1
|
Trout AL, McLouth CJ, Westberry JM, Sengoku T, Wilson ME. Estrogen's sex-specific effects on ischemic cell death and estrogen receptor mRNA expression in rat cortical organotypic explants. AGING BRAIN 2024; 5:100117. [PMID: 38650743 PMCID: PMC11033203 DOI: 10.1016/j.nbas.2024.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/14/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Estrogens, such as the biologically active 17-β estradiol (E2), regulate not only reproductive behaviors in adults, but also influence neurodevelopment and neuroprotection in both females and males. E2, contingent upon the timing and concentration of the therapy, is neuroprotective in female and male rodent models of stroke. In Vivo studies suggest that E2 may partially mediate this neuroprotection, particularly in the cortex, via ERα. In Vitro studies, utilizing a chemically induced ischemic injury in cortical explants from both sexes, suggest that ERα or ERβ signaling is needed to mediate the E2 protection. Since we know that the timing and concentration of E2 therapy may be sex-specific, we examined if E2 (1 nM) mediates neuroprotection when female and male cortical explants are separately isolated from postnatal day (PND) 3-4 rat. Changes in basal levels ERα, ERβ, and AR mRNA expression are compared across early post-natal development in the intact cortex and the corresponding days in vitro (DIV) for cortical explants. Following ischemic injury at 7 DIV, cell death and ERα, ERβ and AR mRNA expression was compared in female and male cortical explants. We provide evidence that E2-mediated protection is maintained in isolated cortical explants from females, but not male rats. In female cortical explants, the E2-mediated protection at 24 h occurs secondarily to a blunted transient increase in ERα mRNA at 12 h. These results suggest that cortical E2-mediated protection is influenced by sex and supports data to differentially treat females and males following ischemic injury.
Collapse
Affiliation(s)
- Amanda L. Trout
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher J McLouth
- Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA
| | - Jenne M. Westberry
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Tomoko Sengoku
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Melinda E. Wilson
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Khameneh SC, Sari S, Razi S, Yousefi AM, Bashash D. Inhibition of PI3K/AKT signaling using BKM120 reduced the proliferation and migration potentials of colorectal cancer cells and enhanced cisplatin-induced cytotoxicity. Mol Biol Rep 2024; 51:420. [PMID: 38483663 DOI: 10.1007/s11033-024-09339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Although extensive efforts have been made to improve the treatment of colorectal cancer (CRC) patients, the prognosis for these patients remains poor. A wide range of anti-cancer agents has been applied to ameliorate the clinical management of CRC patients; however, drug resistance develops in nearly all patients. Based on the prominent role of PI3K/AKT signaling in the development of CRC and current interest in the application of PI3K inhibitors, we aimed to disclose the exact mechanism underlying the efficacy of BKM120, a well-known pan-class I PI3K inhibitor, in CRC-derived SW480 cells. MATERIALS AND METHODS The effects of BKM120 on SW480 cells were studied using MTT assay, cell cycle assay, Annexin V/PI apoptosis tests, and scratch assay. In the next step, qRT-PCR was used to investigate the underlying molecular mechanisms by which the PI3K inhibitor could suppress the survival of SW480 cells. RESULT The results of the MTT assay showed that BKM120 could decrease the metabolic activity of SW480 cells in a concentration and time-dependent manner. Investigating the exact mechanism of BKM120 showed that this PI3K inhibitor induces its anti-survival effects through a G2/M cell cycle arrest and apoptosis-mediated cell death. Moreover, the scratch assay demonstrated that PI3K inhibition led to the inhibition of cancer invasion and inhibition of PI3K/AKT signaling remarkably sensitized SW480 cells to Cisplatin. CONCLUSION Based on our results, inhibition of PI3K/AKT signaling can be a promising approach, either as a single modality or in combination with Cisplatin. However, further clinical studies should be performed to improve our understanding.
Collapse
Affiliation(s)
- Sepideh Chodary Khameneh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soyar Sari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Razi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Fiocchetti M, Solar Fernandez V, Segatto M, Leone S, Cercola P, Massari A, Cavaliere F, Marino M. Extracellular Neuroglobin as a Stress-Induced Factor Activating Pre-Adaptation Mechanisms against Oxidative Stress and Chemotherapy-Induced Cell Death in Breast Cancer. Cancers (Basel) 2020; 12:cancers12092451. [PMID: 32872414 PMCID: PMC7564643 DOI: 10.3390/cancers12092451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Components of tumor microenvironment, including tumor and/or stromal cells-derived factors, exert a critical role in breast cancer (BC) progression. Here we evaluated the possible role of neuroglobin (NGB), a monomeric globin that acts as a compensatory protein against oxidative and apoptotic processes, as part of BC microenvironment. The extracellular NGB levels were evaluated by immunofluorescence of BC tissue sections and by Western blot of the culture media of BC cell lines. Moreover, reactive oxygen species (ROS) generation, cell apoptosis, and cell migration were evaluated in different BC cells and non-tumorigenic epithelial mammary cells treated with BC cells (i.e., Michigan Cancer Foundation-7, MCF-7) conditioned culture media and extracellular NGB. Results demonstrate that NGB is a component of BC microenvironment. NGB is released in tumor microenvironment by BC cells only under oxidative stress conditions where it can act as autocrine/paracrine factor able to communicate cell resilience against oxidative stress and chemotherapeutic treatment.
Collapse
Affiliation(s)
- Marco Fiocchetti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (V.S.F.); (S.L.)
- Correspondence: (M.F.); (M.M.); Tel.: +39-06-5733-6455 (M.F.); +39-06-5733-6320 (M.M.); Fax: +39-06-5733-6321 (M.F. & M.M.)
| | - Virginia Solar Fernandez
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (V.S.F.); (S.L.)
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy;
| | - Stefano Leone
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (V.S.F.); (S.L.)
| | - Paolo Cercola
- Division of Senology, Belcolle Hospital, Str. Sammartinese, 01100 Viterbo, Italy; (P.C.); (A.M.); (F.C.)
| | - Annalisa Massari
- Division of Senology, Belcolle Hospital, Str. Sammartinese, 01100 Viterbo, Italy; (P.C.); (A.M.); (F.C.)
| | - Francesco Cavaliere
- Division of Senology, Belcolle Hospital, Str. Sammartinese, 01100 Viterbo, Italy; (P.C.); (A.M.); (F.C.)
| | - Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (V.S.F.); (S.L.)
- Correspondence: (M.F.); (M.M.); Tel.: +39-06-5733-6455 (M.F.); +39-06-5733-6320 (M.M.); Fax: +39-06-5733-6321 (M.F. & M.M.)
| |
Collapse
|
4
|
Cao LH, Qiao JY, Huang HY, Fang XY, Zhang R, Miao MS, Li XM. PI3K-AKT Signaling Activation and Icariin: The Potential Effects on the Perimenopausal Depression-Like Rat Model. Molecules 2019; 24:E3700. [PMID: 31618892 PMCID: PMC6832648 DOI: 10.3390/molecules24203700] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
Icariin is a prenylated flavonol glycoside isolated from Epimedium herb, and has been shown to be its main bioactive component. Recently, the antidepressant-like mechanism of icariin has been increasingly evaluated and demonstrated. However, there are few studies that have focused on the involvement of the phosphatidylinositol 3-kinase (PI3K)/serine-threonine protein kinase (AKT) signaling in mediating the perimenopausal depression effects of icariin. Perimenopausal depression is a chronic recurrent disease that leads to an increased risk of suicide, and poses a significant risk to public health. The aim of the present study was to explore the effect of icariin on the expression of the PI3K-AKT pathway related to proteins in a rat model of perimenopausal depression. Eighty percent of the left ovary and the entire right ovary were removed from the model rats. A perimenopausal depression model was created through 18 days of chronic unpredictable stimulation, followed by the gavage administration of target drugs for 30 consecutive days. We found that icariin administered at various doses significantly improved the apparent symptoms in the model rats, increased the organ indices of the uterus, spleen, and thymus, and improved the pathological changes in the ovaries. Moreover, icariin administration elevated the serum levels of female hormone estradiol (E2), testosterone (T), and interleukin (IL)-2, decreased those of follicle stimulating hormone (FSH) and luteotropic hormone (LH), promoted the expression levels of estrogen receptor (ER) and ERα in the hypothalamus, and increased those of serotonin (5-HT), dopamine (DA), and noradrenaline (NA) in the brain homogenate. Furthermore, icariin elevated the expression levels of AKT, phosphorylation-akt (p-AKT), PI3K (110 kDa), PI3K (85 kDa), and B-cell lymphoma 2 (Bcl-2) in the ovaries, and inhibited those of Bax. These results show that icariin administration rebalanced the disordered sex hormones in perimenopausal depression rats, regulated the secretion of neurotransmitters in the brain, boosted immune function, and improved the perimenopausal syndrome. The mechanism of action may be related to the regulation of the expression of PI3K-AKT pathway-related proteins.
Collapse
Affiliation(s)
- Li-Hua Cao
- International TCM Immunopharmacology Research Center, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Jing-Yi Qiao
- International TCM Immunopharmacology Research Center, Henan University of Chinese Medicine, Zhengzhou 450046, China.
- Department of Pharmacology, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Hui-Yuan Huang
- Department of Pharmacology, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Xiao-Yan Fang
- Department of Pharmacology, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Rui Zhang
- Department of Pharmacology, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Ming-San Miao
- International TCM Immunopharmacology Research Center, Henan University of Chinese Medicine, Zhengzhou 450046, China.
- Department of Pharmacology, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Xiu-Min Li
- Microbiology and Immunology Department, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
5
|
Li H, Liu L, Zhuang J, Liu C, Zhou C, Yang J, Gao C, Liu G, Sun C. Deciphering the mechanism of Indirubin and its derivatives in the inhibition of Imatinib resistance using a "drug target prediction-gene microarray analysis-protein network construction" strategy. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:75. [PMID: 30909944 PMCID: PMC6434895 DOI: 10.1186/s12906-019-2471-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/04/2019] [Indexed: 12/25/2022]
Abstract
Background The introduction of imatinib revolutionized the treatment of chronic myeloid leukaemia (CML), substantially extending patient survival. However, imatinib resistance is currently a clinical problem for CML. It is very importantto find a strategy to inhibit imatinib resistance. Methods (1) We Identified indirubin and its derivatives and predicted its putative targets; (2) We downloaded data of the gene chip GSE2810 from the Gene Expression Omnibus (GEO) database and performed GEO2R analysis to obtain differentially expressed genes (DEGs); and (3) we constructed a P-P network of putative targets and DEGs to explore the mechanisms of action and to verify the results of molecular docking. Result We Identified a total of 42 small-molecule compounds, of which 15 affected 11 putative targets, indicating the potential to inhibit imatinib resistance; the results of molecular docking verified these results. Six biomarkers of imatinib resistance were characterised by analysing DEGs. Conclusion The 15 small molecule compounds inhibited imatinib resistance through the cytokine-cytokine receptor signalling pathway, the JAK-stat pathway, and the NF-KB signalling pathway. Indirubin and its derivatives may be new drugsthat can combat imatinib resistance. Electronic supplementary material The online version of this article (10.1186/s12906-019-2471-2) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Liraglutide and its Neuroprotective Properties-Focus on Possible Biochemical Mechanisms in Alzheimer's Disease and Cerebral Ischemic Events. Int J Mol Sci 2019; 20:ijms20051050. [PMID: 30823403 PMCID: PMC6429395 DOI: 10.3390/ijms20051050] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Liraglutide is a GLP-1 analog (glucagon like peptide-1) used primarily in the treatment of diabetes mellitus type 2 (DM2) and obesity. The literature starts to suggest that liraglutide may reduce the effects of ischemic stroke by activating anti-apoptotic pathways, as well as limiting the harmful effects of free radicals. The GLP-1R expression has been reported in the cerebral cortex, especially occipital and frontal lobes, the hypothalamus, and the thalamus. Liraglutide reduced the area of ischemia caused by MCAO (middle cerebral artery occlusion), limited neurological deficits, decreased hyperglycemia caused by stress, and presented anti-apoptotic effects by increasing the expression of Bcl-2 and Bcl-xl proteins and reduction of Bax and Bad protein expression. The pharmaceutical managed to decrease concentrations of proapoptotic factors, such as NF-κB (Nuclear Factor-kappa β), ICAM-1 (Intercellular Adhesion Molecule 1), caspase-3, and reduced the level of TUNEL-positive cells. Liraglutide was able to reduce the level of free radicals by decreasing the level of malondialdehyde (MDA), and increasing the superoxide dismutase level (SOD), glutathione (GSH), and catalase. Liraglutide may affect the neurovascular unit causing its remodeling, which seems to be crucial for recovery after stroke. Liraglutide may stabilize atherosclerotic plaque, as well as counteract its early formation and further development. Liraglutide, through its binding to GLP-1R (glucagon like peptide-1 receptor) and consequent activation of PI3K/MAPK (Phosphoinositide 3-kinase/mitogen associated protein kinase) dependent pathways, may have a positive impact on Aβ (amyloid beta) trafficking and clearance by increasing the presence of Aβ transporters in cerebrospinal fluid. Liraglutide seems to affect tau pathology. It is possible that liraglutide may have some stem cell stimulating properties. The effects may be connected with PKA (phosphorylase kinase A) activation. This paper presents potential mechanisms of liraglutide activity in conditions connected with neuronal damage, with special emphasis on Alzheimer's disease and cerebral ischemia.
Collapse
|
7
|
Waters RS, Perry JSA, Han S, Bielekova B, Gedeon T. The effects of interleukin-2 on immune response regulation. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2018; 35:79-119. [PMID: 28339682 DOI: 10.1093/imammb/dqw021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 11/16/2016] [Indexed: 01/30/2023]
Abstract
The immune system has many adaptive and dynamic components that are regulated to ensure appropriate, precise and rapid response to a foreign pathogen. A delayed or inadequate immune response can lead to prolonged disease, while an excessive or under-regulated response can lead to autoimmunity. The cytokine, interleukin-2 (IL-2) and its receptor IL-2R play an important role in maintaining this balance.The IL-2 receptor transduces pSTAT5 signal through both the intermediate and high affinity receptors, which differ from each other by the presence of CD25 chain in IL-2 receptor. We present experimental data on the kinetics of pSTAT5 signalling through both of the receptors and develop a model that captures this kinetics. We then use this model to parameterize key aspects of two additional models in which we propose and study two different mechanisms by which IL-2 receptor can transduce distinct signals leading to either an activated or a non-activated cell state. We speculate that this initial state differentiation, perhaps enhanced by downstream feedbacks, may eventually lead to differential cell fates.Our result shows that non-linear dynamical models can suggest resolution of a puzzling array of seemingly contradictory experimental results on IL-2 effect on proliferation and differentiation of T-cells.
Collapse
Affiliation(s)
- Ryan S Waters
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, MT
| | - Justin S A Perry
- Neuroimmunological Diseases Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, VA
| | - SunPil Han
- Neuroimmunological Diseases Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD
| | - Bibiana Bielekova
- Neuroimmunological Diseases Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD
| | - Tomas Gedeon
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, MT
| |
Collapse
|
8
|
Cipolletti M, Solar Fernandez V, Montalesi E, Marino M, Fiocchetti M. Beyond the Antioxidant Activity of Dietary Polyphenols in Cancer: the Modulation of Estrogen Receptors (ERs) Signaling. Int J Mol Sci 2018; 19:E2624. [PMID: 30189583 PMCID: PMC6165334 DOI: 10.3390/ijms19092624] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
The potential "health benefits" of dietary polyphenols have been ascribed to their direct antioxidant activity and their impact on the regulation of cell and tissue redox balance. However, because of the relative poor bioavailability of many of these compounds, their effects could not be easily explained by the antioxidant action, which may occur only at high circulating and tissue concentrations. Therefore, many efforts have been put forward to clarify the molecular mechanisms underlining the biological effect of polyphenols in physiological and pathological conditions. Polyphenols' bioavailability, metabolism, and their effects on enzyme, membrane, and/or nuclear receptors and intracellular transduction mechanisms may define the overall impact of these compounds on cancer risk and progression, which is still debated and not yet clarified. Polyphenols are able to bind to estrogen receptor α (ERα) and β (ERβ), and therefore induce biological effects in human cells through mimicking or inhibiting the action of endogenous estrogens, even at low concentrations. In this work, the role and effects of food-contained polyphenols in hormone-related cancers will be reviewed, mainly focusing on the different polyphenols' mechanisms of action with particular attention on their estrogen receptor-based effects, and on the consequences of such processes on tumor progression and development.
Collapse
Affiliation(s)
- Manuela Cipolletti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | | | - Emiliano Montalesi
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | - Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | - Marco Fiocchetti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| |
Collapse
|
9
|
Berto M, Jean V, Zwart W, Picard D. ERα activity depends on interaction and target site corecruitment with phosphorylated CREB1. Life Sci Alliance 2018; 1:e201800055. [PMID: 30456355 PMCID: PMC6238530 DOI: 10.26508/lsa.201800055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
The two transcription factors estrogen receptor α (ERα) and cyclic adenosine monophosphate (cAMP)-responsive element binding protein 1 (CREB1) mediate different signals, bind different response elements, and control different transcriptional programs. And yet, results obtained with transfected reporter genes suggested that their activities may intersect. We demonstrate here that CREB1 stimulates and is necessary for ERα activity on a transfected reporter gene and several endogenous targets both in response to its cognate ligand estrogen and to ligand-independent activation by cAMP. The stimulatory activity of CREB1 requires its DNA binding and activation by phosphorylation, and affects the chromatin recruitment of ERα. CREB1 and ERα are biochemically associated and share hundreds to thousands of chromatin binding sites upon stimulation by estrogen and cAMP, respectively. These shared regulatory activities may underlie the anti-apoptotic effects of estrogen and cAMP signaling in ERα-positive breast cancer cells. Moreover, high levels of CREB1 are associated with good prognosis in ERα-positive breast cancer patients, which may be because of its ability to promote ERα functions, thereby maintaining it as a successful therapeutic target.
Collapse
Affiliation(s)
- Melissa Berto
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Genève, Switzerland
| | - Valerie Jean
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Genève, Switzerland
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Didier Picard
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Genève, Switzerland
| |
Collapse
|
10
|
Jin SK, Yang WX. Factors and pathways involved in capacitation: how are they regulated? Oncotarget 2018; 8:3600-3627. [PMID: 27690295 PMCID: PMC5356907 DOI: 10.18632/oncotarget.12274] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/23/2016] [Indexed: 01/07/2023] Open
Abstract
In mammals, fertilization occurs via a comprehensive progression of events. Freshly ejaculated sperm have yet to acquire progressive motility or fertilization ability. They must first undergo a series of biochemical and physiological changes, collectively known as capacitation. Capacitation is a significant prerequisite to fertilization. During the process of capacitation, changes in membrane properties, intracellular ion concentration and the activities of enzymes, together with other protein modifications, induce multiple signaling events and pathways in defined media in vitro or in the female reproductive tract in vivo. These, in turn, stimulate the acrosome reaction and prepare spermatozoa for penetration of the egg zona pellucida prior to fertilization. In the present review, we conclude all mainstream factors and pathways regulate capacitation and highlight their crosstalk. We also summarize the relationship between capacitation and assisted reproductive technology or human disease. In the end, we sum up the open questions and future avenues in this field.
Collapse
Affiliation(s)
- Shi-Kai Jin
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Zhang S, Wang Y. Telmisartan inhibits NSCLC A549 cell proliferation and migration by regulating the PI3K/AKT signaling pathway. Oncol Lett 2018; 15:5859-5864. [PMID: 29552215 DOI: 10.3892/ol.2018.8002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
Expression of angiotensin II (Ang II), a key biological peptide in the renin-angiotensin system, is closely associated with the occurrence and development of cancer. Ang II binds two receptor subtypes, the Ang II type 1 receptor (AT1R) and the AT2R, to mediate a series of biological effects. Telmisartan, a specific AT1R blocker, has been reported to have potential as an anticancer drug for treating renal cancer. In the present study, whether telmisartan had an effect on non-small cell lung cancer (NSCLC) cell proliferation and migration was investigated. The Cell Counting kit-8 assay revealed that telmisartan significantly inhibited the growth of the NSCLC A549 cell line in a time- and dose-dependent manner. In a transwell assay, telmisartan significantly inhibited cellular invasion and migration. Furthermore, it was determined that the expression of the anti-apoptotic protein B-cell lymphoma was decreased, and that of the pro-apoptotic proteins caspase-3 and Bcl-associated X increased in the A549 cells treated with telmisartan. Additionally, levels of phosphorylated RAC serine/threonine-protein kinase (p-AKT), p-mechanistic target of rapamycin, p70-S6 kinase and cyclin D1 was decreased in the telmisartan-treated group. Therefore, the current study reveals that telmisartan-induced NSCLC apoptosis may be regulated via the phosphoinositide 3-kinase/AKT signaling pathway, which indicates that it may be a potential novel drug for clinical NSCLC treatment.
Collapse
Affiliation(s)
- Suolin Zhang
- Department of Chest Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Yayan Wang
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P.R. China
| |
Collapse
|
12
|
Dong Q, Fu L, Zhao Y, Tan S, Wang E. Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling. Oncotarget 2017; 8:17059-17069. [PMID: 28178653 PMCID: PMC5370022 DOI: 10.18632/oncotarget.15001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/04/2017] [Indexed: 01/09/2023] Open
Abstract
Derlin-1 has been found to be overexpressed in several human cancers. However, its clinical significance and biological roles in bladder cancer remain unexplored. Here, we found that Derlin-1 was upregulated in 38.6% (58/150) cases of cancer samples. The rate of Derlin-1 overexpression was higher in muscle invasive bladder cancer (MIBC) than non-muscle invasive bladder cancer (NMIBC) (p=0.0079). Derlin-1 was a predicting factor for poor patient prognosis. Derlin-1 depletion inhibited while its overexpression facilitated cell invasion and colony formation. In addition, Derlin-1 overexpression induced cisplatin resistance while its depletion sensitized cancer cells to cisplatin. Further analysis demonstrated that Derlin-1 activated AKT phosphorylation and upregulated Bcl-2 expression. Blockage of AKT signaling by LY294005 abolished the effects of Derlin-1 on Bcl-2 and cisplatin resistance. Immunoprecipitation indicated Derlin-1 interacted with p110α subunit of PI3K. In addition, we showed that Derlin-1 depletion downregulated and its overexpression upregulated cell MMP-2/9 expression and ERK phosphorylation. Derlin-1 mediated upregulation of MMP-2/9 could be blocked by ERK inhibitor. In conclusion, our study demonstrated that Derlin-1 is overexpressed in bladder cancer and promotes malignant phenotype through ERK/MMP and PI3K/AKT/Bcl-2 signaling pathway.
Collapse
Affiliation(s)
- Qianze Dong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lin Fu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yue Zhao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
13
|
The Neuroprotection of Liraglutide Against Ischaemia-induced Apoptosis through the Activation of the PI3K/AKT and MAPK Pathways. Sci Rep 2016; 6:26859. [PMID: 27240461 PMCID: PMC4886514 DOI: 10.1038/srep26859] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/09/2016] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases glucose-dependent insulin secretion to reduce the glucose level. Liraglutide, a long-acting GLP-1 analogue, has been found to have neuroprotective action in various experimental models. However, the protective mechanisms of liraglutide in ischaemic stroke remain unclear. Here, we demonstrated that liraglutide significantly decreased the infarct volume, improved neurologic deficits, and lowered stress-related hyperglycaemia without causing hypoglycaemia in a rat model of middle cerebral artery occlusion (MCAO). Liraglutide inhibited cell apoptosis by reducing excessive reactive oxygen species (ROS) and improving the function of mitochondria in neurons under oxygen glucose deprivation (OGD) in vitro and MCAO in vivo. Liraglutide up-regulated the phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinases (ERK) and inhibited the phosphorylation of c-jun-NH2-terminal kinase (JNK) and p38. Moreover, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and/or the ERK inhibitor U0126 counteracted the protective effect of liraglutide. Taken together, these results suggest that liraglutide exerts neuroprotective action against ischaemia-induced apoptosis through the reduction of ROS and the activation of the PI3K/AKT and mitogen-activated protein kinase (MAPK) pathways. Therefore, liraglutide has therapeutic potential for patients with ischaemic stroke, especially those with Type 2 diabetes mellitus or stress hyperglycaemia.
Collapse
|
14
|
Guo L, Zhang S, Zhang B, Chen W, Li X, Zhang W, Zhou C, Zhang J, Ren N, Ye Q. Silencing GTSE-1 expression inhibits proliferation and invasion of hepatocellular carcinoma cells. Cell Biol Toxicol 2016; 32:263-74. [PMID: 27240802 PMCID: PMC4945688 DOI: 10.1007/s10565-016-9327-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
G2 and S phase-expressed-1 (GTSE1) was recently reported to upregulate in several types of human cancer, based on negatively regulate p53 expression. However, its expression and functional roles in hepatocellular carcinoma (HCC) remain unknown. In this study, GTSE1 was observed to be highly expressed in HCC specimens and cell lines both at messenger RNA (mRNA) and protein levels. Furthermore, high GTSE1 expression was positively associated with tumor size, venous invasion, advanced tumor stage, and short overall survival. Moreover, we generated stable GTSE1 knockdown HCC cell lines to explore the effects of GTSE1 silencing on the growth and invasion of HCC in vitro. In determining the pathway through which GTSE1 regulated cell proliferation and invasion, GTSE1 silencing was found to inhibit AKT phosphorylation and downregulated cell cycle-related protein. In addition, GTSE1 downregulation decreased the growth of xenografts. In conclusion, these results indicated for the first time that overexpression of GTSE1 was involved in the progress of HCC, enhancing proliferation and promoting cell invasion in HCC cells.
Collapse
Affiliation(s)
- Lei Guo
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China
| | - Shumin Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China
| | - Wanyong Chen
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China
| | - Xiaoqiang Li
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China
| | - Wentao Zhang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China
| | - Chenhao Zhou
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China
| | - Jubo Zhang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China
| | - Ning Ren
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China. .,Department of Liver Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.
| | - Qinghai Ye
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China. .,Department of Liver Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
15
|
Gray SL, Lackey BR, Boone WR. Effects of Panax ginseng, zearalenol, and estradiol on sperm function. J Ginseng Res 2015; 40:251-9. [PMID: 27616901 PMCID: PMC5005360 DOI: 10.1016/j.jgr.2015.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/03/2015] [Accepted: 08/16/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Estrogen signaling pathways are modulated by exogenous factors. Panax ginseng exerts multiple activities in biological systems and is classified as an adaptogen. Zearalenol is a potent mycoestrogen that may be present in herbs and crops arising from contamination or endophytic association. The goal of this study was to investigate the impact of P. ginseng, zearalenol and estradiol in tests on spermatozoal function. METHODS The affinity of these compounds for estrogen receptor (ER)-alpha and beta (ERα and ERβ)-was assessed in receptor binding assays. Functional tests on boar spermatozoa motility, movement and kinematic parameters were conducted using a computer-assisted sperm analyzer. Tests for capacitation, acrosome reaction (AR), and chromatin decondensation in spermatozoa were performed using microscopic analysis. RESULTS Zearalenol-but not estradiol (E2)- or ginseng-treated spermatozoa-decreased the percentage of overall, progressive, and rapid motile cells. Zearalenol also decreased spontaneous AR and increased chromatin decondensation. Ginseng decreased chromatin decondensation in response to calcium ionophore and decreased AR in response to progesterone (P4) and ionophore. CONCLUSION Zearalenol has adverse effects on sperm motility and function by targeting multiple signaling cascades, including P4, E2, and calcium pathways. Ginseng protects against chromatin damage and thus may be beneficial to reproductive fitness.
Collapse
Affiliation(s)
- Sandra L Gray
- Endocrine Physiology Laboratory, Animal and Veterinary Science Department, Clemson University, Clemson, SC, USA
| | - Brett R Lackey
- Endocrine Physiology Laboratory, Animal and Veterinary Science Department, Clemson University, Clemson, SC, USA
| | - William R Boone
- ART Laboratories, Department of Obstetrics and Gynecology, Greenville Health System University Medical Group, Greenville, SC, USA
| |
Collapse
|
16
|
Boopalan T, Arumugam A, Parada J, Saltzstein E, Lakshmanaswamy R. Receptor activator for nuclear factor-κB ligand signaling promotes progesterone-mediated estrogen-induced mammary carcinogenesis. Cancer Sci 2015; 106:25-33. [PMID: 25412610 PMCID: PMC4317778 DOI: 10.1111/cas.12571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 10/02/2014] [Accepted: 10/10/2014] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a leading cause of cancer-related death in women. Prolonged exposure to the ovarian hormones estrogen and progesterone increases the risk of breast cancer. Although estrogen is known as a primary factor in mammary carcinogenesis, very few studies have investigated the role of progesterone. Receptor activator for nuclear factor-κB (NF-κB) ligand (RANKL) plays an important role in progesterone-induced mammary carcinogenesis. However, the molecular mechanism underlying RANKL-induced mammary carcinogenesis remains unknown. In our current study, we show that RANKL induces glioma-associated oncogene homolog 1 (GLI-1) in estrogen-induced progesterone-mediated mammary carcinogenesis. In vivo experiments were carried out using ACI rats and in vitro experiments were carried out in MCF-7 cells. In ACI rats, mifepristone significantly reduced the incidence of mammary tumors. Likewise, mifepristone also inhibited the proliferation of MCF-7 cells. Hormone treatments induced RANKL, receptor activator of NF-κB (RANK), and NF-κB in a protein kinase B-dependent manner and inhibited apoptosis by activation of anti-apoptotic protein Bcl2 in mammary tumors and MCF-7 cells. Mechanistic studies in MCF-7 cells reveal that RANKL induced upstream stimulatory factor-1 and NF-κB, resulting in subsequent activation of their downstream target GLI-1. We have identified that progesterone mediates estrogen-induced mammary carcinogenesis through activation of GLI-1 in a RANKL-dependent manner.
Collapse
Affiliation(s)
- Thiyagarajan Boopalan
- Center of Excellence in Cancer Research, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | | | | | | | | |
Collapse
|
17
|
Campbell TL, Mitchell AS, McMillan EM, Bloemberg D, Pavlov D, Messa I, Mielke JG, Quadrilatero J. High-fat feeding does not induce an autophagic or apoptotic phenotype in female rat skeletal muscle. Exp Biol Med (Maywood) 2014; 240:657-68. [PMID: 25361772 DOI: 10.1177/1535370214557223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/15/2014] [Indexed: 01/17/2023] Open
Abstract
Apoptosis and autophagy are critical in normal skeletal muscle homeostasis; however, dysregulation can lead to muscle atrophy and dysfunction. Lipotoxicity and/or lipid accumulation may promote apoptosis, as well as directly or indirectly influence autophagic signaling. Therefore, the purpose of this study was to examine the effect of a 16-week high-fat diet on morphological, apoptotic, and autophagic indices in oxidative and glycolytic skeletal muscle of female rats. High-fat feeding resulted in increased fat pad mass, altered glucose tolerance, and lower muscle pAKT levels, as well as lipid accumulation and reactive oxygen species generation in soleus muscle; however, muscle weights, fiber type-specific cross-sectional area, and fiber type distribution were not affected. Moreover, DNA fragmentation and LC3 lipidation as well as several apoptotic (ARC, Bax, Bid, tBid, Hsp70, pBcl-2) and autophagic (ATG7, ATG4B, Beclin 1, BNIP3, p70 s6k, cathepsin activity) indices were not altered in soleus or plantaris following high-fat diet. Interestingly, soleus muscle displayed small increases in caspase-3, caspase-8, and caspase-9 activity, as well as higher ATG12-5 and p62 protein, while both soleus and plantaris muscle showed dramatically reduced Bcl-2 and X-linked inhibitor of apoptosis protein (XIAP) levels. In conclusion, this work demonstrates that 16 weeks of high-fat feeding does not affect tissue morphology or induce a global autophagic or apoptotic phenotype in skeletal muscle of female rats. However, high-fat feeding selectively influenced a number of apoptotic and autophagic indices which could have implications during periods of enhanced muscle stress.
Collapse
Affiliation(s)
- Troy L Campbell
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Andrew S Mitchell
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Elliott M McMillan
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Darin Bloemberg
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Dmytro Pavlov
- School of Public Health and Health Systems, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Isabelle Messa
- School of Public Health and Health Systems, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - John G Mielke
- School of Public Health and Health Systems, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
18
|
Shah KB, Tripathy S, Suganthi H, Rudraiah M. Profiling of luteal transcriptome during prostaglandin F2-alpha treatment in buffalo cows: analysis of signaling pathways associated with luteolysis. PLoS One 2014; 9:e104127. [PMID: 25102061 PMCID: PMC4125180 DOI: 10.1371/journal.pone.0104127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 07/09/2014] [Indexed: 11/18/2022] Open
Abstract
In several species including the buffalo cow, prostaglandin (PG) F2α is the key molecule responsible for regression of corpus luteum (CL). Experiments were carried out to characterize gene expression changes in the CL tissue at various time points after administration of luteolytic dose of PGF2α in buffalo cows. Circulating progesterone levels decreased within 1 h of PGF2α treatment and evidence of apoptosis was demonstrable at 18 h post treatment. Microarray analysis indicated expression changes in several of immediate early genes and transcription factors within 3 h of treatment. Also, changes in expression of genes associated with cell to cell signaling, cytokine signaling, steroidogenesis, PG synthesis and apoptosis were observed. Analysis of various components of LH/CGR signaling in CL tissues indicated decreased LH/CGR protein expression, pCREB levels and PKA activity post PGF2α treatment. The novel finding of this study is the down regulation of CYP19A1 gene expression accompanied by decrease in expression of E2 receptors and circulating and intra luteal E2 post PGF2α treatment. Mining of microarray data revealed several differentially expressed E2 responsive genes. Since CYP19A1 gene expression is low in the bovine CL, mining of microarray data of PGF2α-treated macaques, the species with high luteal CYP19A1 expression, showed good correlation between differentially expressed E2 responsive genes between both the species. Taken together, the results of this study suggest that PGF2α interferes with luteotrophic signaling, impairs intra-luteal E2 levels and regulates various signaling pathways before the effects on structural luteolysis are manifest.
Collapse
Affiliation(s)
- Kunal B Shah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Sudeshna Tripathy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Hepziba Suganthi
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Medhamurthy Rudraiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
19
|
Estrogen controls the survival of BRCA1-deficient cells via a PI3K-NRF2-regulated pathway. Proc Natl Acad Sci U S A 2014; 111:4472-7. [PMID: 24567396 DOI: 10.1073/pnas.1324136111] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutations in the tumor suppressor BRCA1 predispose women to breast and ovarian cancers. The mechanism underlying the tissue-specific nature of BRCA1's tumor suppression is obscure. We previously showed that the antioxidant pathway regulated by the transcription factor NRF2 is defective in BRCA1-deficient cells. Reactivation of NRF2 through silencing of its negative regulator KEAP1 permitted the survival of BRCA1-null cells. Here we show that estrogen (E2) increases the expression of NRF2-dependent antioxidant genes in various E2-responsive cell types. Like NRF2 accumulation triggered by oxidative stress, E2-induced NRF2 accumulation depends on phosphatidylinositol 3-kinase-AKT activation. Pretreatment of mammary epithelial cells (MECs) with the phosphatidylinositol 3-kinase inhibitor BKM120 abolishes the capacity of E2 to increase NRF2 protein and transcriptional activity. In vivo the survival defect of BRCA1-deficient MECs is rescued by the rise in E2 levels associated with pregnancy. Furthermore, exogenous E2 administration stimulates the growth of BRCA1-deficient mammary tumors in the fat pads of male mice. Our work elucidates the basis of the tissue specificity of BRCA1-related tumor predisposition, and explains why oophorectomy significantly reduces breast cancer risk and recurrence in women carrying BRCA1 mutations.
Collapse
|
20
|
Banerjee A, Qian P, Wu ZS, Ren X, Steiner M, Bougen NM, Liu S, Liu DX, Zhu T, Lobie PE. Artemin stimulates radio- and chemo-resistance by promoting TWIST1-BCL-2-dependent cancer stem cell-like behavior in mammary carcinoma cells. J Biol Chem 2012; 287:42502-15. [PMID: 23095743 DOI: 10.1074/jbc.m112.365163] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Artemin (ARTN) has been reported to promote a TWIST1-dependent epithelial to mesenchymal transition of estrogen receptor negative mammary carcinoma (ER-MC) cells associated with metastasis and poor survival outcome. We therefore examined a potential role of ARTN in the promotion of the cancer stem cell (CSC)-like phenotype in mammary carcinoma cells. Acquired resistance of ER-MC cells to either ionizing radiation (IR) or paclitaxel was accompanied by increased ARTN expression. Small interfering RNA (siRNA)-mediated depletion of ARTN in either IR- or paclitaxel-resistant ER-MC cells restored cell sensitivity to IR or paclitaxel. Expression of ARTN was enriched in ER-MC cells grown in mammospheric compared with monolayer culture and was also enriched along with BMI1, TWIST1, and DVL1 in mammospheric and ALDH1+ populations. ARTN promoted mammospheric growth and self-renewal of ER-MC cells and increased the ALDH1+ population, whereas siRNA-mediated depletion of ARTN diminished these CSC-like cell behaviors. Furthermore, increased ARTN expression was significantly correlated with ALDH1 expression in a cohort of ER-MC patients. Forced expression of ARTN also dramatically enhanced tumor initiating capacity of ER-MC cells in xenograft models at low inoculum. ARTN promotion of the CSC-like cell phenotype was mediated by TWIST1 regulation of BCL-2 expression. ARTN also enhanced mammosphere formation and the ALDH1+ population in estrogen receptor-positive mammary carcinoma (ER+MC) cells. Increased expression of ARTN and the functional consequences thereof may be one common adaptive mechanism used by mammary carcinoma cells to promote cell survival and renewal in hostile tumor microenvironments.
Collapse
Affiliation(s)
- Arindam Banerjee
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
George AL, Rajoria S, Suriano R, Mittleman A, Tiwari RK. Hypoxia and estrogen are functionally equivalent in breast cancer-endothelial cell interdependence. Mol Cancer 2012; 11:80. [PMID: 23088607 PMCID: PMC3504564 DOI: 10.1186/1476-4598-11-80] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 10/03/2012] [Indexed: 12/20/2022] Open
Abstract
Background Rapid breast tumor development relies on formation of new vasculature to supply the growing malignancy with oxygenated blood. Previously we found that estrogen aided in this neovasculogenesis via recruitment of bone marrow derived endothelial progenitor cells (BM-EPCs), leading to increased vessel formation and vascular endothelial growth factor (VEGF) production in vivo. However, the cellular mechanism of this induction and the signaling pathways involved need elucidation. Results Using the murine mammary cell line TG1-1 we observed estrogen (E2) lead to an up regulation of hypoxia inducible factor-1 (HIF-1), an effect abrogated by the anti-estrogen Fulvestrant and the HIF-1 inhibitor YC-1 (3-(5’-hydroxymethyl-2’-furyl)-1-benzylindazole) suggesting the interchangeability of hypoxia and estrogen mediated effects. Estrogen modulation of HIF-1 and subsequent effects on endothelial cells is dependent on the Akt/PI3K pathway and protein synthesis as validated by the use of the inhibitors wortmannin and cycloheximide which abrogated estrogen’s effects respectively. Estrogen treated TG1-1 cells secreted higher levels of VEGF which were comparable to secreted levels from cells grown under hypoxic conditions. Soluble factors in conditioned media from E2 treated breast cancer cells also lead to migration and tube formation of human umbilical vein endothelial cells (HUVEC) in vitro. Conclusions Our data provide evidence that estrogen signaling mediates the tumor vasculogenic process required for breast cancer progression and involves a key regulator of the hypoxia signaling pathway. Further, hypoxia and estrogen are interchangeable as both similarly modulate epithelial-endothelial cell interaction.
Collapse
Affiliation(s)
- Andrea L George
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, 10595, USA.
| | | | | | | | | |
Collapse
|
22
|
Parvathaneni K, Grigsby JG, Betts BS, Tsin AT. Estrogen-induced retinal endothelial cell proliferation: possible involvement of pigment epithelium-derived factor and phosphoinositide 3-kinase/mitogen-activated protein kinase pathways. J Ocul Pharmacol Ther 2012; 29:27-32. [PMID: 23046437 DOI: 10.1089/jop.2011.0252] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Diabetic retinopathy is a leading cause of blindness due to a progressive damage of the retina by neovascularization and other related ocular complications. However, the molecular mechanism underlying the development of diabetic retinopathy is not well understood. An increase in estrogen levels during puberty is associated with an accelerated development of diabetic retinopathy. Previously, we have introduced 17β-estradiol (E2) to rhesus retinal capillary endothelial cells (RhRECs) in culture and observed a dose- and time-dependent increase in the number of viable cells. The purpose of this present study was to investigate the molecular signaling pathway associated with this estrogen-induced proliferation of RhRECs. METHODS Estrogen receptor (ER) ER(α) and ER(β) mRNA expression, and protein synthesis were measured at 0, 3, 6, and 12 h using nested polymerase chain reaction and Western blots. Phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathway inhibitors were introduced into culture media to study their effects on E2-induced cell proliferation and pigment epithelium-derived factor (PEDF) synthesis. The levels of PEDF in the conditioned media were measured by enzyme-linked immunosorbent assay. RESULTS Exogenous E2 induced a significant increase in the expression of ER(β) along with an increase in the number of viable RhRECs. Cotreatment of E2 with PI3K and MAPK inhibitors significantly reduced the E2-induced effect on cell proliferation and PEDF production in a dose-dependent manner. CONCLUSION Results from the present study suggest that an E2-induced increase in the proliferation of RhRECs may be mediated by the action of ER(β.) Both PI3K and MAPK signaling pathways are involved in this E2-induced cell proliferation, which may follow changes in PEDF levels controlled by these pathways. Further studies will provide additional details on the interaction between these pathways to control changes in PEDF levels and cell proliferation.
Collapse
Affiliation(s)
- Kalpana Parvathaneni
- Department of Biology, The University of Texas at San Antonio, San Antonio, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|
23
|
Marchese S, Silva E. Disruption of 3D MCF-12A breast cell cultures by estrogens--an in vitro model for ER-mediated changes indicative of hormonal carcinogenesis. PLoS One 2012; 7:e45767. [PMID: 23056216 PMCID: PMC3462778 DOI: 10.1371/journal.pone.0045767] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/23/2012] [Indexed: 02/05/2023] Open
Abstract
Introduction Estrogens regulate the proliferation of normal and neoplastic breast epithelium. Although the intracellular mechanisms of estrogens in the breast are largely understood, little is known about how they induce changes in the structure of the mammary epithelium, which are characteristic of breast cancer. In vitro three dimensional (3D) cultures of immortalised breast epithelial cells recapitulate features of the breast epithelium in vivo, including formation of growth arrested acini with hollow lumen and basement membrane. This model can also reproduce features of malignant transformation and breast cancer, such as increased cellular proliferation and filling of the lumen. However, a system where a connection between estrogen receptor (ER) activation and disruption of acini formation can be studied to elucidate the role of estrogens is still missing. Methods/Principal Findings We describe an in vitro 3D model for breast glandular structure development, using breast epithelial MCF-12A cells cultured in a reconstituted basement membrane matrix. These cells are estrogen receptor (ER)α, ERβ and G-protein coupled estrogen receptor 1 (GPER) competent, allowing the investigation of the effects of estrogens on mammary gland formation and disruption. Under normal conditions, MCF-12A cells formed organised acini, with deposition of basement membrane and hollow lumen. However, treatment with 17β-estradiol, and the exogenous estrogens bisphenol A and propylparaben resulted in deformed acini and filling of the acinar lumen. When these chemicals were combined with ER and GPER inhibitors (ICI 182,780 and G-15, respectively), the deformed acini recovered normal features, such as a spheroid shape, proliferative arrest and luminal clearing, suggesting a role for the ER and GPER in the estrogenic disruption of acinar formation. Conclusion This new model offers the opportunity to better understand the role of the ER and GPER in the morphogenesis of breast glandular structure as well as the events implicated in breast cancer initiation and progression.
Collapse
MESH Headings
- Benzhydryl Compounds/pharmacology
- Benzodioxoles/pharmacology
- Cell Culture Techniques
- Cell Line
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogen Antagonists/pharmacology
- Estrogen Receptor Modulators/pharmacology
- Estrogen Receptor alpha/antagonists & inhibitors
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/antagonists & inhibitors
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Estrogens/pharmacology
- Estrogens, Non-Steroidal/pharmacology
- Female
- Fulvestrant
- Gene Expression/drug effects
- Humans
- Immunoblotting
- Mammary Glands, Human/cytology
- Mammary Glands, Human/drug effects
- Mammary Glands, Human/metabolism
- Microscopy, Confocal
- Parabens/pharmacology
- Phenols/pharmacology
- Quinolines/pharmacology
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Progesterone/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Trefoil Factor-1
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
| | - Elisabete Silva
- UCL School of Pharmacy, London, United Kingdom
- Institute for the Environment, Brunel University, Uxbridge, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Bratton MR, Frigo DE, Segar HC, Nephew KP, McLachlan JA, Wiese TE, Burow ME. The organochlorine o,p'-DDT plays a role in coactivator-mediated MAPK crosstalk in MCF-7 breast cancer cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1291-6. [PMID: 22609851 PMCID: PMC3440107 DOI: 10.1289/ehp.1104296] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 05/18/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND The organochlorine dichlorodiphenyltrichloroethane (DDT), a known estrogen mimic and endocrine disruptor, has been linked to animal and human disorders. However, the detailed mechanism(s) by which DDT affects cellular physiology remains incompletely defined. OBJECTIVES We and others have shown that DDT activates cell-signaling cascades, culminating in the activation of estrogen receptor-dependent and -independent gene expression. Here, we identify a mechanism by which DDT alters cellular signaling and gene expression, independent of the estrogen receptor. METHODS We performed quantitative polymerase chain reaction array analysis of gene expression in MCF-7 breast cancer cells using either estradiol (E₂) or o,p´-DDT to identify distinct cellular gene expression responses. To elucidate the mechanisms by which DDT regulates cell signaling, we used molecular and pharmacological techniques. RESULTS E₂ and DDT treatment both altered the expression of many of the genes assayed, but up-regulation of vascular endothelial growth factor A (VEGFA) was observed only after DDT treatment, and this increase was not affected by the pure estrogen receptor α antagonist ICI 182780. Furthermore, DDT increased activation of the HIF-1 response element (HRE), a known enhancer of the VEGFA gene. This DDT-mediated increase in HRE activity was augmented by the coactivator CBP (CREB-binding protein) and was dependent on the p38 pathway. CONCLUSIONS DDT up-regulated the expression of several genes in MCF-7 breast cancer cells that were not altered by treatment with E₂, including VEGFA. We propose that this DDT-initiated, ER-independent stimulation of gene expression is due to DDT's ability to initiate crosstalk between MAPK (mitogen-activated protein kinase) signaling pathways and transcriptional coactivators.
Collapse
Affiliation(s)
- Melyssa R Bratton
- Department of Pharmacology, Tulane University, New Orleans, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Marina M, Wang L, Conrad SE. The scaffold protein MEK Partner 1 is required for the survival of estrogen receptor positive breast cancer cells. Cell Commun Signal 2012; 10:18. [PMID: 22776333 PMCID: PMC3406937 DOI: 10.1186/1478-811x-10-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 07/09/2012] [Indexed: 01/16/2023] Open
Abstract
MEK Partner 1 (MP1 or MAPKSP1) is a scaffold protein that has been reported to function in multiple signaling pathways, including the ERK, PAK and mTORC pathways. Several of these pathways influence the biology of breast cancer, but MP1’s functional significance in breast cancer cells has not been investigated. In this report, we demonstrate a requirement for MP1 expression in estrogen receptor (ER) positive breast cancer cells. MP1 is widely expressed in both ER-positive and negative breast cancer cell lines, and in non-tumorigenic mammary epithelial cell lines. However, inhibition of its expression using siRNA duplexes resulted in detachment and apoptosis of several ER-positive breast cancer cell lines, but not ER-negative breast cancer cells or non-tumorigenic mammary epithelial cells. Inhibition of MP1 expression in ER-positive MCF-7 cells did not affect ERK activity, but resulted in reduced Akt1 activity and reduced ER expression and activity. Inhibition of ER expression did not result in cell death, suggesting that decreased ER expression is not the cause of cell death. In contrast, pharmacological inhibition of PI3K signaling did induce cell death in MCF-7 cells, and expression of a constitutively active form of Akt1 partially rescued the cell death observed when the MP1 gene was silenced in these cells. Together, these results suggest that MP1 is required for pro-survival signaling from the PI3K/Akt pathway in ER-positive breast cancer cells.
Collapse
Affiliation(s)
- Mihaela Marina
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| | | | | |
Collapse
|
26
|
McLachlan JA, Tilghman SL, Burow ME, Bratton MR. Environmental signaling and reproduction: a comparative biological and chemical perspective. Mol Cell Endocrinol 2012; 354:60-2. [PMID: 22178089 PMCID: PMC3641892 DOI: 10.1016/j.mce.2011.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/28/2011] [Indexed: 01/31/2023]
Abstract
Reproduction is a critical element of life. Self-propagation in all living organisms ranging from bacteria to humans involves numerous common strategies. Underlying all reproductive strategies is the essential need for signaling molecules to initiate and maintain the process. In this paper we use comparative biological and chemical approaches to explore the origins and distribution of estrogen signaling as a pathway common to many life forms. In the process we illuminate the mechanisms whereby environmental agents alter reproduction and development. These mechanisms involve altered signaling pathways within cells and shifts in the targets of the signaling pathways to include regulators of gene transcription normally associated with other pathways. We also stress the role of signal cross talk in mediating hormone action.
Collapse
Affiliation(s)
- John A. McLachlan
- Environmental Signaling Laboratory, Tulane University, 1430 Tulane Ave., New Orleans, LA 70122, USA
- Department of Pharmacology, Tulane University School of Medicine, USA
- Department of Ecology and Evolutionary Biology, Tulane University School of Science and Engineering, USA
| | - Syreeta L. Tilghman
- Environmental Signaling Laboratory, Tulane University, 1430 Tulane Ave., New Orleans, LA 70122, USA
- Department of Pharmacology, Tulane University School of Medicine, USA
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, USA
| | - Matthew E. Burow
- Department of Medicine, Division of Hematology and Oncology, Tulane University School of Medicine, USA
| | - Melyssa R. Bratton
- Environmental Signaling Laboratory, Tulane University, 1430 Tulane Ave., New Orleans, LA 70122, USA
- Department of Pharmacology, Tulane University School of Medicine, USA
- Corresponding author at: Department of Pharmacology, Tulane University,
School of Medicine, USA. Tel.: +1 504 988 6623. (M.R. Bratton)
| |
Collapse
|
27
|
Cortez V, Mann M, Brann DW, Vadlamudi RK. Extranuclear signaling by estrogen: role in breast cancer progression and metastasis. MINERVA GINECOLOGICA 2010; 62:573-583. [PMID: 21079578 PMCID: PMC3729592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The estrogen receptor (ERa) is implicated in the progression of breast cancer. Hormonal therapies which block ER functions or local and systemic estrogen production are currently used to treat ERa positive breast cancer. Hormonal therapy shows beneficial effects, however, initial or acquired resistance to endocrine therapies frequently occurs, and tumors recur as metastasis. Emerging evidence suggests in addition to exerting its well-studied nuclear functions, ERa also participates in extranuclear signaling that involve growth factor signaling components, adaptor molecules and the stimulation of cytosolic kinases. ERa extranuclear pathways have the potential to activate gene transcription, modulate cytoskeleton, and promote tumor cell proliferation, survival, and metastasis. Cytoplasmic/membrane ERa is detected in a subset of breast tumors and expression of extranuclear components ERa is deregulated in tumors. The extranuclear actions of ER are emerging as important targets for tumorigenic and metastatic control. Inhibition of ERa extranuclear actions has the potential to prevent breast tumor progression and may be useful in preventing ERa positive metastasis. In this review, we summarize the results of recent research into the role of ERa mediated extranuclear actions in breast tumorigenesis and metastasis.
Collapse
Affiliation(s)
- V Cortez
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio TX 78229, USA
| | | | | | | |
Collapse
|