1
|
Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:49. [PMID: 37264452 PMCID: PMC10234254 DOI: 10.1186/s13223-023-00797-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
The effects of nicotine and cigarette smoke in many diseases, notably COVID-19 infection, are being debated more frequently. The current basic data for COVID-19 is increasing and indicating the higher risk of COVID-19 infections in smokers due to the overexpression of corresponding host receptors to viral entry. However, current multi-national epidemiological reports indicate a lower incidence of COVID-19 disease in smokers. Current data indicates that smokers are more susceptible to some diseases and more protective of some other. Interestingly, nicotine is also reported to play a dual role, being both inflammatory and anti-inflammatory. In the present study, we tried to investigate the effect of pure nicotine on various cells involved in COVID-19 infection. We followed an organ-based systematic approach to decipher the effect of nicotine in damaged organs corresponding to COVID-19 pathogenesis (12 related diseases). Considering that the effects of nicotine and cigarette smoke are different from each other, it is necessary to be careful in generalizing the effects of nicotine and cigarette to each other in the conducted researches. The generalization and the undifferentiation of nicotine from smoke is a significant bias. Moreover, different doses of nicotine stimulate different effects (dose-dependent response). In addition to further assessing the role of nicotine in COVID-19 infection and any other cases, a clever assessment of underlying diseases should also be considered to achieve a guideline for health providers and a personalized approach to treatment.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Liu J, Li JX, Wu R. Toll-Like Receptor 4: A Novel Target to Tackle Drug Addiction? Handb Exp Pharmacol 2022; 276:275-290. [PMID: 35434747 PMCID: PMC9829382 DOI: 10.1007/164_2022_586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Drug addiction is a chronic brain disease characterized by compulsive drug-seeking and drug-taking behaviors despite the major negative consequences. Current well-established neuronal underpinnings of drug addiction have promoted the substantial progress in understanding this disorder. However, non-neuronal mechanisms of drug addiction have long been underestimated. Fortunately, increased evidence indicates that neuroimmune system, especially Toll-like receptor 4 (TLR4) signaling, plays an important role in the different stages of drug addiction. Drugs like opioids, psychostimulants, and alcohol activate TLR4 signaling and enhance the proinflammatory response, which is associated with drug reward-related behaviors. While extensive studies have shown that inhibition of TLR4 attenuated drug-related responses, there are conflicting findings implicating that TLR4 signaling may not be essential to drug addiction. In this chapter, preclinical and clinical studies will be discussed to further evaluate whether TLR4-based neuroimmune pharmacotherapy can be used to treat drug addiction. Furthermore, the possible mechanisms underlying the effects of TLR4 inhibition in modulating drug-related behaviors will also be discussed.
Collapse
Affiliation(s)
- Jianfeng Liu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA,Corresponding authors: Dr. Jun-Xu Li, , Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14214. Tel: +1 716 829 2482; Fax: +1 716 829 2801 And Dr. Ruyan Wu, , School of Medicine, Yangzhou University, Yangzhou 225000, China
| | - Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA,School of Medicine, Yangzhou University, Yangzhou, China,Corresponding authors: Dr. Jun-Xu Li, , Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14214. Tel: +1 716 829 2482; Fax: +1 716 829 2801 And Dr. Ruyan Wu, , School of Medicine, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
3
|
Lu J, Wu W. Cholinergic modulation of the immune system - A novel therapeutic target for myocardial inflammation. Int Immunopharmacol 2021; 93:107391. [PMID: 33548577 DOI: 10.1016/j.intimp.2021.107391] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
The immune system and the nervous system depend on each other for their fine tuning and working, thus cooperating to maintain physiological homeostasis and prevent infections. The cholinergic system regulates the mobilization, differentiation, secretion, and antigen presentation of adaptive and innate immune cells mainly through α7 nicotinic acetylcholine receptors (α7nAChRs). The neuro-immune interactions are established and maintained by the following mechanisms: colocalization of immune and neuronal cells at defined anatomical sites, expression of the non-neuronal cholinergic system by immune cells, and the acetylcholine receptor-mediated activation of intracellular signaling pathways. Based on these immunological mechanisms, the protective effects of cholinergic system in animal models of diseases were summarized in this paper, such as myocardial infarction/ischemia-reperfusion, viral myocarditis, and endotoxin-induced myocardial damage. In addition to maintaining hemodynamic stability and improving the energy metabolism of the heart, both non-neuronal acetylcholine and neuronal acetylcholine in the heart can alleviate myocardial inflammation and remodeling to exert a significant cardioprotective effect. The new findings on the role of cholinergic agonists and vagus nerve stimulation in immune regulation are updated, so as to develop improved approaches to treat inflammatory heart disease.
Collapse
Affiliation(s)
- Jing Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| | - Weifeng Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Shuangyong Road 22, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
4
|
Siniavin AE, Streltsova MA, Kudryavtsev DS, Shelukhina IV, Utkin YN, Tsetlin VI. Activation of α7 Nicotinic Acetylcholine Receptor Upregulates HLA-DR and Macrophage Receptors: Potential Role in Adaptive Immunity and in Preventing Immunosuppression. Biomolecules 2020; 10:E507. [PMID: 32230846 PMCID: PMC7225944 DOI: 10.3390/biom10040507] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Immune response during sepsis is characterized by hyper-inflammation followed by immunosuppression. The crucial role of macrophages is well-known for both septic stages, since they are involved in immune homeostasis and inflammation, their dysfunction being implicated in immunosuppression. The cholinergic anti-inflammatory pathway mediated by macrophage α7 nicotinic acetylcholine receptor (nAChR) represents possible drug target. Although α7 nAChR activation on macrophages reduces the production of proinflammatory cytokines, the role of these receptors in immunological changes at the cellular level is not fully understood. Using α7 nAChR selective agonist PNU 282,987, we investigated the influence of α7 nAChR activation on the expression of cytokines and, for the first time, of the macrophage membrane markers: cluster of differentiation 14 (CD14), human leukocyte antigen-DR (HLA-DR), CD11b, and CD54. Application of PNU 282,987 to THP-1Mϕ (THP-1 derived macrophages) cells led to inward ion currents and Ca2+ increase in cytoplasm showing the presence of functionally active α7 nAChR. Production of cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 was estimated in classically activated macrophages (M1) and treatment with PNU 282,987 diminished IL-10 expression. α7 nAChR activation on THP-1Mϕ, THP-1M1, and monocyte-derived macrophages (MDMs) increased the expression of HLA-DR, CD54, and CD11b molecules, but decreased CD14 receptor expression, these effects being blocked by alpha (α)-bungarotoxin. Thus, PNU 282,987 enhances the macrophage-mediated immunity via α7 nAChR by regulating expression of their membrane receptors and of cytokines, both playing an important role in preventing immunosuppressive states.
Collapse
Affiliation(s)
- Andrei E. Siniavin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.S.K.); (I.V.S.); (Y.N.U.); (V.I.T.)
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Maria A. Streltsova
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Denis S. Kudryavtsev
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.S.K.); (I.V.S.); (Y.N.U.); (V.I.T.)
| | - Irina V. Shelukhina
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.S.K.); (I.V.S.); (Y.N.U.); (V.I.T.)
| | - Yuri N. Utkin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.S.K.); (I.V.S.); (Y.N.U.); (V.I.T.)
| | - Victor I. Tsetlin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.S.K.); (I.V.S.); (Y.N.U.); (V.I.T.)
- Institute of Engineering Physics for Biomedicine, National Research Nuclear University, Moscow 115409, Russia
| |
Collapse
|
5
|
Liu J, Zhong X, He Z, Zhang J, Bai J, Liu G, Liang Y, Ya L, Qin X. Erythromycin Suppresses the Cigarette Smoke Extract-Exposed Dendritic Cell-Mediated Polarization of CD4 + T Cells into Th17 Cells. J Immunol Res 2020; 2020:1387952. [PMID: 32411785 PMCID: PMC7201779 DOI: 10.1155/2020/1387952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 11/18/2022] Open
Abstract
Cigarette smoke is a major effector of chronic obstructive pulmonary disease (COPD), and Th17 cells and dendritic cells (DCs) involve in the pathogenesis of COPD. Previous studies have demonstrated the anti-inflammatory effects of macrolides. However, the effects of macrolides on the cigarette smoke extract- (CSE-) induced immune response are unclear. Accordingly, in this study, we evaluated the effects of erythromycin (EM) on CSE-exposed DCs polarizing naïve CD4+ T cells into Th17 cells. DCs were generated from bone marrow-derived mononuclear cells isolated from male BALB/c mice and divided into five groups: control DC group, CSE-exposed DC group, CD40-antibody-blocked CSE-exposed DC group, and EM-treated CSE-exposed DC group. The function of polarizing CD4+ T cells into Th17 cells induced by all four groups of DCs was assayed based on the mixed lymphocyte reaction (MLR) of naïve CD4+ T cells. CD40 expression in DCs in the CSE-exposed group increased significantly compared with that in the control group (P < 0.05). The Th17 cells in the CSE-exposed DC/MLR group increased significantly compared with those in the control DC/MLR group (P < 0.05). Moreover, Th17 cells in the CD40-blocked CSE-exposed DC/MLR group and EM-treated CSE-exposed DC/MLR group were reduced compared with those in the CSE-exposed DC/MLR group (P < 0.05). Thus, these findings suggested that EM suppressed the CSE-exposed DC-mediated polarization of CD4+ T cells into Th17 cells and that this effect may be mediated through inhibition of the CD40/CD40L pathway.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaoning Zhong
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhiyi He
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jianquan Zhang
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jing Bai
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Guangnan Liu
- Department of Respiratory Disease, Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China
| | - Yi Liang
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Leilei Ya
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xianglin Qin
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
6
|
Pesti K, Lukacs P, Mike A. Type I-like behavior of the type II α7 nicotinic acetylcholine receptor positive allosteric modulator A-867744. PeerJ 2019; 7:e7542. [PMID: 31534841 PMCID: PMC6727837 DOI: 10.7717/peerj.7542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/24/2019] [Indexed: 11/24/2022] Open
Abstract
Cognitive impairment often involves the decreased expression or hypofunction of alpha 7-type nicotinic acetylcholine receptors (α7 nAChRs). Agonists or positive allosteric modulators (PAMs) of α7 nAChRs are known to be potential treatments for dementias, different neurodegenerative disorders, pain syndromes and conditions involving inflammation. In some of these conditions, it is desirable to maintain the temporal precision of fast cholinergic events, while in others, this temporal precision is unnecessary. For this reason, the optimal therapeutic effect for distinct indications may require PAMs with different mechanisms of action. The two major mechanisms are called “type I”, which are compounds that augment α7 nAChR-mediated currents but maintain their characteristic fast kinetics; and “type II”, which are compounds that produce augmented and prolonged currents. In this study, we performed a kinetic analysis of two type II PAMs of the α7 nAChR: PNU-120596 and A-867744, using a fast perfusion method that allowed high temporal resolution. We characterized the type of modulation produced by the two compounds, the state-dependence of the modulatory action, and the interaction between the two compounds. We found fundamental differences between the modulation mechanisms by PNU-120596 and A-867744. Most importantly, during brief agonist pulses, A-867744 caused a strikingly type I-like modulation, while PNU-120596 caused a type II-like prolonged activation. Our results demonstrate that specific compounds, even though all labeled as type II PAMs, can behave in completely different ways, including their onset and offset kinetics, state preference, and single channel open time. Our results emphasize that subtle details of the mechanism of action may be significant in assessing the therapeutic applicability of α7 nAChR PAM compounds.
Collapse
Affiliation(s)
- Krisztina Pesti
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Eötvös Loránd University, Budapest, Hungary.,Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.,School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Peter Lukacs
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Arpad Mike
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Eötvös Loránd University, Budapest, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
7
|
PYR-41 and Thalidomide Impair Dendritic Cell Cross-Presentation by Inhibiting Myddosome Formation and Attenuating the Endosomal Recruitments of p97 and Sec61 via NF- κB Inactivation. J Immunol Res 2018; 2018:5070573. [PMID: 30069488 PMCID: PMC6057288 DOI: 10.1155/2018/5070573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/01/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022] Open
Abstract
PYR-41 and thalidomide have therapeutic effects on inflammation-associated diseases with side effects such as tumorigenesis. Cross-presentation allows dendritic cells (DC) to present endogenous antigen and induce protective immunity against microbe infection and tumors. But, up to now, the effects of PYR-41 and thalidomide on cross-presentation are still uncertain. In this study, we investigated the effect and mechanism of PYR-41 and thalidomide on DC cross-presentation by observing Myddosome formation, endosomal recruitment of p97 and Sec61, NF-κB activation, and cross-priming ability. We demonstrated that the inhibition of endosomal recruitment of p97 and Sec61, together with attenuated NF-κB activation and Myddosome formation, contributes to PYR-41- and thalidomide-impaired cross-presentation and thereby reverses cross-activation of T cells. These observations suggest that NF-κB signaling and p97 and Sec61 molecules are candidates for dealing with the side effects of PYR-41 and thalidomide.
Collapse
|
8
|
Sui HX, Ke SZ, Xu DD, Lu NN, Wang YN, Zhang YH, Gao FG. Nicotine induces TIPE2 upregulation and Stat3 phosphorylation contributes to cholinergic anti-inflammatory effect. Int J Oncol 2017; 51:987-995. [PMID: 28766689 DOI: 10.3892/ijo.2017.4080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 11/06/2022] Open
Abstract
Cholinergic anti-inflammatory pathway has therapeutic effect on inflammation-associated diseases. However, the exact mechanism of nicotine-mediated anti-inflammatory effect is still unclear. TIPE2, a new member of tumor necrosis factor-α-induced protein-8 family, is a negative regulator of immune homeostasis. However, the roles of TIPE2 in cholinergic anti-inflammatory effect are still uncertain. Here, we demonstrated that nicotine exerts its anti-inflammatory effect by TIPE2 upregulation and phosphorylated stat3 mediated the inhibition of NF-κB activation, which was supported by the following evidence: firstly, both nicotine and TIPE2 inhibit pro-inflammatory cytokine release via NF-κB inactivation. Secondly, nicotine upregulates TIPE2 expression via α7 nicotinic acetylcholine receptor. Moreover, the enhancement of stat3 phosphorylation and decrease of LPS-induced p65 translocation were achieved by nicotine treatment. Importantly, nicotine treatment augments the interaction of phosphorylated stat3 and p65, indicating that the inhibitory effect of nicotine on NF-κB activation was mediated with protein-protein interactions. Hence, this study revealed that TIPE2 upregulation and stat3 phosphorylation contribute to nicotine-mediated anti-inflammation effect, indicating that TIPE2 and stat3 might be potential molecules for dealing with inflammation-associated diseases.
Collapse
Affiliation(s)
- Hua Xiu Sui
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Shi Zhong Ke
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Dan Dan Xu
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Nan Nan Lu
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yi Nan Wang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yue Hua Zhang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Feng Guang Gao
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
9
|
Zerdazi EH, Oliveira J, Vorspan F, Bennabi M, Jamain S, Etain B, Leboyer M, Tamouza R, Bellivier F. TLR4 gene polymorphism associated with lifetime cigarette smoking in bipolar disorder. J Neuroimmunol 2017; 305:96-101. [PMID: 28284355 DOI: 10.1016/j.jneuroim.2017.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
|
10
|
Wang YY, Hu CF, Li J, You X, Gao FG. Increased translocation of antigens to endosomes and TLR4 mediated endosomal recruitment of TAP contribute to nicotine augmented cross-presentation. Oncotarget 2016; 7:38451-38466. [PMID: 27224911 PMCID: PMC5122403 DOI: 10.18632/oncotarget.9498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/02/2016] [Indexed: 01/07/2023] Open
Abstract
Cross-presentation by dendritic cells (DCs) requires surface molecules such as lectin, CD40, langerin, heat shock protein, mannose receptor, mediated endocytosis, the endosomal translocation of internalized antigen, and the relocation of transporter associated with antigen processing (TAP). Although the activation of α7 nicotinic acetylcholine receptor (α7 nAchR) up-regulate surface molecule expression, augment endocytosis, and enhance cross-presentation, the molecular mechanism of α7 nAchR activation-increased cross-presentation is still poorly understood. In this study, we investigated the role of mannose receptor in nicotine-increased cross-presentation and the mechanism that endotoxins orchestrating the recruitment of TAP toward endosomes. We demonstrated that nicotine increase the expressiones of mannose receptor and Toll-like receptor 4 (TLR4) via PI3K-Akt-mTOR-p70S6 pathway. Both endosomal translocation of mannose receptor-internalized antigens and TLR4 sig- naling are necessary for nicotine-augmented cross-presentation and cross-priming. Importantly, the recruitment of TAP toward endosomes via TLR4-MyD88-IRAK4 signaling contributes to nicotine-increased cross-presentation and cross-activation of T cells. Thus, these data suggest that increased recruitment of TAP to Ag-containing vesicles contributes to the superior cross-presentation efficacy of α7 nAchR activated DCs.
Collapse
Affiliation(s)
- Yan Yan Wang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, People's Republic of China
| | - Chun Fang Hu
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, People's Republic of China
| | - Juan Li
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, People's Republic of China
| | - Xiang You
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, People's Republic of China
| | - Feng Guang Gao
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Shang Hai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Ex vivo nicotine stimulation augments the efficacy of human peripheral blood mononuclear cell-derived dendritic cell vaccination via activating Akt-S6 pathway. Anal Cell Pathol (Amst) 2015; 2015:741487. [PMID: 26351626 PMCID: PMC4550800 DOI: 10.1155/2015/741487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/10/2015] [Accepted: 06/18/2015] [Indexed: 01/12/2023] Open
Abstract
Our previous studies showed that α7 nicotinic acetylcholine receptor (nAchR) agonist nicotine has stimulatory effects on murine bone marrow-derived semimature DCs, but the effect of nicotine on peripheral blood mononuclear cell- (PBMC-) derived human semimature dendritic cells (hu-imDCs) is still to be clarified. In the present study, hu-imDCs (cultured 4 days) were conferred with ex vivo lower dose nicotine stimulation and the effect of nicotine on surface molecules expression, the ability of cross-presentation, DCs-mediated PBMC priming, and activated signaling pathways were determined. We could demonstrate that the treatment with nicotine resulted in increased surface molecules expression, enhanced hu-imDCs-mediated PBMC proliferation, upregulated release of IL-12 in the supernatant of cocultured DCs-PBMC, and augmented phosphorylation of Akt and ribosomal protein S6. Nicotine associated with traces of LPS efficiently enhanced endosomal translocation of internalized ovalbumin (OVA) and increased TAP-OVA colocalization. Importantly, the upregulation of nicotine-increased surface molecules upregulation was significantly abrogated by the inhibition of Akt kinase. These findings demonstrate that ex vivo nicotine stimulation augments hu-imDCs surface molecules expression via Akt-S6 pathway, combined with increased Ag-presentation result in augmented efficacy of DCs-mediated PBMC proliferation and Th1 polarization.
Collapse
|
12
|
Wang F, Wang YY, Li J, You X, Qiu XH, Wang YN, Gao FG. Increased antigen presentation but impaired T cells priming after upregulation of interferon-beta induced by lipopolysaccharides is mediated by upregulation of B7H1 and GITRL. PLoS One 2014; 9:e105636. [PMID: 25144375 PMCID: PMC4140801 DOI: 10.1371/journal.pone.0105636] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/25/2014] [Indexed: 01/09/2023] Open
Abstract
Dendritic cells are able to present Ag-derived peptides on MHC class I and II molecules and induce T cells priming. Lipopolysaccharides (LPS), an activator of Toll-like 4 receptor (TLR4) signaling, has been demonstrated to facilitate Ag-presentation, up-regulate surface molecules expression but impair T cells priming. In this study, we investigated the effect of LPS on nicotine-enhanced DCs-dependent T cells priming and the mechanisms of LPS orchestrating the immunosuppressive program. We could demonstrate that the treatment with LPS resulted in increased surface molecules expression, enhanced Ag-presentation, up-regulated release of TGF-beta, TNF-alpha, IL-6, and IFN-beta. Concomititantly, the upregulation of IFN-beta in DCs induces the up-regulation of coinhibitory molecules B7H1 and GITRL, which cause an impaired activation of naïve Ag-specific T cells and the induction of T cell tolerance by enhancing B7H1-PD-1 interactions and promoting GITRL-GITL facilitated Treg generation, respectively. These data provide a mechanistic basis for the immunomodulatory action of IFN-beta which might open new possibilities in the development of therapeutic approaches aimed at the control of excessive immune response and persistent infection.
Collapse
Affiliation(s)
- Fang Wang
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
- Department of Basic Medicine Science, NanYang Medical College, Nanyang, China
| | - Yan Yan Wang
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
| | - Juan Li
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
| | - Xiang You
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
| | - Xin Hui Qiu
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
| | - Yi Nan Wang
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
| | - Feng Guang Gao
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
13
|
XUE MAOQIANG, LIU XIAOXING, ZHANG YANLING, GAO FENGGUANG. Nicotine exerts neuroprotective effects against β-amyloid-induced neurotoxicity in SH-SY5Y cells through the Erk1/2-p38-JNK-dependent signaling pathway. Int J Mol Med 2014; 33:925-33. [DOI: 10.3892/ijmm.2014.1632] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/13/2014] [Indexed: 11/06/2022] Open
|
14
|
Wang YY, Liu Y, Ni XY, Bai ZH, Chen QY, Zhang Y, Gao FG. Nicotine promotes cell proliferation and induces resistance to cisplatin by α7 nicotinic acetylcholine receptor‑mediated activation in Raw264.7 and El4 cells. Oncol Rep 2013; 31:1480-8. [PMID: 24399025 DOI: 10.3892/or.2013.2962] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/19/2013] [Indexed: 11/05/2022] Open
Abstract
Although nicotine is a risk factor for carcinogenesis and atherosclerosis, epidemiological data indicate that nicotine has therapeutic benefits in treating Alzheimer's disease. Our previous studies also showed that nicotine-treated dendritic cells have potential antitumor effects. Hence, the precise effects of nicotine on the biological characterizations of cells are controversial. The aim of the present study was to assess the roles of α7 nicotinic acetylcholine receptors (nAChRs), Erk1/2-p38-JNK and PI3K-Akt pathway in nicotine-mediated proliferation and anti-apoptosis effects. The results firstly showed that nicotine treatment clearly augmented cell viability and upregulated PCNA expression in both Raw264.7 and El4 cells. Meanwhile, nicotine afforded protection against cisplatin-induced toxicity through inhibiting caspase-3 activation and upregulating anti-apoptotic protein expression. Further exploration demonstrated that nicotine efficiently abolished cisplatin-promoted mitochondria translocation of Bax and the release of cytochrome c. The pretreatment of α-bungarotoxin and tubocurarine chloride significantly attenuated nicotine-augmented cell viability, abolished caspase-3 activation and α7 nAChR upregulation. Both Erk-JNK-p38 and PI3K-Akt signaling pathways could be activated by nicotine treatment in Raw264.7 and El4 cells. Notably, when Erk-JNK and PI3K-Akt activities were inhibited, nicotine-augmented cell proliferation and anti-apoptotic effects were abolished accordingly. The results presented here indicate that nicotine could achieve α7 nAChR-mediated proliferation and anti-apoptotic effects by activating Erk-JNK and PI3K-Akt pathways respectively, providing potential therapeutic molecules to deal with smoking-associated human diseases.
Collapse
Affiliation(s)
- Yan Yan Wang
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yao Liu
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Xiao Yan Ni
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Zhen Huan Bai
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Qiong Yun Chen
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Ye Zhang
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Feng Guang Gao
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
15
|
KE SHIZHONG, NI XIAOYAN, ZHANG YUEHUA, WANG YINAN, WU BIN, GAO FENGGUANG. Camptothecin and cisplatin upregulate ABCG2 and MRP2 expression by activating the ATM/NF-κB pathway in lung cancer cells. Int J Oncol 2013; 42:1289-96. [DOI: 10.3892/ijo.2013.1805] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 01/04/2013] [Indexed: 11/06/2022] Open
|
16
|
Nicotine up-regulated 4-1BBL expression by activating Mek-PI3K pathway augments the efficacy of bone marrow-derived dendritic cell vaccination. J Clin Immunol 2012; 33:246-54. [PMID: 22898831 DOI: 10.1007/s10875-012-9761-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 08/01/2012] [Indexed: 02/07/2023]
Abstract
PURPOSE To explore the role of 4-1BBL in nicotine-treated immature dendritic cells (imDCs) mediated anti-tumor effects. METHODS Bone marrow-derived imDCs were stimulated with nicotine and 4-1BBL expression was determinated by flow cytometry, Western blot and RT-PCR respectively. Then, the roles of 4-1BBL in nicotine-augmented DCs-dependent T cell proliferation, CTL priming and anti-tumor effects were investigated by BrdU cell proliferation assay, enzyme-linked immunospot assay and in vivo preventive effect on tumor development, respectively. Finally, using relative kinase inhibitors, the mechanism of 4-1BBL up-regulation by nicotine stimulation and the roles of Mek-PI3K signal pathways in nicotine-augmented DCs-dependent T cell proliferation were explored by Western blot and BrdU cell proliferation assay, respectively. RESULTS Firstly, nicotine could up-regulate 4-1BBL expression in both protein and mRNA levels. Secondly, the effects of nicotine-augmented DCs-dependent T-cell proliferation, CTL priming and anti-tumor effects could be significantly abolished by blocking CD80, CD86 and 4-1BBL activity, respectively. Thirdly, the combined blockages of CD80/CD86, CD80/4-1BBL, CD86/4-1BBL or CD80/CD86/4-1BBL signals could decrease 53.2 %, 29.6 %, 27.9 % and 54.5 % nicotine-enhanced T cell proliferation, respectively. Importantly, nicotine-induced 4-1BBL up-regulation could be decreased by the usage of Mek-PI3K pathway kinase inhibitors. The pre-treatment of Mek-p38-PI3K kinase inhibitors could obviously abolish nicotine-augmented DCs-dependent T cell proliferation. CONCLUSIONS CD80/CD86 and 4-1BBL are critical for nicotine augmented DCs-mediated anti-tumor effects. 4-1BBL and CD80/CD86 could be considered as potential candidates for preventive and therapeutic tumor vaccination.
Collapse
|
17
|
Lutz MB. Therapeutic potential of semi-mature dendritic cells for tolerance induction. Front Immunol 2012; 3:123. [PMID: 22629255 PMCID: PMC3355325 DOI: 10.3389/fimmu.2012.00123] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/30/2012] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) are major players in the control of adaptive tolerance and immunity. Therefore, their specific generation and adoptive transfer into patients or their in vivo targeting is attractive for clinical applications. While injections of mature immunogenic DCs are tested in clinical trials, tolerogenic DCs still are awaiting this step. Besides the tolerogenic potential of immature DCs, also semi-mature DCs can show tolerogenic activity but both types also bear unfavorable features. Optimal tolerogenic DCs, their molecular tool bar, and their use for specific diseases still have to be defined. Here, the usefulness of in vitro generated and adoptively transferred semi-mature DCs for tolerance induction is outlined. The in vivo targeting of semi-mature DCs as represented by steady state migratory DCs are discussed for treatment of autoimmune diseases and allergies. First clinical trials with transcutaneous allergen application may point to their therapeutic use in the future.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute of Virology and Immunobiology, University of Wuerzburg Wuerzburg, Germany
| |
Collapse
|