1
|
Zhang Y, Zhang R, Li C, Peng G. Exploring the causal association between fatty acid-binding proteins and anaphylactic shock due to adverse reactions to medications: A two-sample Mendelian randomization study. Medicine (Baltimore) 2025; 104:e42171. [PMID: 40324257 PMCID: PMC12055110 DOI: 10.1097/md.0000000000042171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 05/07/2025] Open
Abstract
Previous studies have identified a relationship between fatty acid-binding proteins (FABPs) and immune diseases. This study aimed to investigate whether a causal relationship exists between FABPs and anaphylactic shock resulting from adverse drug reactions. Single nucleotide polymorphisms associated with FABPs were utilized as instrumental variables, sourced from the National Human Genome Research Institute-European Bioinformatics Institute Catalog of human genome-wide association studies. Data on anaphylactic shock due to adverse effects of correctly administered drugs were obtained from the FinnGen database, which includes genomic and health data from 500,000 Finnish biobank donors. A two-sample Mendelian randomization analysis was conducted to explore the causality between FABPs and anaphylactic shock due to adverse drug reactions. The analysis revealed a negative causal relationship between FABP5 (odds ratio [OR] = 0.40; 95% confidence interval [CI] = 0.17-0.92; P = .032) and FABP12 (OR = 0.77; 95% CI = 0.63-0.94; P = .009) and anaphylactic shock due to adverse drug reactions. These findings were corroborated by Mendelian randomization-Egger, weighted median, and weighted mode methods. This study provides robust evidence supporting a protective relationship between FABP5 and FABP12 and anaphylactic shock due to adverse drug reactions. Further experimental studies are warranted to elucidate the causal mechanisms and associations between FABP5, FABP12, and anaphylactic shock in the context of adverse drug reactions.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing, China
| | - Rusheng Zhang
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Cunyu Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing, China
| | - Guoping Peng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing, China
| |
Collapse
|
2
|
Ren X, Jin C, Li Q, Fu C, Fang Y, Xu Z, Liang Z, Wang T. Fatty acid binding proteins-mediated mitochondrial dysfunction in the development of age-related diseases: A review. Int J Biol Macromol 2025; 309:142913. [PMID: 40203912 DOI: 10.1016/j.ijbiomac.2025.142913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Fatty acid-binding proteins (FABPs) act as lipid chaperones and play a role in the pathological processes of various lipid signaling pathways. Mitochondria are crucial for the regulation of lipid metabolism. As an aging marker, lipid-mediated mitochondrial dysfunction has been observed in the etiology of numerous diseases, including neurodegenerative diseases, metabolic syndromes, cardiovascular diseases, and tumorigenesis. Members of the FABP family have been identified to regulate mitochondrial function. Targeting FABPs specifically may provide a promising approach to improve mitochondrial function and treat age-related diseases. This review summarizes the connection between FABPs and mitochondrial function and highlights certain FABPs involved in age-related diseases that hold significant therapeutic promise.
Collapse
Affiliation(s)
- Xingxing Ren
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Chaoyuan Jin
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qilin Li
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Congyi Fu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Yu Fang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Zihang Xu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Zi Liang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Tianshi Wang
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201207, China.
| |
Collapse
|
3
|
Beusch CM, Braesch-Andersen K, Felldin U, Sabatier P, Widgren A, Bergquist J, Grinnemo KH, Rodin S. A multi-tissue longitudinal proteomics study to evaluate the suitability of post-mortem samples for pathophysiological research. Commun Biol 2025; 8:78. [PMID: 39824970 PMCID: PMC11742016 DOI: 10.1038/s42003-025-07515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025] Open
Abstract
Recent developments in mass spectrometry-based proteomics have established it as a robust tool for system-wide analyses essential for pathophysiological research. While post-mortem samples are a critical source for these studies, our understanding of how body decomposition influences the proteome remains limited. Here, we have revisited published data and conducted a clinically relevant time-course experiment in mice, revealing organ-specific proteome regulation after death, with only a fraction of these changes linked to protein autolysis. The liver and spleen exhibit significant proteomic alterations within hours post-mortem, whereas the heart displays only modest changes. Additionally, subcellular compartmentalization leads to an unexpected surge in proteome alterations at the earliest post-mortem interval (PMI). Additionally, we have conducted a comprehensive analysis of semi-tryptic peptides, revealing distinct consensus motifs for different organs, indicating organ-specific post-mortem protease activity. In conclusion, our findings emphasize the critical importance of considering PMI effects when designing proteomics studies, as these effects may significantly overshadow the impacts of diseases. Preferably, the samples should be taken in the operation room, especially for studies including subcellular compartmentalization or trans-organ comparison. In single-organ studies, the planning should involve careful control of PMI.
Collapse
Affiliation(s)
- Christian M Beusch
- Cardio-Thoracic Translational Medicine (CTTM) Lab, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Ken Braesch-Andersen
- Cardio-Thoracic Translational Medicine (CTTM) Lab, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Ulrika Felldin
- Cardio-Thoracic Translational Medicine (CTTM) Lab, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Pierre Sabatier
- Cardio-Thoracic Translational Medicine (CTTM) Lab, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Anna Widgren
- Department of Chemistry - BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Karl-Henrik Grinnemo
- Cardio-Thoracic Translational Medicine (CTTM) Lab, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Cardio-Thoracic Surgery and Anesthesiology, Uppsala University Hospital, Uppsala, Sweden
| | - Sergey Rodin
- Cardio-Thoracic Translational Medicine (CTTM) Lab, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
- Department of Cardio-Thoracic Surgery and Anesthesiology, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
4
|
Warren WG, Osborn M, Duffy P, Yates A, O'Sullivan SE. Potential safety implications of fatty acid-binding protein inhibition. Toxicol Appl Pharmacol 2024; 491:117079. [PMID: 39218163 DOI: 10.1016/j.taap.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Fatty acid-binding proteins (FABPs) are small intracellular proteins that regulate fatty acid metabolism, transport, and signalling. There are ten known human isoforms, many of which are upregulated and involved in clinical pathologies. As such, FABP inhibition may be beneficial in disease states such as cancer, and those involving the cardiovascular system, metabolism, immunity, and cognition. Recently, a potent, selective FABP5 inhibitor (ART26.12), with 90-fold selectivity to FABP3 and 20-fold selectivity to FABP7, was found to be remarkably benign, with a no-observed-adverse-effect level of 1000 mg/kg in rats and dogs, showing no genotoxicity, cardiovascular, central, or respiratory toxicity. To understand the potential implication of FABP inhibition more fully, this review systematically assessed literature investigating genetic knockout, knockdown, and pharmacological inhibition of FABP3, FABP4, FABP5, or FABP7. Analysis of the literature revealed that animals bred not to express FABPs showed the most biological effects, suggesting key roles of these proteins during development. FABP ablation sometimes exacerbated symptoms of disease models, particularly those linked to metabolism, inflammatory and immune responses, cardiac contractility, neurogenesis, and cognition. However, FABP inhibition (genetic silencing or pharmacological) had a positive effect in many more disease conditions. Several polymorphisms of each FABP gene have also been linked to pathological conditions, but it was unclear how several polymorphisms affected protein function. Overall, analysis of the literature to date suggests that pharmacological inhibition of FABPs in adults is of low risk.
Collapse
Affiliation(s)
- William G Warren
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom.
| | - Myles Osborn
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Paul Duffy
- Apconix Ltd., Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Andrew Yates
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | | |
Collapse
|
5
|
Bell I, Khan H, Stutt N, Horn M, Hydzik T, Lum W, Rea V, Clapham E, Hoeg L, Van Raay TJ. Nkd1 functions downstream of Axin2 to attenuate Wnt signaling. Mol Biol Cell 2024; 35:ar93. [PMID: 38656801 PMCID: PMC11244159 DOI: 10.1091/mbc.e24-02-0059-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Wnt signaling is a crucial developmental pathway involved in early development as well as stem-cell maintenance in adults and its misregulation leads to numerous diseases. Thus, understanding the regulation of this pathway becomes vitally important. Axin2 and Nkd1 are widely utilized negative feedback regulators in Wnt signaling where Axin2 functions to destabilize cytoplasmic β-catenin, and Nkd1 functions to inhibit the nuclear localization of β-catenin. Here, we set out to further understand how Axin2 and Nkd1 regulate Wnt signaling by creating axin2gh1/gh1, nkd1gh2/gh2 single mutants and axin2gh1/gh1;nkd1gh2/gh2 double mutant zebrafish using sgRNA/Cas9. All three Wnt regulator mutants were viable and had impaired heart looping, neuromast migration defects, and behavior abnormalities in common, but there were no signs of synergy in the axin2gh1/gh1;nkd1gh2/gh2 double mutants. Further, Wnt target gene expression by qRT-PCR and RNA-seq, and protein expression by mass spectrometry demonstrated that the double axin2gh1/gh1;nkd1gh2/gh2 mutant resembled the nkd1gh2/gh2 phenotype demonstrating that Nkd1 functions downstream of Axin2. In support of this, the data further demonstrates that Axin2 uniquely alters the properties of β-catenin-dependent transcription having novel readouts of Wnt activity compared with nkd1gh2/gh2 or the axin2gh1/gh1;nkd1gh2/gh2 double mutant. We also investigated the sensitivity of the Wnt regulator mutants to exacerbated Wnt signaling, where the single mutants displayed characteristic heightened Wnt sensitivity, resulting in an eyeless phenotype. Surprisingly, this phenotype was rescued in the double mutant, where we speculate that cross-talk between Wnt/β-catenin and Wnt/Planar Cell Polarity pathways could lead to altered Wnt signaling in some scenarios. Collectively, the data emphasizes both the commonality and the complexity in the feedback regulation of Wnt signaling.
Collapse
Affiliation(s)
- Ian Bell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Haider Khan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Nathan Stutt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew Horn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Teesha Hydzik
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Whitney Lum
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Victoria Rea
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Emma Clapham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Lisa Hoeg
- Department of Bioinformatics, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| | - Terence J. Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| |
Collapse
|
6
|
Li J, Wang ZH, Sun YH. TGF-β1 stimulated mesenchymal stem cells-generated exosomal miR-29a promotes the proliferation, migration and fibrogenesis of tenocytes by targeting FABP3. Cytokine 2023; 162:156090. [PMID: 36481477 DOI: 10.1016/j.cyto.2022.156090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Rotator cuff Tear (RCT) causes a lot of inconvenience for patients. In most cases, RCT injury does not heal back to bone after repair, and there is a high chance of retearing. Therefore, there is a need to explore more effective targeted therapies. Bone mesenchymal stem cell-derived exosome (BMSCs-Exo) has been proved to be beneficial to the proliferation of tendon cells, but its specific mechanism remains to be further explored. METHODS BMSCs-Exo was isolated and identified by detecting the specific markers using flow cytometry and western blot assays. qRT-PCR and western blot were utilized to determine the gene or protein expressions, respectively. Cell proliferation, and migration in tenocytes were measured by CCK8, EdU and transwell assays. The interaction between miR-29a and FABP3 was analyzed using dual-luciferase reporter assay. RESULTS Our findings demonstrated that miR-29a was expressed in BMSCs-Exo and could be significantly enriched after TGF-β1 treatment. Moreover, TGF-β1-modified BMSCs-Exo co-cultured could promote the proliferation, migration and fibrosis of tenocytes by carrying miR-29a. Upon miR-29a was reduced in BMSCs-Exo, the regulatory roles of BMSCs-Exo on tenocytes were reversed. Mechanistically, miR-29a negatively regulated FABP3 via interaction with its 3'-UTR. Enforced expression of FABP3 could reverse the modulation of exosomal miR-29a in tenocytes. CONCLUSION Exosomal miR-29a derived from TGF-β1-modified BMSCs facilitated the proliferation, migration and fibrosis of tenocytes through targeting FABP3.
Collapse
Affiliation(s)
- Jia Li
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, PR China.
| | - Zhi-Hui Wang
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, PR China
| | - Yu-Hang Sun
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, PR China
| |
Collapse
|
7
|
Guo Q, Kawahata I, Cheng A, Jia W, Wang H, Fukunaga K. Fatty Acid-Binding Proteins: Their Roles in Ischemic Stroke and Potential as Drug Targets. Int J Mol Sci 2022; 23:9648. [PMID: 36077044 PMCID: PMC9455833 DOI: 10.3390/ijms23179648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Stroke is among the leading causes of death and disability worldwide. However, despite long-term research yielding numerous candidate neuroprotective drugs, there remains a lack of effective neuroprotective therapies for ischemic stroke patients. Among the factors contributing to this deficiency could be that single-target therapy is insufficient in addressing the complex and extensive mechanistic basis of ischemic brain injury. In this context, lipids serve as an essential component of multiple biological processes and play important roles in the pathogenesis of numerous common neurological diseases. Moreover, in recent years, fatty acid-binding proteins (FABPs), a family of lipid chaperone proteins, have been discovered to be involved in the onset or development of several neurodegenerative diseases, including Alzheimer's and Parkinson's disease. However, comparatively little attention has focused on the roles played by FABPs in ischemic stroke. We have recently demonstrated that neural tissue-associated FABPs are involved in the pathological mechanism of ischemic brain injury in mice. Here, we review the literature published in the past decade that has reported on the associations between FABPs and ischemia and summarize the relevant regulatory mechanisms of FABPs implicated in ischemic injury. We also propose candidate FABPs that could serve as potential therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Qingyun Guo
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - An Cheng
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Wenbin Jia
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Haoyang Wang
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- BRI Pharma Incorporated, Sendai 982-0804, Japan
| |
Collapse
|
8
|
A comparison of the mitochondrial proteome and lipidome in the mouse and long-lived Pipistrelle bats. Aging (Albany NY) 2020; 11:1664-1685. [PMID: 30892277 PMCID: PMC6461166 DOI: 10.18632/aging.101861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
It is accepted that smaller mammals with higher metabolic rates have shorter lifespans. The very few species that do not follow these rules can give insights into interesting differences. The recorded maximum lifespans of bats are exceptional - over 40 years, compared with the laboratory mouse of 4 years. We investigated the differences in the biochemical composition of mitochondria between bat and mouse species. We used proteomics and ultra-high-performance liquid chromatography coupled with high resolution mass spectrometry lipidomics, to interrogate mitochondrial fractions prepared from Mus musculus and Pipistrellus pipistrellus brain and skeletal muscle. Fatty acid binding protein 3 was found at different levels in mouse and bat muscle mitochondria and its orthologues were investigated in Caenorhabditis elegans knock-downs for LBP 4, 5 and 6. In the bat, high levels of free fatty acids and N-acylethanolamine lipid species together with a significantly greater abundance of fatty acid binding protein 3 in muscle (1.8-fold, p=0.037) were found. Manipulation of fatty acid binding protein orthologues in C. elegans suggest these proteins and their role in lipid regulation are important for mitochondrial function.
Collapse
|
9
|
Azevedo RDS, Falcão KVG, Amaral IPG, Leite ACR, Bezerra RS. Mitochondria as targets for toxicity and metabolism research using zebrafish. Biochim Biophys Acta Gen Subj 2020; 1864:129634. [PMID: 32417171 DOI: 10.1016/j.bbagen.2020.129634] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND The study of mitochondrial functions in zebrafish was initiated before the 1990s and has effectively supported many of the recent scientific advances in the functional studies of mitochondria. SCOPE OF REVIEW This work elaborates various peculiarities and general advances in the study of mitochondria using this animal model. MAJOR CONCLUSIONS The inclusion of zebrafish models in scientific research was initiated with structural studies of mitochondria. Then, toxicological studies involving chemical compounds were undertaken. Currently, there is a decisive tendency to use zebrafish to understand how chemicals impair mitochondrial bioenergetics. Zebrafish modeling has been fruitful for the analysis of ion homeostasis, especially for Ca2+ transport, since zebrafish and mammals have the same set of Ca2+ transporters and mitochondrial membrane microdomains. Based on zebrafish embryo studies, our understanding of ROS generation has also led to new insights. GENERAL SIGNIFICANCE For the study of mitochondria, a new era was begun with the inclusion of zebrafish in bioenergetics research.
Collapse
Affiliation(s)
- Rafael D S Azevedo
- Biochemistry Department, Federal University of Pernambuco - UFPE, Recife, PE, Brazil.
| | - Kivia V G Falcão
- Biochemistry Department, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| | - Ian P G Amaral
- Biotechnology Center, Federal University of Paraiba - UFPB, João Pessoa, PB, Brazil
| | - Ana C R Leite
- Institute of Chemistry and Biotecnhology, Federal University of Alagoas - UFAL, Maceió, AL, Brazil
| | - Ranilson S Bezerra
- Biochemistry Department, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| |
Collapse
|
10
|
Rezar R, Jirak P, Gschwandtner M, Derler R, Felder TK, Haslinger M, Kopp K, Seelmaier C, Granitz C, Hoppe UC, Lichtenauer M. Heart-Type Fatty Acid-Binding Protein (H-FABP) and its Role as a Biomarker in Heart Failure: What Do We Know So Far? J Clin Med 2020; 9:E164. [PMID: 31936148 PMCID: PMC7019786 DOI: 10.3390/jcm9010164] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Heart failure (HF) remains one of the leading causes of death to date despite extensive research funding. Various studies are conducted every year in an attempt to improve diagnostic accuracy and therapy monitoring. The small cytoplasmic heart-type fatty acid-binding protein (H-FABP) has been studied in a variety of disease entities. Here, we provide a review of the available literature on H-FABP and its possible applications in HF. Methods: Literature research using PubMed Central was conducted. To select possible studies for inclusion, the authors screened all available studies by title and, if suitable, by abstract. Relevant manuscripts were read in full text. RESULTS In total, 23 studies regarding H-FABP in HF were included in this review. CONCLUSION While, algorithms already exist in the area of risk stratification for acute pulmonary embolism, there is still no consensus for the routine use of H-FABP in daily clinical practice in HF. At present, the strongest evidence exists for risk evaluation of adverse cardiac events. Other future applications of H-FABP may include early detection of ischemia, worsening of renal failure, and long-term treatment planning.
Collapse
Affiliation(s)
- Richard Rezar
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Peter Jirak
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Martha Gschwandtner
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK;
| | - Rupert Derler
- Institute of Pharmaceutical Sciences, University of Graz, 8020 Graz, Austria;
| | - Thomas K. Felder
- Department of Laboratory Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Michael Haslinger
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Kristen Kopp
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Clemens Seelmaier
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Christina Granitz
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Uta C. Hoppe
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (R.R.); (P.J.); (M.H.); (C.S.); (C.G.); (U.C.H.)
| |
Collapse
|
11
|
Identification of new dual FABP4/5 inhibitors based on a naphthalene-1-sulfonamide FABP4 inhibitor. Bioorg Med Chem 2019; 27:115015. [PMID: 31420256 DOI: 10.1016/j.bmc.2019.07.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022]
Abstract
Fatty acid binding protein 4 (FABP4) and fatty acid binding protein 5 (FABP5) are mainly expressed in adipocytes and/or macrophages and play essential roles in energy metabolism and inflammation. When FABP4 function is diminished, FABP5 expression is highly increased possibly as a functional compensation. Dual FABP4/5 inhibitors are expected to provide beneficial synergistic effect on treating diabetes, atherosclerosis, and inflammation-related diseases. Starting from our previously reported selective FABP4 inhibitor 8, structural biology information was used to modulate the selectivity profile and to design potent dual FABP4/5 inhibitors with good selectivity against FABP3. Two compounds A16 and B8 were identified to show inhibitory activities against both FABP4/5 and good selectivity over FABP3, which could also reduce the level of forskolin-stimulated lipolysis in mature 3T3-L1 adipocytes. Compared with compound 8, these two compounds exhibited better anti-inflammatory effects in lipopolysaccharide-stimulated RAW264.7 murine macrophages, with decreased levels of pro-inflammatory cytokines TNFα and MCP-1 and apparently inhibited IKK/NF-κB pathway.
Collapse
|
12
|
Gao DD, Dou HX, Su HX, Zhang MM, Wang T, Liu QF, Cai HY, Ding HP, Yang Z, Zhu WL, Xu YC, Wang HY, Li YX. From hit to lead: Structure-based discovery of naphthalene-1-sulfonamide derivatives as potent and selective inhibitors of fatty acid binding protein 4. Eur J Med Chem 2018; 154:44-59. [DOI: 10.1016/j.ejmech.2018.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 01/05/2023]
|
13
|
Li H, Xiang L, Yang N, Cao F, Li C, Chen P, Ruan X, Feng Y, Zhou N, Wang X. Zhiheshouwu ethanol extract induces intrinsic apoptosis and reduces unsaturated fatty acids via SREBP1 pathway in hepatocellular carcinoma cells. Food Chem Toxicol 2018; 119:169-175. [PMID: 29702135 DOI: 10.1016/j.fct.2018.04.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/07/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is the major incidence and one of the most life-threatening cancer. How to conquer HCC is a worldwide issue for patients. Zhiheshouwu (Polygoni multiflori Radix Praeparata) is a Chinese medicinal herb exhibiting both lowering lipid and inhibiting cancer cells. However, it remains a matter if its inhibiting cancer cells is related to its lowering lipid. In this study, we investigate the effects of Zhiheshouwu ethanolic extract (HSWE) on apoptosis and the underlying mechanisms in Bel-7402 cells. The results showed that HSWE inhibited the proliferation with an increased level of ALT and AST in Bel-7402 cells. The decreased mitochondrial membrane potential (ΔΨm) was observed in HSWE-treated Bel-7402 cells. The flow cytometry results showed that HSWE triggered apoptosis. Since mitochondrial injury is characterized as intrinsic apoptotic cell death, these data indicated that HSWE may induce intrinsic apoptosis in Bel-7402 cells. In addition, HSWE decreased the production of unsaturated fatty acids, and inhibited the mRNA and protein of SCD1 and its up-stream factor, sterol-regulatory element binding proteins 1 (SREBP1), a master transcriptional regulator of lipogenic gene. Taken together, these data suggest that HSWE induces an intrinsic apoptosis, and reduced unsaturated fatty acids by blocking SREBP1 in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Hongliang Li
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, Hubei Province, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Pharmacology of School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China
| | - Longchao Xiang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, Hubei Province, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Pharmacology of School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China
| | - Nian Yang
- Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Fengjun Cao
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, Hubei Province, 442000, China.
| | - Chen Li
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, Hubei Province, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Pharmacology of School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China; Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Ping Chen
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, Hubei Province, 442000, China
| | - Xuzhi Ruan
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Pharmacology of School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China; Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Nian Zhou
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, Hubei Province, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Pharmacology of School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, Hubei Province, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Pharmacology of School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China.
| |
Collapse
|
14
|
Parolini M, Bini L, Magni S, Rizzo A, Ghilardi A, Landi C, Armini A, Del Giacco L, Binelli A. Exposure to cocaine and its main metabolites altered the protein profile of zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:603-614. [PMID: 28993024 DOI: 10.1016/j.envpol.2017.09.097] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/13/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
Illicit drugs have been identified as emerging aquatic pollutants because of their widespread presence in freshwaters and potential toxicity towards aquatic organisms. Among illicit drug residues, cocaine (COC) and its main metabolites, namely benzoylecgonine (BE) and ecgonine methyl ester (EME), are commonly detected in freshwaters worldwide at concentration that can induce diverse adverse effects to non-target organisms. However, the information of toxicity and mechanisms of action (MoA) of these drugs, mainly of COC metabolites, to aquatic species is still fragmentary and inadequate. Thus, this study was aimed at investigating the toxicity of two concentrations (0.3 and 1.0 μg/L) of COC, BE and EME similar to those found in aquatic ecosystems on zebrafish (Danio rerio) embryos at 96 h post fertilization through a functional proteomics approach. Exposure to COC and both its metabolites significantly altered the protein profile of zebrafish embryos, modulating the expression of diverse proteins belonging to different functional classes, including cytoskeleton, eye constituents, lipid transport, lipid and energy metabolism, and stress response. Expression of vitellogenins and crystallins was modulated by COC and both its main metabolites, while only BE and EME altered proteins related to lipid and energy metabolism, as well as to oxidative stress response. Our data confirmed the potential toxicity of low concentrations of COC, BE and EME, and helped to shed light on their MoA on an aquatic vertebrate during early developmental period.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 2, I-20133 Milano, Italy.
| | - Luca Bini
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Alessandro Rizzo
- Department of Environmental Science and Policy, University of Milan, via Celoria 2, I-20133 Milano, Italy
| | - Anna Ghilardi
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Claudia Landi
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Alessandro Armini
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Luca Del Giacco
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, via Celoria 26, I-20133 Milan, Italy
| |
Collapse
|
15
|
Zhang Y, Huang R, Zhou W, Zhao Q, Lü Z. miR-192-5p mediates hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes via targeting of FABP3. J Biochem Mol Toxicol 2016; 31. [PMID: 27780314 DOI: 10.1002/jbt.21873] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/02/2016] [Indexed: 12/21/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a leading cause of morbidity and mortality. In this study, we investigated the role of miR-192-5p in hypoxia/reoxygenation (H/R)-induced cardiomyocyte apoptosis. H9c2 cardiomyocytes were subjected to H/R and tested for miR-192-5p expression. Overexpression and knockdown experiments were performed to determine the effects of manipulating miR-192-5p on apoptotic responses. H/R-treated H9c2 cells exhibited a 2.2-fold increase in miR-192-5p levels. Overexpression of miR-192-5p significantly augmented apoptosis in H9c2 cells after H/R, which was accompanied by a significant increase in the ratio of Bax/Bcl-2. In contrast, delivery of anti-miR-192-5p inhibitors significantly reduced apoptosis induced by H/R. FABP3 was identified to be a functional target of miR-192-5p. Restoration of FABP3 prevented apoptosis in miR-192-5p-transfected H9c2 cells, whereas downregulation of FABP3 enhanced apoptosis in H/R-exposed H9c2 cells. In conclusion, miR-192-5p mediates H/R-induced apoptosis in cardiomyocytes by targeting FABP3 and represents a potential target for prevention of myocardial I/R injury.
Collapse
Affiliation(s)
- Yuefeng Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Risheng Huang
- Department of Cardiothoracic Surgery, Wenzhou Central Hospital, Wenzhou, People's Republic of China
| | - Weihe Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qifeng Zhao
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhenye Lü
- Department of Cardiothoracic Surgery, Wenzhou People's Hospital, Wenzhou, People's Republic of China
| |
Collapse
|
16
|
Thanos PK, Clavin BH, Hamilton J, O'Rourke JR, Maher T, Koumas C, Miao E, Lankop J, Elhage A, Haj-Dahmane S, Deutsch D, Kaczocha M. Examination of the Addictive and Behavioral Properties of Fatty Acid-Binding Protein Inhibitor SBFI26. Front Psychiatry 2016; 7:54. [PMID: 27092087 PMCID: PMC4820685 DOI: 10.3389/fpsyt.2016.00054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/24/2016] [Indexed: 12/13/2022] Open
Abstract
The therapeutic properties of cannabinoids have been well demonstrated but are overshadowed by such adverse effects as cognitive and motor dysfunction, as well as their potential for addiction. Recent research on the natural lipid ligands of cannabinoid receptors, also known as endocannabinoids, has shed light on the mechanisms of intracellular transport of the endocannabinoid anandamide by fatty acid-binding proteins (FABPs) and subsequent catabolism by fatty acid amide hydrolase. These findings facilitated the recent development of SBFI26, a pharmacological inhibitor of epidermal- and brain-specific FABP5 and FABP7, which effectively increases anandamide signaling. The goal of this study was to examine this compound for any possible rewarding and addictive properties as well as effects on locomotor activity, working/recognition memory, and propensity for sociability and preference for social novelty (SN) given its recently reported anti-inflammatory and analgesic properties. Male C57BL mice were split into four treatment groups and conditioned with 5.0, 20.0, 40.0 mg/kg SBFI26, or vehicle during a conditioned place preference (CPP) paradigm. Following CPP, mice underwent a battery of behavioral tests [open field, novel object recognition (NOR), social interaction (SI), and SN] paired with acute SBFI26 administration. Results showed that SBFI26 did not produce CPP or conditioned place aversion regardless of dose and did not induce any differences in locomotor and exploratory activity during CPP- or SBFI26-paired open field activity. We also observed no differences between treatment groups in NOR, SI, and SN. In conclusion, as SBFI26 was shown previously by our group to have significant analgesic and anti-inflammatory properties, here we show that it does not pose a risk of dependence or motor and cognitive impairment under the conditions tested.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo , Buffalo, NY , USA
| | - Brendan H Clavin
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo , Buffalo, NY , USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo , Buffalo, NY , USA
| | - Joseph R O'Rourke
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo , Buffalo, NY , USA
| | - Thomas Maher
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo , Buffalo, NY , USA
| | - Christopher Koumas
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo , Buffalo, NY , USA
| | - Erick Miao
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo , Buffalo, NY , USA
| | - Jessenia Lankop
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo , Buffalo, NY , USA
| | - Aya Elhage
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo , Buffalo, NY , USA
| | - Samir Haj-Dahmane
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo , Buffalo, NY , USA
| | - Dale Deutsch
- Department of Biochemistry, Stony Brook University , Stony Brook, NY , USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University , Stony Brook, NY , USA
| |
Collapse
|
17
|
Shimada Y, Kuninaga S, Ariyoshi M, Zhang B, Shiina Y, Takahashi Y, Umemoto N, Nishimura Y, Enari H, Tanaka T. E2F8 promotes hepatic steatosis through FABP3 expression in diet-induced obesity in zebrafish. Nutr Metab (Lond) 2015; 12:17. [PMID: 26052340 PMCID: PMC4456805 DOI: 10.1186/s12986-015-0012-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/04/2015] [Indexed: 12/13/2022] Open
Abstract
Background Diet-induced hepatic steatosis is highly associated with nonalcoholic fatty liver disease, which is related to the development of metabolic syndrome. While advanced stage nonalcoholic hepatic steatosis and steatohepatitis (NASH) result ultimately in fibrosis and cirrhosis, the molecular basis for lipid droplet formation is poorly understood. Common pathways underlie the pathology of mammalian obesity and the zebrafish diet-induced obesity model (DIO-zebrafish) used in this study. Methods Our analysis involved a combination of transcriptome (DNA microarray) and proteome (two-dimensional electrophoresis) methods using liver tissue from DIO-zebrafish to find candidate genes involved in hepatic steatosis. We conducted intraperitoneal injection (i.p.) of morpholino antisense oligonucleotides (MOs) for each gene into DIO-zebrafish. We also conducted in vitro overexpression in human cells. Additionally, we examined gene expression during feeding experiments involving anti-obesity compounds, creatine and anserine. Results We found that fatty acid binding protein 3 (fabp3) and E2F transcription factors were upregulated in hepatic steatosis. E2f8 MO i.p. suppressed fabp3 expression in liver, and ameliorated hepatic steatosis. In human cells (HepG2), E2F8 overexpression promoted FABP3 expression. Additionally, co-administration of creatine and anserine suppressed obesity associated phenotypes including hepatic steatosis as indicated by e2f8 and fabp3 down regulation. Conclusion We discovered that the e2f8–fabp3 axis is important in the promotion of hepatic steatosis in DIO-zebrafish. The combination of transcriptome and proteome analyses using the disease model zebrafish allow identification of novel pathways involved in human diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12986-015-0012-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasuhito Shimada
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan ; Mie University Medical Zebrafish Research Center, Mie, Japan ; Department of Bioinformatics, Mie University Life Science Research Center, Mie, Japan ; Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie, Japan
| | - Shisei Kuninaga
- Central Research Institute, Maruha Nichiro Corporation, Ibaraki, Japan
| | - Michiko Ariyoshi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan
| | - Beibei Zhang
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan
| | - Yasuhiko Shiina
- Central Research Institute, Maruha Nichiro Corporation, Ibaraki, Japan
| | | | - Noriko Umemoto
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan ; Mie University Medical Zebrafish Research Center, Mie, Japan ; Department of Bioinformatics, Mie University Life Science Research Center, Mie, Japan ; Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie, Japan
| | - Hiroyuki Enari
- Central Research Institute, Maruha Nichiro Corporation, Ibaraki, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan ; Mie University Medical Zebrafish Research Center, Mie, Japan ; Department of Bioinformatics, Mie University Life Science Research Center, Mie, Japan ; Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie, Japan
| |
Collapse
|
18
|
Thumser AE, Moore JB, Plant NJ. Fatty acid binding proteins: tissue-specific functions in health and disease. Curr Opin Clin Nutr Metab Care 2014; 17:124-9. [PMID: 24500438 DOI: 10.1097/mco.0000000000000031] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The purpose of this study is to review recent evidence for the role of the cytosolic fatty acid binding proteins (FABPs) as central regulators of whole-body metabolic control. RECENT FINDINGS Dysregulated FABPs have been associated with a number of diseases, including obesity and nonalcoholic fatty liver disease (FABP1, FABP2, FABP4), cardiovascular risk (FABP3) and cancer (FABP5, FABP7). As underlying mechanisms become better understood, FABPs may represent novel biomarkers for therapeutic targets. In addition, the role of FABPs as important signalling molecules has also been highlighted in recent years; for example, FABP3 may act as a myokine, matching whole-body metabolism to muscular energy demands and FABP4 functions as an adipokine in regulating macrophage and adipocyte interactions during inflammation. SUMMARY In addition to their traditional role as fatty acid trafficking proteins, increasing evidence supports the role of FABPs as important controllers of global metabolism, with their dysregulation being linked to a host of metabolic diseases.
Collapse
Affiliation(s)
- Alfred E Thumser
- aDepartment of Biochemistry and Physiology bDepartment of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | |
Collapse
|