance the early detection, treatment, and prognosis of GI cancers.
Collapse
Affiliation(s)
- Christina Loukopoulou
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Taxiarchis Nikolouzakis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Ioannis Koliarakis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Elena Vakonaki
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| |
Collapse
|
14
|
Song T, Liu J, Zhao K, Li S, Qiu M, Zhang M, Wang H. The causal effect of telomere length on the risk of malignant lymphoma: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e39584. [PMID: 39312382 PMCID: PMC11419458 DOI: 10.1097/md.0000000000039584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Telomere length (TL) has been implicated in the risk assessment of numerous cancers in observational studies. Nevertheless, the relationship between TL and malignant lymphoma remains unclear, displaying inconsistent patterns across different studies. A summary dataset for genome-wide association study of TL and malignant lymphoma was acquired from the OpenGWAS website. An extensive 2-sample Mendelian randomization (MR) analysis was performed, encompassing various methodologies such as MR-Egger, weighted median, weighted mode, simple mode, and the primary method of inverse-variance weighting (IVW). Sensitivity evaluations were performed using the Cochran Q test, MR-Egger regression, and leave-one-out analysis. The main method IVW revealed that TL substantially increased the risk of Hodgkin lymphoma (HL; odds ratio [OR] = 2.135; 95% confidence interval [CI] = 1.181-3.859; P = .012). Both the IVW and weighted median methods indicated statistical associations between genetically predicted TL and other types of non-HL (OR = 1.671, 95% CI = 1.009-2.768, P = .045; OR = 2.310, 95% CI = 1.033-5.169, P = .042). However, there was no association between TL and diffuse large B-cell lymphoma, follicular lymphoma, or mature T/natural Killer-cell lymphoma, and sensitivity analysis revealed no heterogeneity or horizontal pleiotropy, indicating that the causal effect was robust. Our study shows that TL plays different roles in different types of lymphomas. A longer TL significantly increases the risk of HL and other types of non-HL.
Collapse
Affiliation(s)
- Teng Song
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Jie Liu
- Department of Cardiology, Tianjin Bei Chen Hospital, Tianjin, China
| | - Ke Zhao
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shuping Li
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Minghan Qiu
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Miao Zhang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Huaqing Wang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of lntegrative Traditional Chinese and Western Medicine, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China
| |
Collapse
|
15
|
Zhuang X, Chen P, Yang R, Man X, Wang R, Shi Y. Mendelian randomization analysis reveals the combined effects of epigenetics and telomere biology in hematologic cancers. Clin Epigenetics 2024; 16:120. [PMID: 39192284 DOI: 10.1186/s13148-024-01728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Telomere shortening and epigenetic modifications are key factors in aging and hematologic diseases. This study investigates the relationship of telomere length and epigenetic age acceleration (EAA) with hematologic cancers, blood cells, and biochemical markers through the epigenetic clocks. METHODS This study primarily utilizes genome-wide association studies of populations of European descent as instrumental variables, exploring the causal relationships between exposures and outcomes through a bidirectional two-sample Mendelian randomization (MR) approach. MR techniques include inverse variance weighted (IVW), MR Egger, and weighted median modes. Heterogeneity and pleiotropy in MR are assessed using Cochran's Q test and the MR Egger intercept, with the robustness of the conclusions further validated by multivariable MR (MVMR). RESULTS Our research shows that longer telomere lengths significantly increase the risk of multiple myeloma, leukemia, and lymphoma (OR > 1, P < 0.05) and establish a causal relationship between telomere length and red blood cell indices such as RBC (OR = 1.121, PIVW = 0.034), MCH (OR = 0.801, PIVW = 2.046e-06), MCV (OR = 0.801, PIVW = 0.001), and MCHC (OR = 0.813, PIVW = 0.002). Additionally, MVMR analysis revealed an association between DNA methylation PhenoAge acceleration and alkaline phosphatase (OR = 1.026, PIVW = 0.007). CONCLUSION The study clarifies the relationships between telomere length, EAA, and hematological malignancies, further emphasizing the prognostic significance of telomere length and EAA. This deepens our understanding of the pathogenesis of hematological diseases, which can inform risk assessment and therapeutic strategies.
Collapse
Affiliation(s)
- Xin Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rong Yang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoying Man
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruochen Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Qinghai Province Women and Children's Hospital, Wenzhou, China.
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Wenzhou, China.
| |
Collapse
|
16
|
Zuo S, Sasitharan V, Di Tanna GL, Vonk JM, De Vries M, Sherif M, Ádám B, Rivillas JC, Gallo V. Is exposure to pesticides associated with biological aging? A systematic review and meta-analysis. Ageing Res Rev 2024; 99:102390. [PMID: 38925480 DOI: 10.1016/j.arr.2024.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Exposure to pesticides is a risk factor for various diseases, yet its association with biological aging remains unclear. We aimed to systematically investigate the relationship between pesticide exposure and biological aging. METHODS PubMed, Embase and Web of Science were searched from inception to August 2023. Observational studies investigating the association between pesticide exposure and biomarkers of biological aging were included. Three-level random-effect meta-analysis was used to synthesize the data. Risk of bias was assessed by the Newcastle-Ottawa Scale. RESULTS Twenty studies evaluating the associations between pesticide exposure and biomarkers of biological aging in 10,368 individuals were included. Sixteen reported telomere length and four reported epigenetic clocks. Meta-analysis showed no statistically significant associations between pesticide exposure and the Hannum clock (pooled β = 0.27; 95 %CI: -0.25, 0.79), or telomere length (pooled Hedges'g = -0.46; 95 %CI: -1.10, 0.19). However, the opposite direction of effects for the two outcomes showed an indication of possible accelerated biological aging. After removal of influential effect sizes or low-quality studies, shorter telomere length was found in higher-exposed populations. CONCLUSION The existing evidence for associations between pesticide exposure and biological aging is limited due to the scarcity of studies on epigenetic clocks and the substantial heterogeneity across studies on telomere length. High-quality studies incorporating more biomarkers of biological aging, focusing more on active chemical ingredients of pesticides and accounting for potential confounders are needed to enhance our understanding of the impact of pesticides on biological aging.
Collapse
Affiliation(s)
- Shanshan Zuo
- University of Groningen, Campus Fryslân, Department of Sustainable Health, Leeuwarden, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands.
| | | | - Gian Luca Di Tanna
- University of Applied Sciences and Arts of Southern Switzerland, Department of Business Economics, Health and Social Care, Lugano, Switzerland
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - Maaike De Vries
- University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - Moustafa Sherif
- United Arab Emirates University, College of Medicine and Health Sciences, Institute of Public Health, Al Ain, United Arab Emirates
| | - Balázs Ádám
- United Arab Emirates University, College of Medicine and Health Sciences, Institute of Public Health, Al Ain, United Arab Emirates
| | - Juan Carlos Rivillas
- Imperial College London, MRC Centre Environment and Health, School of Public Health, Department of Epidemiology and Biostatistics, London, United Kingdom
| | - Valentina Gallo
- University of Groningen, Campus Fryslân, Department of Sustainable Health, Leeuwarden, the Netherlands
| |
Collapse
|
17
|
Chen H, Pan Y, Lv C, He W, Wu D, Xuan Q. Telomere-related gene risk model for prognosis prediction in colorectal cancer. Transl Cancer Res 2024; 13:3495-3521. [PMID: 39145075 PMCID: PMC11319979 DOI: 10.21037/tcr-24-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/02/2024] [Indexed: 08/16/2024]
Abstract
Background Colorectal cancer (CRC) is the third-most prevalent cancer globally. The biological significance of telomeres in CRC carcinogenesis and progression is underscored by accumulating data. Nevertheless, not much is known about how telomere-related genes (TRGs) affect CRC prognosis. Therefore, the aim of this study was to investigate the role of TRGs in CRC prognosis. Methods We retrospectively obtained the expression profiles and clinical data of CRC patients from public databases. Utilizing least absolute shrinkage and selection operator (LASSO) regression analysis, we created a telomere-related risk model to predict survival outcomes, identifying ten telomere-related differentially expressed genes (TRDEGs). Based on TRDEGs, we stratified patients from The Cancer Genome Atlas (TCGA) into low- and high-risk subsets. Subsequently, we conducted comprehensive analyses, including survival assessment, immune cell infiltration, drug sensitivity, and prediction of molecular interactions using Kaplan-Meier curves, ESTIMATE, CIBERSORT, OncoPredict, and other approaches. Results The model showed exceptional predictive accuracy for survival. Significant differences in survival were observed between the two groups of participants grouped according to the model (P<0.001), and this difference was further confirmed in the external validation set (GSE39582) (P=0.004). Additionally, compared to the low-risk group, the high-risk group exhibited significantly advanced tumor node metastasis (TNM) stages, lower proportions of activated CD4+ T cells, effector memory CD4+ T cells, and memory B cells, but increased ratios of M2 macrophages and regulatory T cells (Tregs), elevated tumor immune dysfunction and exclusion (TIDE) scores, and diminished sensitivity to dabrafenib, lapatinib, camptothecin, docetaxel, and telomerase inhibitor IX, reflecting the signature's capacity to distinguish clinical pathological characteristics, immune environment, and drug efficacy. Finally, we validated the expression of the ten TRDEGs (ACACB, TPX2, SRPX, PPARGC1A, CD36, MMP3, NAT2, MMP10, HIGD1A, and MMP1) through quantitative real-time polymerase chain reaction (qRT-PCR) and found that compared to normal cells, the expression levels of ACACB, HIGD1A, NAT2, PPARGC1A, and TPX2 in CRC cells were elevated, whereas those of CD36, SRPX, MMP1, MMP3, and MMP10 were reduced. Conclusions Overall, we constructed a telomere-related biomarker capable of predicting prognosis and treatment response in CRC individuals, offering potential guidance for drug therapy selection and prognosis prediction.
Collapse
Affiliation(s)
- Hao Chen
- Department of Medical Oncology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yuhao Pan
- Department of Medical Oncology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chenhui Lv
- Department of Medical Oncology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Wei He
- Department of Medical Oncology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Dingting Wu
- Department of Clinical Nutrition, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Qijia Xuan
- Department of Medical Oncology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
18
|
Apetroaei MM, Fragkiadaki P, Velescu BȘ, Baliou S, Renieri E, Dinu-Pirvu CE, Drăgănescu D, Vlăsceanu AM, Nedea MI(I, Udeanu DI, Docea AO, Tsatsakis A, Arsene AL. Pharmacotherapeutic Considerations on Telomere Biology: The Positive Effect of Pharmacologically Active Substances on Telomere Length. Int J Mol Sci 2024; 25:7694. [PMID: 39062937 PMCID: PMC11276808 DOI: 10.3390/ijms25147694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Telomeres are part of chromatin structures containing repeated DNA sequences, which function as protective caps at the ends of chromosomes and prevent DNA degradation and recombination, thus ensuring the integrity of the genome. While telomere length (TL) can be genetically inherited, TL shortening has been associated with ageing and multiple xenobiotics and bioactive substances. TL has been characterised as a reliable biomarker for the predisposition to developing chronic pathologies and their progression. This narrative review aims to provide arguments in favour of including TL measurements in a complex prognostic and diagnostic panel of chronic pathologies and the importance of assessing the effect of different pharmacologically active molecules on the biology of telomeres. Medicines used in the management of cardiovascular diseases, diabetes, schizophrenia, hormone replacement therapy at menopause, danazol, melatonin, and probiotics have been studied for their positive protective effects against TL shortening. All these classes of drugs are analysed in the present review, with a particular focus on the molecular mechanisms involved.
Collapse
Affiliation(s)
- Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Voutes, 71003 Heraklion, Greece; (P.F.); (S.B.); (E.R.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Bruno Ștefan Velescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Stella Baliou
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Voutes, 71003 Heraklion, Greece; (P.F.); (S.B.); (E.R.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Elisavet Renieri
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Voutes, 71003 Heraklion, Greece; (P.F.); (S.B.); (E.R.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Cristina Elena Dinu-Pirvu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Doina Drăgănescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Ana Maria Vlăsceanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Marina Ionela (Ilie) Nedea
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Denisa Ioana Udeanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Artistidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Voutes, 71003 Heraklion, Greece; (P.F.); (S.B.); (E.R.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Andreea Letiția Arsene
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| |
Collapse
|
19
|
Tataranu LG, Turliuc S, Rizea RE, Dricu A, Alexandru O, Staicu GA, Kamel A. A Synopsis of Biomarkers in Glioblastoma: Past and Present. Curr Issues Mol Biol 2024; 46:6903-6939. [PMID: 39057054 PMCID: PMC11275428 DOI: 10.3390/cimb46070412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Accounting for 48% of malignant brain tumors in adults, glioblastoma has been of great interest in the last decades, especially in the biomolecular and neurosurgical fields, due to its incurable nature and notable neurological morbidity. The major advancements in neurosurgical technologies have positively influenced the extent of safe tumoral resection, while the latest progress in the biomolecular field of GBM has uncovered new potential therapeutical targets. Although GBM currently has no curative therapy, recent progress has been made in the management of this disease, both from surgical and molecular perspectives. The main current therapeutic approach is multimodal and consists of neurosurgical intervention, radiotherapy, and chemotherapy, mostly with temozolomide. Although most patients will develop treatment resistance and tumor recurrence after surgical removal, biomolecular advancements regarding GBM have contributed to a better understanding of this pathology and its therapeutic management. Over the past few decades, specific biomarkers have been discovered that have helped predict prognosis and treatment responses and contributed to improvements in survival rates.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Oana Alexandru
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Georgiana-Adeline Staicu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| |
Collapse
|
20
|
Harutyunyan T, Sargsyan A, Kalashyan L, Igityan H, Grigoryan B, Davtyan H, Aroutiounian R, Liehr T, Hovhannisyan G. Changes in Telomere Length in Leukocytes and Leukemic Cells after Ultrashort Electron Beam Radiation. Int J Mol Sci 2024; 25:6709. [PMID: 38928414 PMCID: PMC11203595 DOI: 10.3390/ijms25126709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Application of laser-generated electron beams in radiotherapy is a recent development. Accordingly, mechanisms of biological response to radiation damage need to be investigated. In this study, telomere length (TL) as endpoint of genetic damage was analyzed in human blood cells (leukocytes) and K562 leukemic cells irradiated with laser-generated ultrashort electron beam. Metaphases and interphases were analyzed in quantitative fluorescence in situ hybridization (Q-FISH) to assess TL. TLs were shortened compared to non-irradiated controls in both settings (metaphase and interphase) after irradiation with 0.5, 1.5, and 3.0 Gy in blood leukocytes. Radiation also caused a significant TL shortening detectable in the interphase of K562 cells. Overall, a negative correlation between TL and radiation doses was observed in normal and leukemic cells in a dose-dependent manner. K562 cells were more sensitive than normal blood cells to increasing doses of ultrashort electron beam radiation. As telomere shortening leads to genome instability and cell death, the results obtained confirm the suitability of this biomarker for assessing genotoxic effects of accelerated electrons for their further use in radiation therapy. Observed differences in TL shortening between normal and K562 cells provide an opportunity for further development of optimal radiation parameters to reduce side effects in normal cells during radiotherapy.
Collapse
Affiliation(s)
- Tigran Harutyunyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Anzhela Sargsyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Lily Kalashyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
| | - Hovhannes Igityan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
| | - Bagrat Grigoryan
- CANDLE Synchrotron Research Institute, Acharyan 31, Yerevan 0040, Armenia; (B.G.); (H.D.)
| | - Hakob Davtyan
- CANDLE Synchrotron Research Institute, Acharyan 31, Yerevan 0040, Armenia; (B.G.); (H.D.)
| | - Rouben Aroutiounian
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, D-07747 Jena, Germany
| | - Galina Hovhannisyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (T.H.); (A.S.); (L.K.); (H.I.); (R.A.); (G.H.)
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| |
Collapse
|
21
|
Chen Y, Chen C, Xiang J, Gao R, Wang G, Yu W. Functional Tea Extract Inhibits Cell Growth, Induces Apoptosis, and Causes G0/G1 Arrest in Human Hepatocellular Carcinoma Cell Line Possibly through Reduction in Telomerase Activity. Foods 2024; 13:1867. [PMID: 38928812 PMCID: PMC11203311 DOI: 10.3390/foods13121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The functional tea CFT-1 has been introduced into China as a nutraceutical beverage according to the "Healthy China" national project. The effects on human hepatocellular carcinoma (HCC) cells remain unclear and were investigated with the functional tea extract (purity > 98%). The morphological changes in the cells were observed with microscopes. Cell proliferation, migration, cycle distribution, and apoptotic effects were assessed by MTT, Transwell assays, and flow cytometry, respectively, while telomerase inhibition was evaluated with telomerase PCR ELISA assay kits. The CFT-1 treatment resulted in cell shrinkage, nuclear pyknosis, and chromatin condensation. CFT-1 suppressed the growth of Hep3B cells with IC50 of 143 μg/mL by inducing apoptosis and G0/G1 arrest in Hep3B cells. As for the molecular mechanism, CFT-1 treatment can effectively reduce the telomerase activity. The functional tea extract inhibits cell growth in human HCC by inducing apoptosis and G0/G1 arrest, possibly through a reduction in telomerase activity. These results indicate that CFT-1 extract exhibited in vitro anticancer activities and provided insights into the future development and utilization of CFT-1 as functional foods to inhibit the proliferation of HCC cells.
Collapse
Affiliation(s)
- Yuan Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (J.X.); (R.G.)
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Agricultural Product Processing Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (J.X.); (R.G.)
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jiaxing Xiang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (J.X.); (R.G.)
- Horticulture College, Fujian Agriculture and Forestry University, Fuzhou 350003, China
| | - Ruizhen Gao
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (J.X.); (R.G.)
- Horticulture College, Fujian Agriculture and Forestry University, Fuzhou 350003, China
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1, Fort Pierce, FL 34946, USA;
| | - Wenquan Yu
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (J.X.); (R.G.)
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
22
|
Valerio L, Cantara S, Mattii E, Dalmiglio C, Sagnella A, Salvemini A, Cartocci A, Maino F, Castagna MG. Exploring the Susceptibility to Multiple Primary Tumors in Patients with Differentiated Thyroid Cancer. Diagnostics (Basel) 2024; 14:1210. [PMID: 38928626 PMCID: PMC11202515 DOI: 10.3390/diagnostics14121210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE It was demonstrated that differentiated thyroid cancer (DTC) patients may develop multiple primary tumors (MPT) during follow-up. Many studies showed an association between reduced telomere length and cancer phenotype; in particular, the short telomeres were associated with the development of a primary tumor. However, the role of altered telomere length in MPT development has not yet been demonstrated. The aim of this study was to evaluate the possible correlation between a short telomere length in blood leukocytes and the risk of developing MPT in DTC patients. PATIENTS AND METHODS We retrospectively evaluated 167 DTC patients followed up for a median of 13.6 years. Our control group was represented by 105 healthy subjects without any thyroid disease or present or past history of tumors. Our study groups, age-matched, were evaluated for the relative telomere length measured in leukocytes of peripheral venous blood. RESULTS The relative telomere length (RTL) was significantly different in healthy subjects compared to the total group of differentiated thyroid cancer patients [p < 0.0001]. Shorter telomeres length was observed in DTC patients with (n = 32) and without (n = 135) MPT compared to healthy subjects (p < 0.0001 and p = 0.0002, respectively). At multivariate analysis, the parameters independently associated with the presence of MPT were RTL [OR: 0.466 (0.226-0.817), p = 0.018] and the familial DTC [OR: 2.949 (1.142-8.466), p = 0.032]. CONCLUSIONS The results of this study suggest a role of the relative telomere length in predicting MPT development in DTC patients. Our results contribute to increasing the knowledge of the genetic mechanisms underlying MPT development in DTC patients, considering relative telomere length as a possible prognostic marker.
Collapse
Affiliation(s)
- Laura Valerio
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (S.C.); (E.M.); (C.D.); (A.S.); (A.S.); (F.M.)
| | - Silvia Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (S.C.); (E.M.); (C.D.); (A.S.); (A.S.); (F.M.)
| | - Elisa Mattii
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (S.C.); (E.M.); (C.D.); (A.S.); (A.S.); (F.M.)
| | - Cristina Dalmiglio
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (S.C.); (E.M.); (C.D.); (A.S.); (A.S.); (F.M.)
| | - Alfonso Sagnella
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (S.C.); (E.M.); (C.D.); (A.S.); (A.S.); (F.M.)
| | - Antonia Salvemini
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (S.C.); (E.M.); (C.D.); (A.S.); (A.S.); (F.M.)
| | - Alessandra Cartocci
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Fabio Maino
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (S.C.); (E.M.); (C.D.); (A.S.); (A.S.); (F.M.)
| | - Maria Grazia Castagna
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (S.C.); (E.M.); (C.D.); (A.S.); (A.S.); (F.M.)
| |
Collapse
|
23
|
Nikolouzakis TK, Chrysos E, Docea AO, Fragkiadaki P, Souglakos J, Tsiaoussis J, Tsatsakis A. Current and Future Trends of Colorectal Cancer Treatment: Exploring Advances in Immunotherapy. Cancers (Basel) 2024; 16:1995. [PMID: 38893120 PMCID: PMC11171065 DOI: 10.3390/cancers16111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer of the colon and rectum (CRC) has been identified among the three most prevalent types of cancer and cancer-related deaths for both sexes. Even though significant progress in surgical and chemotherapeutic techniques has markedly improved disease-free and overall survival rates in contrast to those three decades ago, recent years have seen a stagnation in these improvements. This underscores the need for new therapies aiming to augment patient outcomes. A number of emerging strategies, such as immune checkpoint inhibitors (ICIs) and adoptive cell therapy (ACT), have exhibited promising outcomes not only in preclinical but also in clinical settings. Additionally, a thorough appreciation of the underlying biology has expanded the scope of research into potential therapeutic interventions. For instance, the pivotal role of altered telomere length in early CRC carcinogenesis, leading to chromosomal instability and telomere dysfunction, presents a promising avenue for future treatments. Thus, this review explores the advancements in CRC immunotherapy and telomere-targeted therapies, examining potential synergies and how these novel treatment modalities intersect to potentially enhance each other's efficacy, paving the way for promising future therapeutic advancements.
Collapse
Affiliation(s)
| | - Emmanuel Chrysos
- Department of General Surgery, University General Hospital of Heraklion, 71110 Heraklion, Greece; (T.K.N.); (E.C.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Persefoni Fragkiadaki
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece; (P.F.); (A.T.)
| | - John Souglakos
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - John Tsiaoussis
- Department of Anatomy, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece; (P.F.); (A.T.)
| |
Collapse
|
24
|
Wang G, Ren X, Li J, Cui R, Zhao X, Sui F, Liu J, Chen P, Yang Q, Ji M, Hou P, Gao K, Qu Y. High expression of RTEL1 predicates worse progression in gliomas and promotes tumorigenesis through JNK/ELK1 cascade. BMC Cancer 2024; 24:385. [PMID: 38532312 DOI: 10.1186/s12885-024-12134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/17/2024] [Indexed: 03/28/2024] Open
Abstract
Gliomas are the most common primary intracranial tumor worldwide. The maintenance of telomeres serves as an important biomarker of some subtypes of glioma. In order to investigate the biological role of RTEL1 in glioma. Relative telomere length (RTL) and RTEL1 mRNA was explored and regression analysis was performed to further examine the relationship of the RTL and the expression of RTEL1 with clinicopathological characteristics of glioma patients. We observed that high expression of RTEL1 is positively correlated with telomere length in glioma tissue, and serve as a poor prognostic factor in TERT wild-type patients. Further in vitro studies demonstrate that RTEL1 promoted proliferation, formation, migration and invasion ability of glioma cells. In addition, in vivo studies also revealed the oncogene role of RTEL1 in glioma. Further study using RNA sequence and phospho-specific antibody microarray assays identified JNK/ELK1 signaling was up-regulated by RTEL1 in glioma cells through ROS. In conclusion, our results suggested that RTEL1 promotes glioma tumorigenesis through JNK/ELK1 cascade and indicate that RTEL1 may be a prognostic biomarker in gliomas.
Collapse
Affiliation(s)
- Guanjie Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
- Department of Oncology, Xi'an Central Hospital, 710061, Xi'an, P.R. China
| | - Xiaojuan Ren
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Jianying Li
- Department of Respiratory Disease, Xi'an Central Hospital, 710061, Xi'an, P.R. China
| | - Rongrong Cui
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Xumin Zhao
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Fang Sui
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Juan Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Pu Chen
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Qi Yang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China
| | - Ke Gao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China.
| | - Yiping Qu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P.R. China.
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China.
| |
Collapse
|
25
|
Carver AJ, Hing B, Elser BA, Lussier SJ, Yamanashi T, Howard MA, Kawasaki H, Shinozaki G, Stevens HE. Correlation of telomere length in brain tissue with peripheral tissues in living human subjects. Front Mol Neurosci 2024; 17:1303974. [PMID: 38516039 PMCID: PMC10954899 DOI: 10.3389/fnmol.2024.1303974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Telomeres are important to chromosomal stability, and changes in their length correlate with disease, potentially relevant to brain disorders. Assessing telomere length in human brain is invasive, but whether peripheral tissue telomere length correlates with that in brain is not known. Saliva, buccal, blood, and brain samples were collected at time points before, during, and after subjects undergoing neurosurgery (n = 35) for intractable epilepsy. DNA was isolated from samples and average telomere length assessed by qPCR. Correlations of telomere length between tissue samples were calculated across subjects. When data were stratified by sex, saliva telomere length correlated with brain telomere length in males only. Buccal telomere length correlated with brain telomere length when males and females were combined. These findings indicate that in living subjects, telomere length in peripheral tissues variably correlates with that in brain and may be dependent on sex. Peripheral tissue telomere length may provide insight into brain telomere length, relevant to assessment of brain disorder pathophysiology.
Collapse
Affiliation(s)
- Annemarie J. Carver
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States
| | - Benjamin Hing
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Benjamin A. Elser
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States
| | - Stephanie J. Lussier
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Biostatistics Graduate Program, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Takehiko Yamanashi
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Standford University, Stanford, CA, United States
- Division of Neuropsychiatry, Tottori University, Tottori, Japan
| | - Matthew A. Howard
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Hiroto Kawasaki
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Gen Shinozaki
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Standford University, Stanford, CA, United States
| | - Hanna E. Stevens
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States
- Hawk-Intellectual and Developmental Disabilities Research Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
26
|
Fang T, Zhang Z, Ren K, Zou L. Genetically determined telomere length as a risk factor for hematological malignancies: evidence from Mendelian randomization analysis. Aging (Albany NY) 2024; 16:4684-4698. [PMID: 38451181 PMCID: PMC10968690 DOI: 10.18632/aging.205625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Over the past years, the exact correlation between telomere length and hematological malignancies was still not fully understood. METHODS We performed a two-sample Mendelian randomization study to investigate the causal relationship between telomere length and hematological malignancies. We selected genetic instruments associated with telomere length. The genetic associations for lymphoid and hematopoietic malignant neoplasms were obtained from the most recent publicly accessible FinnGen study R9 data. Inverse variant weighted (IVW) analysis was adopted as the primary method, and we also performed the weighted-median method and the MR-Egger, and MRPRESSO methods as sensitive analysis. RESULTS Significant associations have been observed between telomere length and primary lymphoid (IVW: OR = 1.52, P = 2.11 × 10-6), Hodgkin lymphoma (IVW: OR = 1.64, P = 0.014), non-Hodgkin lymphoma (IVW: OR = 1.70, P = 0.002), B-cell lymphoma (IVW: OR = 1.57, P = 0.015), non-follicular lymphoma (IVW: OR = 1.58, P = 1.7 × 10-3), mantle cell lymphoma (IVW: OR = 3.13, P = 0.003), lymphoid leukemia (IVW: OR = 2.56, P = 5.92E-09), acute lymphocytic leukemia (IVW: OR = 2.65, P = 0.021) and chronic lymphocytic leukemia (IVW: OR = 2.80, P = 8.21 × 10-6), along with multiple myeloma (IVW: OR = 1.85, P = 0.016). CONCLUSION This MR study found a significant association between telomere length and a wide range of hematopoietic malignancies. But no substantial impact of lymphoma and hematopoietic malignancies on telomere length has been detected.
Collapse
Affiliation(s)
- Tian Fang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihao Zhang
- Department of Breast Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kexing Ren
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Liqun Zou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Spanakis M, Fragkiadaki P, Renieri E, Vakonaki E, Fragkiadoulaki I, Alegakis A, Kiriakakis M, Panagiotou N, Ntoumou E, Gratsias I, Zoubaneas E, Morozova GD, Ovchinnikova MA, Tsitsimpikou C, Tsarouhas K, Drakoulis N, Skalny AV, Tsatsakis A. Advancing athletic assessment by integrating conventional methods with cutting-edge biomedical technologies for comprehensive performance, wellness, and longevity insights. Front Sports Act Living 2024; 5:1327792. [PMID: 38260814 PMCID: PMC10801261 DOI: 10.3389/fspor.2023.1327792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
In modern athlete assessment, the integration of conventional biochemical and ergophysiologic monitoring with innovative methods like telomere analysis, genotyping/phenotypic profiling, and metabolomics has the potential to offer a comprehensive understanding of athletes' performance and potential longevity. Telomeres provide insights into cellular functioning, aging, and adaptation and elucidate the effects of training on cellular health. Genotype/phenotype analysis explores genetic variations associated with athletic performance, injury predisposition, and recovery needs, enabling personalization of training plans and interventions. Metabolomics especially focusing on low-molecular weight metabolites, reveal metabolic pathways and responses to exercise. Biochemical tests assess key biomarkers related to energy metabolism, inflammation, and recovery. Essential elements depict the micronutrient status of the individual, which is critical for optimal performance. Echocardiography provides detailed monitoring of cardiac structure and function, while burnout testing evaluates psychological stress, fatigue, and readiness for optimal performance. By integrating this scientific testing battery, a multidimensional understanding of athlete health status can be achieved, leading to personalized interventions in training, nutrition, supplementation, injury prevention, and mental wellness support. This scientifically rigorous approach hereby presented holds significant potential for improving athletic performance and longevity through evidence-based, individualized interventions, contributing to advances in the field of sports performance optimization.
Collapse
Affiliation(s)
- Marios Spanakis
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology – Hellas, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Persefoni Fragkiadaki
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Elisavet Renieri
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Elena Vakonaki
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Irene Fragkiadoulaki
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Athanasios Alegakis
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Mixalis Kiriakakis
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | | | | | - Ioannis Gratsias
- Check Up Medicus Biopathology & Ultrasound Diagnostic Center – Polyclinic, Athens, Greece
| | | | - Galina Dmitrievna Morozova
- Bioelementology and Human Ecology Center, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Marina Alekseevna Ovchinnikova
- Department of Sport Medicine and Medical Rehabilitation, I.M. Sechenov First Moscow State Medical University (Sechenov Univercity), Moscow, Russia
| | | | | | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Anatoly Viktorovich Skalny
- Bioelementology and Human Ecology Center, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Medical Elementology Department, Peoples Friendship University of Russia, Moscow, Russia
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology – Hellas, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| |
Collapse
|
28
|
Zhang Y, Wang J, Zheng M, Qu H, Yang S, Han F, Yao N, Li W, Qu J. Causal association between telomere length and colorectal polyps: A bidirectional two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e36867. [PMID: 38181239 PMCID: PMC10766254 DOI: 10.1097/md.0000000000036867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
We performed a bidirectional 2-sample Mendelian randomization (MR) design to explore the causal relation between telomere length (TL) and colorectal polyps. Genome-wide association study summary data of TL and colorectal polyps were extracted from the IEU open genome-wide association study database. Single nucleotide polymorphisms were served as instrumental variables at the significance threshold of P < 5 × 10-8. The inverse variance weighted method, MR-Egger method, and weight median method were performed for causal estimation in MR. Cochran Q test, MR-Egger intercept test, and leave-one-out analyses were performed to evaluate the pleiotropy of the MR results. One hundred and twenty-four single nucleotide polymorphisms were selected as instrumental variables. We found significant casual association between TL and colorectal polyps. Long TL increased the risk of colorectal polyps using the inverse variance weighted method [ukb-a-521: odds ratio (OR): 1.004, 95% confidence interval (CI): 1.001-1.007, P = .004; ukb-d-D12: OR: 1.008, CI: 1.004-1.012, P < .001; finn-b-CD2_BENIGN_COLORECANI_EXALLC2: OR: 1.170, CI: 1.027-1.332, P = .018]. Sensitivity analyses validated that the causality between TL and colorectal polyps was robust. The study provided a causal association between TL and colorectal polyps which indicated that TL might be served as a potential biomarker of colorectal polyps for screening and prevention. Nonetheless, the conclusions need further validation.
Collapse
Affiliation(s)
- Yin Zhang
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Jiaying Wang
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Mingyu Zheng
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Huanwei Qu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Shuya Yang
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Fuzhou Han
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Nan Yao
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Wenqiang Li
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
29
|
Baudouin R, Hans S. Clinical and HPV correlation in laryngeal papilloma: A locally advanced immune disease. Am J Otolaryngol 2024; 45:104083. [PMID: 37832333 DOI: 10.1016/j.amjoto.2023.104083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 10/15/2023]
Affiliation(s)
- Robin Baudouin
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Paris, France.
| | - Stéphane Hans
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Paris, France
| |
Collapse
|
30
|
Lempesis IG, Georgakopoulou VE, Papalexis P, Chrousos GP, Spandidos DA. Role of stress in the pathogenesis of cancer (Review). Int J Oncol 2023; 63:124. [PMID: 37711028 PMCID: PMC10552722 DOI: 10.3892/ijo.2023.5572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Stress is a state of disrupted homeostasis, triggered by intrinsic or extrinsic factors, the stressors, which are counteracted by various physiological and behavioural adaptive responses. Stress has been linked to cancer development and incidence for decades; however, epidemiological studies and clinical trials have yielded contradictory results. The present review discusses the effects of stress on cancer development and the various underlying mechanisms. Animal studies have revealed a clear link between stress and cancer progression, revealing molecular, cellular and endocrine processes that are implicated in these effects. Thus, stress hormones, their receptor systems and their intracellular molecular pathways mediate the effects of stress on cancer initiation, progression and the development of metastases. The mechanisms linking stress and cancer progression can either be indirect, mediated by changes in the cancer microenvironment or immune system dysregulation, or direct, through the binding of neuroendocrine stress‑related signalling molecules to cancer cell receptors. Stress affects numerous anti‑ and pro‑cancer immune system components, including host resistance to metastasis, tumour retention and/or immune suppression. Chronic psychological stress through the elevation of catecholamine levels may increase cancer cell death resistance. On the whole, stress is linked to cancer development and incidence, with psychological stressors playing a crucial role. Animal studies have revealed a better link than human ones, with stress‑related hormones influencing tumour development, migration, invasion and cell proliferation. Randomized controlled trials are required to further evaluate the long‑term cancer outcomes of stress and its management.
Collapse
Affiliation(s)
- Ioannis G. Lempesis
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Georgios P. Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
31
|
D’Arino A, Caputo S, Eibenschutz L, Piemonte P, Buccini P, Frascione P, Bellei B. Skin Cancer Microenvironment: What We Can Learn from Skin Aging? Int J Mol Sci 2023; 24:14043. [PMID: 37762344 PMCID: PMC10531546 DOI: 10.3390/ijms241814043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is a natural intrinsic process associated with the loss of fibrous tissue, a slower cell turnover, and a reduction in immune system competence. In the skin, the continuous exposition of environmental factors superimposes extrinsic damage, mainly due to ultraviolet radiation causing photoaging. Although not usually considered a pathogenic event, photoaging affects cutaneous biology, increasing the risk of skin carcinogenesis. At the cellular level, aging is typified by the rise of senescence cells a condition characterized by reduced or absent capacity to proliferate and aberrant hyper-secretory activity. Senescence has a double-edged sword in cancer biology given that senescence prevents the uncontrolled proliferation of damaged cells and favors their clearance by paracrine secretion. Nevertheless, the cumulative insults and the poor clearance of injured cells in the elderly increase cancer incidence. However, there are not conclusive data proving that aged skin represents a permissive milieu for tumor onset. On the other hand, tumor cells are capable of activating resident fibroblasts onto a pro-tumorigenic phenotype resembling those of senescent fibroblasts suggesting that aged fibroblasts might facilitate cancer progression. This review discusses changes that occur during aging that can prime neoplasm or increase the aggressiveness of melanoma and non-melanoma skin cancer.
Collapse
Affiliation(s)
- Andrea D’Arino
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Laura Eibenschutz
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Paolo Piemonte
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Pierluigi Buccini
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Pasquale Frascione
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| |
Collapse
|