1
|
Joo S, Lee UJ, Son HY, Kim M, Huh YM, Lee TG, Lee M. Highly Selective FRET-Aided Single-Molecule Counting of MicroRNAs Labeled by Splinted Ligation. ACS Sens 2022; 7:3409-3415. [PMID: 36279317 DOI: 10.1021/acssensors.2c01526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that play an important role in regulating gene expression. Since miRNAs are abnormally expressed in various cancers, they are considered to be promising biomarkers for early cancer diagnosis. However, the short length and strong sequence similarity among miRNAs make their reliable quantification very challenging. We developed a highly selective amplification-free miRNA detection method based on Förster resonance energy transfer (FRET)-aided single-molecule counting. miRNAs were selectively labeled with FRET probes using splinted ligation. When imaged with a single-molecule FRET setup, the miRNA molecules were accurately identified by the probe's FRET. miRNA concentrations were estimated from the count of molecules. The high sensitivity of the method in finding sparse molecules enabled us to achieve a limit of detection of 31-56 amol for miR-125b, miR-100, and miR-99a. Single nucleotide mismatch could be discriminated with a very high target-to-mismatch ratio. The method accurately measured the high expression of miR-125b in gastric cancer cells, which agreed well with previous reports. The high sensitivity and accuracy of this technique demonstrated its clinical potential as a robust miRNA detection method.
Collapse
Affiliation(s)
- Sihwa Joo
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
| | - Ui Jin Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Hye Young Son
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, South Korea.,Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, South Korea
| | - Moonil Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea.,Department of Biotechnology, University of Science and Technology (UST), Daejeon 34113, South Korea
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, South Korea.,Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, South Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul 03722, South Korea.,YUHS-KRIBB Medical Convergence Research Institute, Seoul 03722, South Korea
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea.,Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, South Korea
| | - Mina Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
| |
Collapse
|
2
|
Peng W, Du J, Dai W, Lan W. Predicting miRNA-Disease Association Based on Modularity Preserving Heterogeneous Network Embedding. Front Cell Dev Biol 2021; 9:603758. [PMID: 34178973 PMCID: PMC8223753 DOI: 10.3389/fcell.2021.603758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a category of small non-coding RNAs that profoundly impact various biological processes related to human disease. Inferring the potential miRNA-disease associations benefits the study of human diseases, such as disease prevention, disease diagnosis, and drug development. In this work, we propose a novel heterogeneous network embedding-based method called MDN-NMTF (Module-based Dynamic Neighborhood Non-negative Matrix Tri-Factorization) for predicting miRNA-disease associations. MDN-NMTF constructs a heterogeneous network of disease similarity network, miRNA similarity network and a known miRNA-disease association network. After that, it learns the latent vector representation for miRNAs and diseases in the heterogeneous network. Finally, the association probability is computed by the product of the latent miRNA and disease vectors. MDN-NMTF not only successfully integrates diverse biological information of miRNAs and diseases to predict miRNA-disease associations, but also considers the module properties of miRNAs and diseases in the course of learning vector representation, which can maximally preserve the heterogeneous network structural information and the network properties. At the same time, we also extend MDN-NMTF to a new version (called MDN-NMTF2) by using modular information to improve the miRNA-disease association prediction ability. Our methods and the other four existing methods are applied to predict miRNA-disease associations in four databases. The prediction results show that our methods can improve the miRNA-disease association prediction to a high level compared with the four existing methods.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China.,Computer Technology Application Key Laboratory of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Jielin Du
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China.,Computer Technology Application Key Laboratory of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Wei Lan
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Gallardo Martin E, Cousillas Castiñeiras A. Vitamin D modulation and microRNAs in gastric cancer: prognostic and therapeutic role. Transl Cancer Res 2021; 10:3111-3127. [PMID: 35116620 PMCID: PMC8797897 DOI: 10.21037/tcr-20-2813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Gastric adenocarcinoma arises after a complex interaction between the host and environmental factors. Tumor location and TNM are the tools that currently guide treatment decisions. Surgery is the only curative treatment, but relapse is common. After relapse or advanced staged disease survival is poor and systemic treatment has modestly improved survival. An association between sun exposure, vitamin D status and gastric cancer (GC) incidence and mortality has been reported. The molecular differences of the histological subtypes and the new molecular classifications account for the great heterogeneity of this disease and are the basis for the discovery of new therapeutic targets. New prognostic and predictive factors are essential and microRNAs (miRNAs) are endogenous small non-coding RNA molecules with a great potential for diagnosis, prognosis and treatment of cancer. There are hundreds of miRNAs with altered expression in tumor gastric tissue when compared to normal gastric tissue. Many of these miRNAs are associated with clinicopathological variables and survival in patients with GC. Furthermore, the expression of some of these miRNAs with prognostic importance in CG is influenced by vitamin D and others are mediators of some of the actions of this vitamin. This review aims to update the evidence on several miRNAs with prognostic value and therapeutic potential in GC, whose expression may be influenced by vitamin D or may regulate vitamin D signaling.
Collapse
Affiliation(s)
- Elena Gallardo Martin
- Medical Oncology Department in Complejo Hospitalario Universitario de Pontevedra, University Hospital of Pontevedra, CP 36001 Pontevedra, Spain
| | - Antia Cousillas Castiñeiras
- Medical Oncology Department in Complejo Hospitalario Universitario de Pontevedra, University Hospital of Pontevedra, CP 36001 Pontevedra, Spain
| |
Collapse
|
4
|
Cui L, Wang P, Ning D, Shao J, Tan G, Li D, Zhong X, Mi W, Zhang C, Jin S. Identification of a Novel Prognostic Signature for Gastric Cancer Based on Multiple Level Integration and Global Network Optimization. Front Cell Dev Biol 2021; 9:631534. [PMID: 33912555 PMCID: PMC8072341 DOI: 10.3389/fcell.2021.631534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/22/2021] [Indexed: 02/03/2023] Open
Abstract
Gastric Cancer (GC) is a common cancer worldwide with a high morbidity and mortality rate in Asia. Many prognostic signatures from genes and non-coding RNA (ncRNA) levels have been identified by high-throughput expression profiling for GC. To date, there have been no reports on integrated optimization analysis based on the GC global lncRNA-miRNA-mRNA network and the prognostic mechanism has not been studied. In the present work, a Gastric Cancer specific lncRNA-miRNA-mRNA regulatory network (GCsLMM) was constructed based on the ceRNA hypothesis by combining miRNA-target interactions and data on the expression of GC. To mine for novel prognostic signatures associated with GC, we performed topological analysis, a random walk with restart algorithm, in the GCsLMM from three levels, miRNA-, mRNA-, and lncRNA-levels. We further obtained candidate prognostic signatures by calculating the integrated score and analyzed the robustness of these signatures by combination strategy. The biological roles of key candidate signatures were also explored. Finally, we targeted the PHF10 gene and analyzed the expression patterns of PHF10 in independent datasets. The findings of this study will improve our understanding of the competing endogenous RNA (ceRNA) regulatory mechanisms and further facilitate the discovery of novel prognostic biomarkers for GC clinical guidelines.
Collapse
Affiliation(s)
- Lin Cui
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ping Wang
- Department of Interventional Radiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Dandan Ning
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing Shao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guiyuan Tan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Dajian Li
- Department of Gastroenterology and Hepatology, The First Hospital Of Harbin, Harbin, China
| | - Xiaoling Zhong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wanqi Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Wang H, Chen H, Jiang Z, Lin Y, Wang X, Xiang J, Peng J. Integrin subunit alpha V promotes growth, migration, and invasion of gastric cancer cells. Pathol Res Pract 2019; 215:152531. [PMID: 31320250 DOI: 10.1016/j.prp.2019.152531] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/12/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022]
Abstract
Integrin subunit alpha V (ITGAV), a member of integrin family of extracellular matrix receptors, is involved in many types of cancer. In this study, the expression levels, clinical features and prognosis of ITGAV in gastric cancer (GC) patients were investigated, and the functional roles of ITGAV were also investigated. Cell Counting Kit-8 (CCK-8) assay was performed to examine the proliferation of GC cells. Transwell assays and wound-healing assays were conducted to explore the effect of ITGAV expression on GC cell migration and invasion. We found that ITGAV was overexpressed in both GC tissues and GC cells. ITGAV expression was positively correlated with lymph node metastasis and TNM stage of GC. High expression of ITGAV was associated with shorter overall survival (OS) and disease-free survival (DFS). Interestingly, the downregulation of ITGAV resulted in suppression of proliferation, migration, and invasion in GC cells. In conclusion, ITGAV is overexpressed in gastric cancer and is associated with poorer prognostic outcomes. ITGAV may serve as an important prognostic marker for GC staging and progression.
Collapse
Affiliation(s)
- Huashe Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Honglei Chen
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Department of Gastrointestinal Endoscopy, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Zhipeng Jiang
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Yijia Lin
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xinyou Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jun Xiang
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Junsheng Peng
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
| |
Collapse
|
6
|
Zhang X, Yao J, Guo K, Huang H, Huai S, Ye R, Niu B, Ji T, Han W, Li J. The functional mechanism of miR-125b in gastric cancer and its effect on the chemosensitivity of cisplatin. Oncotarget 2017; 9:2105-2119. [PMID: 29416757 PMCID: PMC5788625 DOI: 10.18632/oncotarget.23249] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have shown drug resistance of gastric cancer cells could be modulated by abnormal expression of microRNAs. Cisplatin (DDP) is one of the most commonly used drugs for chemotherapy of gastric cancer. In this study, the potential function of miR-125b on DDP resistance in gastric cancer cells was investigated. Sixteen miRNAs significantly differential expressed in gastric tumor tissues and adjacent tissues were characterized and their corresponding putative target genes were also screened. MiR-125b was selected as our focus for its evident down-regulated expression among candidate genes. Real-time polymerase chain reaction assay indicated that miR-125b was significantly down-regulated in gastric cancer tissues and various cell lines. HER2 was identified as a target gene of miR-125b by dual luciferase reporter assay and Western blot. Moreover, miR-125b overexpression inhibited not only the proliferation, migration, and invasion abilities of HGC-27 and MGC-803 cells, but also in vivo tumor growth of MGC-803 cells by an intratumoral delivery approach. Notably, we observed up-regulated miR-125b contributed to the chemosensitivity of DDP in HGC-27 and MGC-803 cells at different concentrations and also possessed sensibilization for DDP at different times. MiR-125b expression was found to be related to lymph node metastasis, HER2 expression and overall survival of patients through correlation analysis. Collectively, these results indicate miR-125b may regulate DDP resistance as a promising therapeutic target for gastric cancer treatment in future.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jie Yao
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Kai Guo
- Department of Gastroenterology, The 161th Hospital of PLA, Wuhan 430010, P.R. China
| | - Hu Huang
- Department of Oncology, The 161th Hospital of PLA, Wuhan 430010, P.R. China
| | - Siyuan Huai
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Rui Ye
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Department of Oncology, Beidaihe Sanatorium of Beijing Military Command, Qinhuangdao 066100, P.R. China
| | - Baolong Niu
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Tiannan Ji
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Weidong Han
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jianxiong Li
- Department of Radiotherapy, Hainan Branch of Chinese PLA General Hospital, Sanya 572000, P.R. China
| |
Collapse
|
7
|
Azarnezhad A, Mehdipour P. Cancer Genetics at a Glance: The Comprehensive Insights. CANCER GENETICS AND PSYCHOTHERAPY 2017:79-389. [DOI: 10.1007/978-3-319-64550-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Riquelme I, Tapia O, Leal P, Sandoval A, Varga MG, Letelier P, Buchegger K, Bizama C, Espinoza JA, Peek RM, Araya JC, Roa JC. miR-101-2, miR-125b-2 and miR-451a act as potential tumor suppressors in gastric cancer through regulation of the PI3K/AKT/mTOR pathway. Cell Oncol (Dordr) 2016; 39:23-33. [PMID: 26458815 PMCID: PMC4751587 DOI: 10.1007/s13402-015-0247-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a deadly malignancy worldwide. In the past, it has been shown that cellular signaling pathway alterations play a crucial role in the development of GC. In particular, deregulation of the PI3K/AKT/mTOR pathway seems to affect multiple GC functions including growth, proliferation, metabolism, motility and angiogenesis. Targeting alterations in this pathway by microRNAs (miRNAs) represents a potential therapeutic strategy, especially in inhibitor-resistant tumors. The objective of this study was to evaluate the expression of 3 pre-selected miRNAs, miR-101-2, miR-125b-2 and miR-451a, in a series of primary GC tissues and matched non-GC tissues and in several GC-derived cell lines, and to subsequently evaluate the functional role of these miRNAs. METHODS Twenty-five primary GC samples, 25 matched non-GC samples and 3 GC-derived cell lines, i.e., AGS, MKN28 and MKN45, were included in this study. miRNA and target gene expression levels were assessed by quantitative RT-PCR and western blotting, respectively. Subsequently, cell viability, clone formation, cell death, migration and invasion assays were performed on AGS cells. RESULTS miR-101-2, miR-125b-2 and miR-451a were found to be down-regulated in the primary GC tissues and the GC-derived cell lines tested. MiRNA mimic transfections significantly reduced cell viability and colony formation, increased cell death and reduced cell migration and invasion in AGS cells. We also found that exogenous expression of miR-101-2, miR-125b-2 and miR-451a decreased the expression of their putative targets MTOR, PIK3CB and TSC1, respectively. CONCLUSIONS Our expression analyses and in vitro functional assays suggest that miR-101-2, miR-125b-2 and miR-451a act as potential tumor suppressors in primary GCs as well as in GC-derived AGS cells.
Collapse
Affiliation(s)
- Ismael Riquelme
- Laboratory of Molecular Pathology, Pathology Department, School of Medicine, BIOREN-CEGIN, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile
| | - Oscar Tapia
- Laboratory of Molecular Pathology, Pathology Department, School of Medicine, BIOREN-CEGIN, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile
| | - Pamela Leal
- Molecular Biology and Biomedicine Lab, CEGIN-BIOREN, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile
| | - Alejandra Sandoval
- Laboratory of Molecular Pathology, Pathology Department, School of Medicine, BIOREN-CEGIN, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile
| | - Matthew G. Varga
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University School of Medicine, 2215 Garland Avenue Nashville, 37232 Nashville, TN, USA
| | - Pablo Letelier
- School of Health Sciences, Universidad Catolica de Temuco, Manuel Montt 56, 4813302 Temuco, Chile
| | - Kurt Buchegger
- Laboratory of Molecular Pathology, Pathology Department, School of Medicine, BIOREN-CEGIN, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile
| | - Carolina Bizama
- Department of Pathology, UC Centre for Investigational Oncology (CITO), Advanced Centre for Chronic Diseases (ACCDiS), School of Medicine, Pontificia Universidad Catolica de Chile, Marcoleta 377, 7th Floor, 8330024 Santiago, Chile
| | - Jaime A. Espinoza
- Department of Pathology, UC Centre for Investigational Oncology (CITO), Advanced Centre for Chronic Diseases (ACCDiS), School of Medicine, Pontificia Universidad Catolica de Chile, Marcoleta 377, 7th Floor, 8330024 Santiago, Chile
| | - Richard M. Peek
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University School of Medicine, 2215 Garland Avenue Nashville, 37232 Nashville, TN, USA
| | - Juan Carlos Araya
- Department of Pathology, School of Medicine, Universidad de La Frontera, Avenida Alemania 0458, 4810296 Temuco, Chile
| | - Juan Carlos Roa
- Department of Pathology, UC Centre for Investigational Oncology (CITO), Advanced Centre for Chronic Diseases (ACCDiS), School of Medicine, Pontificia Universidad Catolica de Chile, Marcoleta 377, 7th Floor, 8330024 Santiago, Chile
| |
Collapse
|
9
|
miR-125b Suppresses Proliferation and Invasion by Targeting MCL1 in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:365273. [PMID: 26504803 PMCID: PMC4609369 DOI: 10.1155/2015/365273] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/08/2015] [Accepted: 05/18/2015] [Indexed: 12/01/2022]
Abstract
Understanding the molecular mechanisms underlying gastric cancer progression contributes to the development of novel targeted therapies. In this study, we found that the expression levels of miR-125b were strongly downregulated in gastric cancer and associated with clinical stage and the presence of lymph node metastases. Additionally, miR-125b could independently predict OS and DFS in gastric cancer. We further found that upregulation of miR-125b inhibited the proliferation and metastasis of gastric cancer cells in vitro and in vivo. miR-125b elicits these responses by directly targeting MCL1 (myeloid cell leukemia 1), which results in a marked reduction in MCL1 expression. Transfection of miR-125b sensitizes gastric cancer cells to 5-FU-induced apoptosis. By understanding the function and molecular mechanisms of miR-125b in gastric cancer, we may learn that miR-125b has the therapeutic potential to suppress gastric cancer progression and increase drug sensitivity to gastric cancer.
Collapse
|
10
|
Jiang C, Chen X, Alattar M, Wei J, Liu H. MicroRNAs in tumorigenesis, metastasis, diagnosis and prognosis of gastric cancer. Cancer Gene Ther 2015; 22:291-301. [DOI: 10.1038/cgt.2015.19] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/15/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023]
|
11
|
Tang Y, Liu X, Su B, Zhang Z, Zeng X, Lei Y, Shan J, Wu Y, Tang H, Su Q. microRNA-22 acts as a metastasis suppressor by targeting metadherin in gastric cancer. Mol Med Rep 2014; 11:454-60. [PMID: 25323629 DOI: 10.3892/mmr.2014.2682] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 08/29/2014] [Indexed: 11/06/2022] Open
Abstract
microRNA (miR)-22 has been reported to be downregulated in hepatocellular, lung, colorectal, ovarian and breast cancer, acting as a tumor suppressor. The present study investigated the potential effects of miR-22 on gastric cancer invasion and metastasis and the molecular mechanism. miR-22 expression was examined in tumor tissues of in 89 gastric cancer patients by in situ hybridization (ISH) analysis. Additionally, the association between miR-22 levels and clinicopathological parameters was analyzed. A luciferase assay was conducted for target identification. The ability of invasion and metastasis of gastric cancer cells in vitro and in vivo was evaluated by cell migration and invasion assays and in a xenograft model. The results showed that miR-22 was downregulated in the gastric cancer specimens and significantly correlated with the advanced clinical stage and lymph node metastasis. In addition, metadherin (MTDH) was shown to be a direct target of miR-22 and the expression of MTDH was inversely correlated with miR-22 expression in gastric cancer. Ectopic expression of miR-22 suppressed cell invasion and metastasis in vitro and in vivo. The present study suggested that miR-22 may be a valuable prognostic factor in gastric cancer. miR-22 inhibited gastric cancer cell invasion and metastasis by directly targeting MTDH. The novel miR-22/MTDH link confirmed in the present study provided a novel, potential therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Yunyun Tang
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoping Liu
- Sun Yat‑Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Bo Su
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhiwei Zhang
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xi Zeng
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanping Lei
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Shan
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yongjun Wu
- Cancer Research Institute, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Hengyang, Hunan 421001, P.R. China
| | - Hailin Tang
- Sun Yat‑Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Qi Su
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
12
|
Song F, Yang D, Liu B, Guo Y, Zheng H, Li L, Wang T, Yu J, Zhao Y, Niu R, Liang H, Winkler H, Zhang W, Hao X, Chen K. Integrated microRNA network analyses identify a poor-prognosis subtype of gastric cancer characterized by the miR-200 family. Clin Cancer Res 2013; 20:878-89. [PMID: 24352645 DOI: 10.1158/1078-0432.ccr-13-1844] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Our aim was to investigate whether microRNAs can predict the clinical outcome of patients with gastric cancer. We used integrated analysis of microRNA and mRNA expression profiles to identify gastric cancer microRNA subtypes and their underlying regulatory scenarios. EXPERIMENTAL DESIGN MicroRNA-based gastric cancer subtypes were identified by consensus clustering analysis of microRNA profiles of 90 gastric cancer tissues. Activated pathways in the subtypes were identified by gene expression profiles. Further integrated analysis was conducted to model a microRNA regulatory network for each subtype. RNA and protein expression were analyzed by RT-PCR and tissue microarray, respectively, in a cohort of 385 gastric cancer cases (including the 90 cases for profiling) to validate the key microRNAs and targets in the network. Both in vitro and in vivo experiments were carried out to further validate the findings. RESULTS MicroRNA profiles of 90 gastric cancer cases identified two microRNA subtypes significantly associated with survival. The poor-prognosis gastric cancer microRNA subtype was characterized by overexpression of epithelial-to-mesenchymal transition (EMT) markers. This gastric cancer "mesenchymal subtype" was further validated in a patient cohort comprising 385 cases. Integrated analysis identified a key microRNA regulatory network likely driving the gastric cancer mesenchymal subtype. Three of the microRNAs (miR-200c, miR-200b, and miR-125b) targeting the most genes in the network were significantly associated with survival. Functional experiments demonstrated that miR-200b suppressed ZEB1, augmented E-cadherin, inhibited cell migration, and suppressed tumor growth in a mouse model. CONCLUSIONS We have uncovered a key microRNA regulatory network that defines the mesenchymal gastric cancer subtype significantly associated with poor overall survival in gastric cancer.
Collapse
Affiliation(s)
- Fengju Song
- Authors' Affiliations: Departments of Epidemiology and Biostatistics, Immunology, and Gastric Cancer, TMUCIH-J&J Joint Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital; Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, PR China; Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; and Janssen Research and Development, a Division of Janssen Pharmaceutica, Beerse, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|