1
|
Song B, Hao M, Zhang S, Niu W, Li Y, Chen Q, Li S, Tong C. Comprehensive review of Hesperetin: Advancements in pharmacokinetics, pharmacological effects, and novel formulations. Fitoterapia 2024; 179:106206. [PMID: 39255908 DOI: 10.1016/j.fitote.2024.106206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Hesperetin is a flavonoid compound naturally occurring in the peel of Citrus fruits from the Rutaceae family. Previous studies have demonstrated that hesperetin exhibits various pharmacological effects, such as anti-inflammatory, anti-tumor, antioxidative, anti-aging, and neuroprotective properties. In recent years, with the increasing prevalence of diseases and the rising awareness of traditional Chinese medicine, hesperetin has garnered growing attention for its wide-ranging pharmacological effects. To substantiate its health benefits and elucidate potential mechanisms, knowledge of pharmacokinetics is crucial. However, the limited solubility of hesperetin restricts its bioavailability, thereby diminishing its efficacy as a beneficial health agent. To enhance the bioavailability of hesperetin, various novel formulations have been developed, including nanoparticles, liposomes, and cyclodextrin inclusion complexes. This article reviews recent advances in the pharmacokinetics of hesperetin and methods to improve its bioavailability, as well as its pharmacological effects and mechanisms, aiming to provide a theoretical basis for clinical applications.
Collapse
Affiliation(s)
- Bocui Song
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| | - Meihan Hao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Zhang
- Administration Committee of Jilin Yongji Economic Development Zone, Jilin, Jilin, China
| | - Wenqi Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yuqi Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qian Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.
| |
Collapse
|
2
|
Wang Q, Wang Q, Huang Q, Zhang X, Qin Z, Yu Y, Dai Y, Han J, Yao X, He L, Lin P, Yao Z. Five-layer-funnel filtering mode discovers effective components of Chinese medicine formulas: Zhishi-Xiebai-Guizhi decoction as a case study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155678. [PMID: 38754214 DOI: 10.1016/j.phymed.2024.155678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND How to screen and identify the effective components in the complex substance system is one of the core issues in achieving the modernization of traditional Chinese medicine (TCM) formulas. However, it is still challenging to systematically screen out the effective components from the hundreds or thousands of components in a TCM formula. PURPOSE An innovative five-layer-funnel filtering mode stepwise integrating chemical profile, quantitative analysis, xenobiotic profile, network pharmacology and bioactivity evaluation was successfully presented to discover the effective components and implemented on a case study of Zhishi-Xiebai-Guizhi decoction (ZXG), a well-known TCM formula for coronary heart disease (CHD). METHODS Initially, the chemical profile of ZXG was systemically characterized. Subsequently, the representative constituents were quantitatively analyzed. In the third step, the multi-component xenobiotics profile of ZXG was systemically delineated, and the prototypes absorbed into the blood were identified and designated as the primary bioavailable components. Next, an integrated network of "bioavailable components-CHD targets-pathways-therapeutic effects" was constructed, and the crucial bioavailable components of ZXG against CHD were screened out. Lastly, the bioactivities of crucial bioavailable components were further evaluated to pinpoint effective components. RESULTS First of all, the chemical profile of ZXG was systemically characterized with the detection of 201 components. Secondly, 37 representative components were quantified to comprehensively describe its content distribution characteristics. Thirdly, among the quantified components, 24 bioavailable components of ZXG were identified based on the multi-component xenobiotic profile. Fourthly, an integrated network led to the identification of 11 crucial bioavailable components against CHD. Ultimately, 9 components (honokiol, magnolol, naringenin, magnoflorine, hesperidin, hesperetin, naringin, neohesperidin and narirutin) exhibiting myocardial protection in vitro were identified as effective components of ZXG for the first time. CONCLUSION Overall, this innovative strategy successfully identified the effective components of ZXG for the first time. It could not only significantly contribute to elucidating the therapeutic mechanism of ZXG in the treatment of CHD, but also serve as a helpful reference for the systematic discovery of effective components as well as ideal quality markers in the quality assessment of TCM formulas.
Collapse
Affiliation(s)
- Qi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qiqi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qiaoting Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xinya Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zifei Qin
- Department of Pharmacology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yi Dai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jingyan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xinsheng Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Pei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Ji Z, Deng W, Chen D, Liu Z, Shen Y, Dai J, Zhou H, Zhang M, Xu H, Dai B. Recent understanding of the mechanisms of the biological activities of hesperidin and hesperetin and their therapeutic effects on diseases. Heliyon 2024; 10:e26862. [PMID: 38486739 PMCID: PMC10937595 DOI: 10.1016/j.heliyon.2024.e26862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Flavonoids are natural phytochemicals that have therapeutic effects and act in the prevention of several pathologies. These phytochemicals can be found in lemon, sweet orange, bitter orange, clementine. Hesperidin and hesperetin are citrus flavonoids from the flavanones subclass that have anti-inflammatory, antioxidant, antitumor and antibacterial potential. Preclinical studies and clinical trials demonstrated therapeutical effects of hesperidin and its aglycone hesperetin in various diseases, such as bone diseases, cardiovascular diseases, neurological diseases, respiratory diseases, digestive diseases, urinary tract diseases. This review provides a comprehensive overview of the biological activities of hesperidin and hesperetin, their therapeutic potential in various diseases and their associated molecular mechanisms. This article also discusses future considerations for the clinical applications of hesperidin and hesperetin.
Collapse
Affiliation(s)
| | | | - Dong Chen
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Zhidong Liu
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Yucheng Shen
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Jiuming Dai
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Hai Zhou
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Miao Zhang
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Hucheng Xu
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Bin Dai
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| |
Collapse
|
4
|
Liu AB, Li SJ, Yu YY, Zhang JF, Ma L. Current insight on the mechanisms of programmed cell death in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2023; 11:1309719. [PMID: 38161332 PMCID: PMC10754983 DOI: 10.3389/fcell.2023.1309719] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, leading to life-threatening organ dysfunction. It is a high-fatality condition associated with a complex interplay of immune and inflammatory responses that can cause severe harm to vital organs. Sepsis-induced myocardial injury (SIMI), as a severe complication of sepsis, significantly affects the prognosis of septic patients and shortens their survival time. For the sake of better administrating hospitalized patients with sepsis, it is necessary to understand the specific mechanisms of SIMI. To date, multiple studies have shown that programmed cell death (PCD) may play an essential role in myocardial injury in sepsis, offering new strategies and insights for the therapeutic aspects of SIMI. This review aims to elucidate the role of cardiomyocyte's programmed death in the pathophysiological mechanisms of SIMI, with a particular focus on the classical pathways, key molecules, and signaling transduction of PCD. It will explore the role of the cross-interaction between different patterns of PCD in SIMI, providing a new theoretical basis for multi-target treatments for SIMI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
5
|
Zhou Y, Suo W, Zhang X, Yang Y, Zhao W, Li H, Ni Q. Targeting epigenetics in diabetic cardiomyopathy: Therapeutic potential of flavonoids. Biomed Pharmacother 2023; 157:114025. [PMID: 36399824 DOI: 10.1016/j.biopha.2022.114025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
The pathophysiological mechanisms of diabetic cardiomyopathy have been extensively studied, but there is still a lack of effective prevention and treatment methods. The ability of flavonoids to protect the heart from diabetic cardiomyopathy has been extensively described. In recent years, epigenetics has received increasing attention from scholars in exploring the etiology and treatment of diabetes and its complications. DNA methylation, histone modifications and non-coding RNAs play key functions in the development, maintenance and progression of diabetic cardiomyopathy. Hence, prevention or reversal of the epigenetic alterations that have occurred during the development of diabetic cardiomyopathy may alleviate the personal and social burden of the disease. Flavonoids can be used as natural epigenetic modulators in alternative therapies for diabetic cardiomyopathy. In this review, we discuss the epigenetic effects of different flavonoid subtypes in diabetic cardiomyopathy and summarize the evidence from preclinical and clinical studies that already exist. However, limited research is available on the potential beneficial effects of flavonoids on the epigenetics of diabetic cardiomyopathy. In the future, clinical trials in which different flavonoids exert their antidiabetic and cardioprotective effects through various epigenetic mechanisms should be further explored.
Collapse
Affiliation(s)
- Yutong Zhou
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Wendong Suo
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinai Zhang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Yanan Yang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Weizhe Zhao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100105, China
| | - Hong Li
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qing Ni
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
| |
Collapse
|
6
|
Zou J, Wang J, Ye W, Lu J, Li C, Zhang D, Ye W, Xu S, Chen C, Liu P, Liu Z. Citri Reticulatae Pericarpium (Chenpi): A multi-efficacy pericarp in treating cardiovascular diseases. Biomed Pharmacother 2022; 154:113626. [PMID: 36058153 DOI: 10.1016/j.biopha.2022.113626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
Citri Reticulatae Pericarpium (CRP) has been utilized as a versatile medicinal herb with wide cardiovascular benefits in Asian nations for centuries. Accumulating evidence suggests that CRP and its components are effective in preventing cardiovascular diseases (CVDs) such as atherosclerosis, myocardial infarction, myocardial ischemia, arrhythmia, cardiac hypertrophy, heart failure, and hypertension. Studies show that the two most bioactive components of CRP are flavonoids and volatile oils. The cardiovascular protective effects of CRP have attracted considerable research interest due to its hypolipidemic, antiplatelet activity, antioxidant and anti-inflammatory effects. Hereby, we provide a rigorous and up-to-date overview of the cardiovascular protective properties and the potential molecular targets of CRP, and finally highlight the pharmacokinetics and the therapeutic potential of the main pharmacologically active components of CRP to treat CVDs.
Collapse
Affiliation(s)
- Jiami Zou
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, 511436 Guangzhou, China
| | - Jiaojiao Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, 511436 Guangzhou, China; Department of Critical Care Medicine, Maoming People's Hospital, Maoming, 525000 Guangdong, China
| | - Weile Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, 511436 Guangzhou, China
| | - Jing Lu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chengzhi Li
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, 511436 Guangzhou, China
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, 511436 Guangzhou, China
| | - Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chunbo Chen
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, 525000 Guangdong, China
| | - Peiqing Liu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhiping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, 511436 Guangzhou, China.
| |
Collapse
|
7
|
Bi CF, Liu J, Yang LS, Zhang JF. Research Progress on the Mechanism of Sepsis Induced Myocardial Injury. J Inflamm Res 2022; 15:4275-4290. [PMID: 35923903 PMCID: PMC9342248 DOI: 10.2147/jir.s374117] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Sepsis is an abnormal condition with multiple organ dysfunctions caused by the uncontrolled infection response and one of the major diseases that seriously hang over global human health. Besides, sepsis is characterized by high morbidity and mortality, especially in intensive care unit (ICU). Among the numerous subsequent organ injuries of sepsis, myocardial injury is one of the most common complications and the main cause of death in septic patients. To better manage septic inpatients, it is necessary to understand the specific mechanisms of sepsis induced myocardial injury (SIMI). Therefore, this review will elucidate the pathophysiology of SIMI from the following certain mechanisms: apoptosis, mitochondrial damage, autophagy, excessive inflammatory response, oxidative stress and pyroptosis, and outline current therapeutic strategies and potential approaches in SIMI.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Jia Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Correspondence: Li-Shan Yang; Jun-Fei Zhang, Email ;
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China
| |
Collapse
|
8
|
Zhang L, Wen K, Zhang Z, Ma C, Zheng N. 3,4-Dihydroxyphenylethanol ameliorates lipopolysaccharide-induced septic cardiac injury in a murine model. Open Life Sci 2022; 16:1313-1320. [PMID: 35005242 PMCID: PMC8691377 DOI: 10.1515/biol-2021-0125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
3,4-Dihydroxyphenylethanol (DOPET) is a polyphenol found in olive oil. The present study evaluated the protective role of DOPET on LPS provoked septic cardiac injury in a murine model. Four groups were used in the study (n = 3): control, LPS, DOPET alone, and DOPET + LPS. LPS (15 mg/kg; i.p.); they were used to induce cardiac sepsis. The cardiac markers like LDH, CK-MB, and troponin-T, as well as inflammatory cytokines like TNF-α and IL-6 were measured in the serum. The antioxidants and oxidative stress parameters were measured in cardiac tissues. RT-PCR and western blot methods were done to evaluate the expression of inflammatory mediators and apoptotic markers. DOPET significantly decreased the cardiac markers (LDH, CK-MB, and troponin-T) and TNF-α and IL-6 level in the serum. DOPET effectively reduced the levels of MDA and NO in LPS intoxicated rats. DOPET also increased the levels of antioxidants like SOD, CAT, GPx, and GSH in LPS intoxicated rats. The mRNA levels of TNF-α, IL-6, and NF-κB were significantly downregulated by DOPET in cardiac tissues of LPS rats. The protein expression of Bcl-2 was upregulated, and Bax and caspase-3 were downregulated by DOPET. DOPET effectively attenuates LPS-induced cardiac dysfunction through its antioxidant, anti-inflammatory, and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Intensive Care Unit, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Kun Wen
- Department of Intensive Care Unit, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Zhiqiang Zhang
- Department of Intensive Care Unit, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Chengen Ma
- Department of Intensive Care Unit, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Ni Zheng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong Province, 250021, China
| |
Collapse
|
9
|
Khan UM, Sameen A, Aadil RM, Shahid M, Sezen S, Zarrabi A, Ozdemir B, Sevindik M, Kaplan DN, Selamoglu Z, Ydyrys A, Anitha T, Kumar M, Sharifi-Rad J, Butnariu M. Citrus Genus and Its Waste Utilization: A Review on Health-Promoting Activities and Industrial Application. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2488804. [PMID: 34795782 PMCID: PMC8595006 DOI: 10.1155/2021/2488804] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022]
Abstract
Citrus fruits such as oranges, grapefruits, lemons, limes, tangerines, and mandarins, whose production is increasing every year with the rise of consumer demand, are among the most popular fruits cultivated throughout the globe. Citrus genus belongs to the Rutaceae family and is known for its beneficial effects on health for centuries. These plant groups contain many beneficial nutrients and bioactive compounds. These compounds have antimicrobial, anticancer, antidiabetic, antiplatelet aggregation, and anti-inflammatory activities. Citrus waste, generated by citrus-processing industries in large amounts every year, has an important economic value due to richness of bioactive compounds. The present review paper has summarized the application and properties of Citrus and its waste in some fields such as food and drinks, traditional medicine practices, and recent advances in modern approaches towards pharmaceutical and nutraceutical formulations.
Collapse
Affiliation(s)
- Usman Mir Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Aysha Sameen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Serap Sezen
- Faculty of Engineering and Natural Science, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Betul Ozdemir
- Department of Cardiology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Mustafa Sevindik
- Bahçe Vocational High School, Osmaniye Korkut Ata University, Osmaniye 80500, Turkey
| | - Dilara Nur Kaplan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karabuk University, Karabuk 78050, Turkey
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde 51240, Turkey
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | - T. Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam 625604, Tamil Nadu, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| |
Collapse
|
10
|
Dejani NN, Elshabrawy HA, Bezerra Filho CDSM, de Sousa DP. Anticoronavirus and Immunomodulatory Phenolic Compounds: Opportunities and Pharmacotherapeutic Perspectives. Biomolecules 2021; 11:biom11081254. [PMID: 34439920 PMCID: PMC8394099 DOI: 10.3390/biom11081254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
In 2019, COVID-19 emerged as a severe respiratory disease that is caused by the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The disease has been associated with high mortality rate, especially in patients with comorbidities such as diabetes, cardiovascular and kidney diseases. This could be attributed to dysregulated immune responses and severe systemic inflammation in COVID-19 patients. The use of effective antiviral drugs against SARS-CoV-2 and modulation of the immune responses could be a potential therapeutic strategy for COVID-19. Studies have shown that natural phenolic compounds have several pharmacological properties, including anticoronavirus and immunomodulatory activities. Therefore, this review discusses the dual action of these natural products from the perspective of applicability at COVID-19.
Collapse
Affiliation(s)
- Naiara Naiana Dejani
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| | - Carlos da Silva Maia Bezerra Filho
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
- Correspondence: ; Tel.: +55-83-3216-7347
| |
Collapse
|
11
|
Jubaidi FF, Zainalabidin S, Taib IS, Hamid ZA, Budin SB. The Potential Role of Flavonoids in Ameliorating Diabetic Cardiomyopathy via Alleviation of Cardiac Oxidative Stress, Inflammation and Apoptosis. Int J Mol Sci 2021; 22:ijms22105094. [PMID: 34065781 PMCID: PMC8151300 DOI: 10.3390/ijms22105094] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic cardiomyopathy is one of the major mortality risk factors among diabetic patients worldwide. It has been established that most of the cardiac structural and functional alterations in the diabetic cardiomyopathy condition resulted from the hyperglycemia-induced persistent oxidative stress in the heart, resulting in the maladaptive responses of inflammation and apoptosis. Flavonoids, the most abundant phytochemical in plants, have been reported to exhibit diverse therapeutic potential in medicine and other biological activities. Flavonoids have been widely studied for their effects in protecting the heart against diabetes-induced cardiomyopathy. The potential of flavonoids in alleviating diabetic cardiomyopathy is mainly related with their remedial actions as anti-hyperglycemic, antioxidant, anti-inflammatory, and anti-apoptotic agents. In this review, we summarize the latest findings of flavonoid treatments on diabetic cardiomyopathy as well as elucidating the mechanisms involved.
Collapse
Affiliation(s)
- Fatin Farhana Jubaidi
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Izatus Shima Taib
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
| | - Zariyantey Abd Hamid
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
- Correspondence: ; Tel.: +603-9289-7645
| |
Collapse
|
12
|
Liu P, Li J, Liu M, Zhang M, Xue Y, Zhang Y, Han X, Jing X, Chu L. Hesperetin modulates the Sirt1/Nrf2 signaling pathway in counteracting myocardial ischemia through suppression of oxidative stress, inflammation, and apoptosis. Biomed Pharmacother 2021; 139:111552. [PMID: 33839495 DOI: 10.1016/j.biopha.2021.111552] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/17/2022] Open
Abstract
Hesperetin (HSP) is a natural flavonoid that offers useful curative effects for cardiovascular diseases, but its effect on myocardial ischemia and its precise mechanism remains unclear. The aim of this study is to explore the potential cardioprotective mechanism of HSP on myocardial ischemia caused by isoproterenol (ISO). Adult male Kunming mice were randomly divided into five groups: control, ISO, low-dose HSP (L-HSP, 25 mg/kg/d), high-dose HSP (H-HSP, 50 mg/kg/d), and verapamil (VER) group. Treatment groups of mice received HSP or VER for seven days, and the groups other than the control group were injected with ISO (100 mg/kg/d) subcutaneously for two consecutive days to establish a model of myocardial ischemia. Electrocardiogram and heart-histology changes were used to assess changes in myocardial architecture. The activities and the content of oxidative stress markers and inflammatory cytokines were determined and assayed using kits respectively. The expressions of proteins associated with apoptosis and the Sirt1/Nrf2 pathway were evaluated by Western blotting. The results demonstrate that VER, L-HSP and H-HSP significantly reduced the J-point displacement, heart rate, cardiac pathomorphological changes, and the levels of creatine kinase, lactated dehydrogenase, malonaldehyde, interleukin-6, and tumor necrosis factor-α in serum while promoting the activation of superoxide dismutase, catalase, glutathione in serum in the ISO-treated animals. Furthermore, L-HSP and H-HSP also reversed the ISO-induced apoptosis and the changes in the Sirt1/Nrf2 signaling pathway, as evident from the levels of proteins Bax, Bcl-2, caspase-3, Sirt1, Nrf2, NQO-1, and HO-1. In conclusion, HSP plays a protective role in ISO-induced myocardial ischemia by modulating oxidative stress, inflammation, and apoptosis via Sirt1/Nrf2 pathway activation.
Collapse
Affiliation(s)
- Panpan Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Jinghan Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Miaomiao Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Muqing Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yucong Xue
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yuanyuan Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Xue Han
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| | - Xuan Jing
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China.
| |
Collapse
|
13
|
Salehi B, Cruz-Martins N, Butnariu M, Sarac I, Bagiu IC, Ezzat SM, Wang J, Koay A, Sheridan H, Adetunji CO, Semwal P, Schoebitz M, Martorell M, Sharifi-Rad J. Hesperetin's health potential: moving from preclinical to clinical evidence and bioavailability issues, to upcoming strategies to overcome current limitations. Crit Rev Food Sci Nutr 2021; 62:4449-4464. [PMID: 33491467 DOI: 10.1080/10408398.2021.1875979] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Flavonoids are common in the plant kingdom and many of them have shown a wide spectrum of bioactive properties. Hesperetin (Hst), the aglycone form of hesperidin, is a great example, and is the most abundant flavonoid found in Citrus plants. This review aims to provide an overview on the in vitro, in vivo and clinical studies reporting the Hst pharmacological effects and to discuss the bioavailability-related issues. Preclinical studies have shown promising effects on cancer, cardiovascular diseases, carbohydrate dysregulation, bone health, and other pathologies. Clinical studies have supported the Hst promissory effects as cardioprotective and neuroprotective agent. However, further well-designed clinical trials are needed to address the other Hst effects observed in preclinical trials, as well as to a more in-depth understanding of its safety profile.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Portugal
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Timisoara, Romania
| | - Ioan Sarac
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Timisoara, Romania
| | - Iulia-Cristina Bagiu
- Timisoara, Discipline of Microbiology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Jinfan Wang
- Trinity College Dublin. NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Aaron Koay
- Trinity College Dublin. NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Helen Sheridan
- Trinity College Dublin. NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, Auchi, Edo State, Nigeria
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, India
- Uttarakhand State Council for Science and Technology, Dehradun, Uttarakhand, India
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
14
|
Karim N, Shishir MRI, Gowd V, Chen W. Hesperidin-An Emerging Bioactive Compound against Metabolic Diseases and Its Potential Biosynthesis Pathway in Microorganism. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1858312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Naymul Karim
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Mohammad Rezaul Islam Shishir
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Vemana Gowd
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
15
|
Ni G, Wang K, Zhou Y, Wu X, Wang J, Shang H, Wang L, Li X. Citri reticulatae Pericarpium attenuates Ang II-induced pathological cardiac hypertrophy via upregulating peroxisome proliferator-activated receptors gamma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1064. [PMID: 33145283 PMCID: PMC7575934 DOI: 10.21037/atm-20-2118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Pathological cardiac hypertrophy is a major risk factor for cardiovascular diseases, including heart failure. However, limited pharmacological therapies are available for reversing the maladaptive process and restoring cardiac function. Citri reticulatae Pericarpium (CRP) has been used in traditional Chinese medicine prescriptions for clinical treatment. Previous studies have shown that CRP and its ingredients have beneficial effects on the cardiovascular system. However, whether CRP has a protective effect against pathological cardiac hypertrophy remains unknown. Methods Primary neonatal rat cardiomyocytes (NRCMs) were treated with angiotensin II (Ang II) to induce pathological hypertrophy in vitro. Immunofluorescent staining and quantitative real-time PCR (qRT-PCR) were used to determine the cell size and the expression of hypertrophic gene markers (Anp and Bnp), respectively. Male C57BL/6 mice were subjected to the investigation of cardiac hypertrophy induced by Ang II (2.5 mg/kg/d for 4 weeks). CRP (0.5 g/kg/d for 4 weeks) was administrated to treat mice with or without peroxisome proliferator-activated receptors gamma (PPARγ) inhibitor T0070907 (1 mg/kg/d for 4 weeks treatment) infused with Ang II. Cardiac hypertrophy (hematoxylin-eosin staining and qRT-PCR), fibrosis (Masson’s Trichrome staining, qRT-PCR, and western blot), and cardiac function (echocardiography) were examined in these mice. Western blot was used to determine the protein level of PPARγ and PGC-1α both in NRCMs and in mice. Results We found that CRP could prevent Ang II-induced pathological cardiac hypertrophy evidenced by improving cardiac function, decreasing hypertrophic growth and reducing cardiac fibrosis. Also, we demonstrated that PPARγ was upregulated by CRP both in NRCMs and in hearts. Moreover, PPARγ inhibitor could abolish the inhibitory effects of CRP on Ang II-induced pathological cardiac hypertrophy. Conclusions CRP attenuates Ang II-induced pathological cardiac hypertrophy by activating PPARγ.
Collapse
Affiliation(s)
- Gehui Ni
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yufei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaodong Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Hajizadeh Moghaddam A, Ahmadnia H, Jelodar SK, Ranjbar M. Hesperetin nanoparticles attenuate anxiogenic-like behavior and cerebral oxidative stress through the upregulation of antioxidant enzyme expression in experimental dementia of Alzheimer's type. Neurol Res 2020; 42:477-486. [PMID: 32252616 DOI: 10.1080/01616412.2020.1747716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: In this study, we investigate the neuroprotective effects of Hesperetin (Hst) and Nano-Hst on anxiogenic-like behavior and cerebral antioxidant defenses at transcriptional and enzymatic levels in a streptozotocin (STZ)-induced Alzheimer rat model.Methods: Wistar rats were administrated with Hst and Nano-Hst (10 and 20 mg/kg/d) for three weeks. The elevated plus-maze test assessed anxiogenic-like behavior. After behavioral test, activity and gene expression of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GRx) enzymes, as well as malondialdehyde (MDA) and glutathione (GSH) levels, were measured in the cerebral cortex.Results: Based on our results, a rat model of Alzheimer's disease (AD) exhibited anxiogenic-like behavior, activity and gene expression of cerebral antioxidant enzymes and GSH level was decreased while the MDA level was increased. Hst and Nano-Hst treatment reversed anxiogenic-like behavior, and the activities of antioxidant enzymes were elevated. Hst and Nano-Hst effects on the gene expression of CAT, SOD and GRx were confirmed by quantitative real-time PCR (qRT-PCR) in which the expression levels of these genes in the cerebral brain were significantly increased compared to STZ group.Conclusions: These findings indicated that the administration of Hst and Nano-Hst may be used to treat anxiety -related to AD via an up-regulation of cerebral antioxidant enzyme gene.
Collapse
Affiliation(s)
| | - Hananeh Ahmadnia
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
17
|
Tan Y, Chen S, Zhong J, Ren J, Dong M. Mitochondrial Injury and Targeted Intervention in Septic Cardiomyopathy. Curr Pharm Des 2019; 25:2060-2070. [PMID: 31284854 DOI: 10.2174/1381612825666190708155400] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/20/2019] [Indexed: 12/31/2022]
Abstract
Background:
Sepsis and septic shock are known to prompt multiple organ failure including cardiac
contractile dysfunction, which is typically referred to as septic cardiomyopathy. Among various theories postulated
for the etiology of septic cardiomyopathy, mitochondrial injury (both morphology and function) in the heart
is perceived as the main culprit for reduced myocardial performance and ultimately heart failure in the face of
sepsis.
Methods:
Over the past decades, ample of experimental and clinical work have appeared, focusing on myocardial
mitochondrial changes and related interventions in septic cardiomyopathy.
Results and Conclusion:
Here we will briefly summarize the recent experimental and clinical progress on myocardial
mitochondrial morphology and function in sepsis, and discuss possible underlying mechanisms, as well as
the contemporary interventional options.
Collapse
Affiliation(s)
- Ying Tan
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sainan Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, 528300, Guangdong, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Maolong Dong
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
18
|
Li H, Xing Y, Yang D, Tang X, Lu D, Wang H. Alpha-1 Adrenergic Receptor Agonist Phenylephrine Inhibits Sepsis-Induced Cardiomyocyte Apoptosis and Cardiac Dysfunction via Activating ERK1/2 Signal Pathway. Shock 2019; 52:122-133. [PMID: 29889817 DOI: 10.1097/shk.0000000000001205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It was demonstrated that α1 adrenergic receptor (α1-AR) activation by phenylephrine (PE) attenuated cardiac dysfunction in lipopolysaccharide (LPS)-challenged mice. However, it is unclear whether PE suppresses sepsis-induced cardiomyocyte apoptosis. Here, we investigated the effects of PE on cardiomyocyte apoptosis in LPS-treated adult rat ventricular myocytes (ARVMs) and septic rats induced by cecal ligation and puncture. Cardiomyocyte apoptosis and caspase activity were detected by TUNEL and spectrophotometrical assay, respectively. Bax, Bcl-2 and cytochrome c (Cyt c) levels as well as IκBα, ERK1/2, p38 MAPK, JNK and cardiac troponin I (cTnI) phosphorylation were analyzed by Western blotting, and TNF-α concentration was analyzed by ELISA. PE inhibited LPS-induced caspase-3 activation in ARVMs, which was reversed by prazosin (a membrane permeable α1-AR antagonist), but not by CGP12177A (a membrane impermeable α1-AR antagonist). PE upregulated phosphorylated ERK1/2 and Bcl-2 contents, decreased TNF-α and Bax levels, Cyt c release, caspase-8/-9 activities as well as IκBα, p38MAPK and JNK phosphorylation in LPS-treated ARVMs, all of which were abolished by prazosin. Treatment with U0126 (a specific ERK1/2 inhibitor) reversed the effects of PE on IκBα, p38MAPK and JNK phosphorylation as well as caspase-3/-8/-9 activation in LPS-treated ARVMs. In septic rats, PE not only inhibited myocardial apoptosis as well as IκBα, p38MAPK, and JNK phosphorylation, but also upregulated myocardial phosphorylated ERK1/2. Furthermore, PE inhibited myocardial cTnI phosphorylation and improved cardiac function in septic rats. Taken together, our data suggest that α1-AR activation by PE inhibits sepsis-induced cardiomyocyte apoptosis and cardiac dysfunction via activating ERK1/2 signal pathway.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | | | | | | | | | | |
Collapse
|
19
|
KONG LN, LIN X, HUANG C, MA TT, MENG XM, HU CJ, WANG QQ, LIU YH, SHI QP, LI J. Hesperetin derivative-12 (HDND-12) regulates macrophage polarization by modulating JAK2/STAT3 signaling pathway. Chin J Nat Med 2019; 17:122-130. [DOI: 10.1016/s1875-5364(19)30014-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 12/17/2022]
|
20
|
Chen Y, Qiu J, Chen B, Lin Y, Chen Y, Xie G, Qiu J, Tong H, Jiang D. RETRACTED: Long non-coding RNA NEAT1 plays an important role in sepsis-induced acute kidney injury by targeting miR-204 and modulating the NF-κB pathway. Int Immunopharmacol 2018; 59:252-260. [PMID: 29669307 DOI: 10.1016/j.intimp.2018.03.023] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/09/2018] [Accepted: 03/20/2018] [Indexed: 01/17/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of authors with the approval of the Editor-in-Chief.
Panel ‘LPS+sh-NEAT1’ from Figure 2C appears similar to panel ‘si-PVT1’ from Figure 2A of the article published by Wei Huang, Xiuwen Lan, Xueting Li, Dawei Wang, Yinghao Sun, Qian Wang, Hong Gao and Kaijiang Yu in the International Immunopharmacology 47 (2017) 134-140 http://dx.doi.org/10.1016/j.intimp.2017.03.030 and panel ‘Control’ from Figure 1D of the article published by Xiaodi Liu, Chengying Hong, Shipin Wu, Shiling Song, Zhi Yang, Lin Cao, Tongwei Song and Ying Yang in the Journal of Cellular Biochemistry 120 (2019) 11331-11341 https://doi.org/10.1002/jcb.28409.
Given the comments of Dr Elisabeth Bik https://scienceintegritydigest.com/2020/02/21/the-tadpole-paper-mill/ regarding this article, the journal requested the corresponding author to provide the raw data. However, the author was not able to fulfil this request.
Collapse
Affiliation(s)
- Yi Chen
- Department of Critical Care Medicine, The Fifth People's Hospital of Dongguan, Dongguan Hospital Affiliated to Medical College of Jinan University, Dongguan 523900, China
| | - Jialing Qiu
- Department of Critical Care Medicine, Medical College of Jinan University, Jinan, Guangzhou 510000, China
| | - Bin Chen
- Department of Critical Care Medicine, The Fifth People's Hospital of Dongguan, Dongguan Hospital Affiliated to Medical College of Jinan University, Dongguan 523900, China
| | - Youping Lin
- Department of Critical Care Medicine, The Fifth People's Hospital of Dongguan, Dongguan Hospital Affiliated to Medical College of Jinan University, Dongguan 523900, China
| | - Yulan Chen
- Department of Critical Care Medicine, The Fifth People's Hospital of Dongguan, Dongguan Hospital Affiliated to Medical College of Jinan University, Dongguan 523900, China
| | - Guojin Xie
- Department of Critical Care Medicine, The Fifth People's Hospital of Dongguan, Dongguan Hospital Affiliated to Medical College of Jinan University, Dongguan 523900, China
| | - Junming Qiu
- Department of ICU, General Hospital of Guangzhou Military Command, Key Laboratory of Tropical Zone Trauma Care and Tissue Repair of PLA, Guangzhou, Guangdong, China
| | - Huasheng Tong
- Department of ICU, General Hospital of Guangzhou Military Command, Key Laboratory of Tropical Zone Trauma Care and Tissue Repair of PLA, Guangzhou, Guangdong, China
| | - Dongxin Jiang
- Department of Critical Care Medicine, The Fifth People's Hospital of Dongguan, Dongguan Hospital Affiliated to Medical College of Jinan University, Dongguan 523900, China.
| |
Collapse
|
21
|
Zhang B, Gao C, Li Y, Wang M. D-chiro-inositol enriched Fagopyrum tataricum (L.) Gaench extract alleviates mitochondrial malfunction and inhibits ER stress/JNK associated inflammation in the endothelium. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:83-89. [PMID: 29225119 DOI: 10.1016/j.jep.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tartary buckwheat is a food medicine dual-use crop with healing effects on cardiovascular diseases and type2 diabetes. It has been proposed that endothelial dysfunction is the initial lesion in these diseases and it's associated with mitochondrial dysfunction, endoplasmic reticulum (ER) stress and inflammation. D-chiro-inositol (DCI) is a bioactive compound of Tartary buckwheat and is always deficit in type2 diabetes. However, it remains unknown whether DCI-enriched Tartary buckwheat extract can ameliorate mitochondrial dysfunction, ER stress and inflammation in the endothelium. MATERIAL AND METHODS Endothelial cells were treated with palmitic acid (PA) and mice were fed with high fat diet (HFD). The effects of DCI-enriched Tartary buckwheat bran extract (TBBE) on superoxide anion generation, dynamin-related protein 1 (Drp1), mitofusin2 (Mfn2), inositol-requiring enzyme-1α (IRE1α) and Jun n-terminal kinase (JNK) activation and inflammation in the endothelium against lipotoxicity were investigated. RESULTS In endothelial cells, TBBE significantly inhibited oxidative stress. Meanwhile, in HFD-fed mice and PA-induced cells, TBBE regulated Drp1 phosphorylation and inhibited its activation, implying the protective effect of TBBE on mitochondrial morphology. As a result, TBBE protected mitochondrial function. Additionally, TBBE inhibited ER stress and reduced the production of IL-6 and VCAM-1, associated with JNK pathway, thereby inhibiting the caspase-3 activation in vivo and in vitro. CONCLUSIONS Taken together, this study indicated the beneficial role of TBBE in endothelial inflammation, with emphasis on mitochondrial dysfunction, ER stress and JNK activation.
Collapse
Affiliation(s)
- Bobo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Caifeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yunlong Li
- Institute of agricultural products processing, Shanxi Academy of Agriculture Sciences, Taiyuan 030031, PR China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
22
|
Asgary S, Rastqar A, Keshvari M. Functional Food and Cardiovascular Disease Prevention and Treatment: A Review. J Am Coll Nutr 2018. [PMID: 29528772 DOI: 10.1080/07315724.2017.1410867] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease (CVD) is now the leading cause of death globally and is a growing health concern. Lifestyle factors, including nutrition, play an important role in the etiology and treatment of CVD. Functional foods based on their basic nutritional functions can decrease the risk of many chronic diseases and have some physiological benefits. They contain physiologically active components either from plant or animal sources, marketed with the claim of their ability to reduce heart disease risk, focusing primarily on established risk factors, which are hyperlipidemia, diabetes, metabolic syndrome, obesity/overweight, elevated lipoprotein A level, small dense low-density lipoprotein cholesterol (LDL-C), and elevated inflammatory marker levels. Functional foods are suspected to exert their cardioprotective effects mainly through blood lipid profile level and improve hypertension control, endothelial function, platelet aggregation, and antioxidant actions. Clinical and epidemiological observations indicate that vegetable and fruit fiber, nuts and seeds, sea foods, coffee, tea, and dark chocolate have cardioprotective potential in humans, as well whole-grain products containing intact grain kernels rich in fiber and trace nutrients. They are nutritionally more important because they contain phytoprotective substances that might work synergistically to reduce cardiovascular risk. This review will focus on the reciprocal interaction between functional foods and the potential link to cardiovascular health and the possible mechanisms of action.
Collapse
Affiliation(s)
- Sedigheh Asgary
- a Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Ali Rastqar
- b Department of Psychiatry and Neuroscience , Université Laval, Québec , Québec , Canada.,c Research Center of University Affiliated Québec Mental Health Institute, Québec , Québec , Canada
| | - Mahtab Keshvari
- a Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences , Isfahan , Iran
| |
Collapse
|
23
|
Zhang N, Wei WY, Li LL, Hu C, Tang QZ. Therapeutic Potential of Polyphenols in Cardiac Fibrosis. Front Pharmacol 2018; 9:122. [PMID: 29497382 PMCID: PMC5818417 DOI: 10.3389/fphar.2018.00122] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/02/2018] [Indexed: 01/02/2023] Open
Abstract
Cardiac fibrosis, in response to injury and stress, is central to a broad constellation of cardiovascular diseases. Fibrosis decreases myocardial wall compliance due to extracellular matrix (ECM) accumulation, leading to impaired systolic and diastolic function and causing arrhythmogenesis. Although some conventional drugs, such as β-blockers and renin-angiotensin-aldosterone system (RAAS) inhibitors, have been shown to alleviate cardiac fibrosis in clinical trials, these traditional therapies do not tend to target all the fibrosis-associated mechanisms, and do not hamper the progression of cardiac fibrosis in patients with heart failure. Polyphenols are present in vegetables, fruits, and beverages and had been proposed as attenuators of cardiac fibrosis in different models of cardiovascular diseases. Together with results found in the literature, we can show that some polyphenols exert anti-fibrotic and myocardial protective effects by mediating inflammation, oxidative stress, and fibrotic molecular signals. This review considers an overview of the mechanisms of cardiac fibrosis, illustrates their involvement in different animal models of cardiac fibrosis treated with some polyphenols and projects the future direction and therapeutic potential of polyphenols on cardiac fibrosis.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen-Ying Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ling-Li Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
24
|
Zhou MQ, Shao L, Wu J, Peng N, Jin LP, Wei GZ, Cheng W, Deng CJ. Dihydromyricetin protects against lipopolysaccharide-induced cardiomyocyte injury through the toll-like receptor-4/nuclear factor-κB pathway. Mol Med Rep 2017; 16:8983-8988. [PMID: 29039483 DOI: 10.3892/mmr.2017.7742] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 03/24/2017] [Indexed: 11/06/2022] Open
|
25
|
Woo M, Kim M, Noh JS, Park CH, Song YO. Kimchi attenuates fatty streak formation in the aorta of low-density lipoprotein receptor knockout mice via inhibition of endoplasmic reticulum stress and apoptosis. Nutr Res Pract 2017; 11:445-451. [PMID: 29209454 PMCID: PMC5712494 DOI: 10.4162/nrp.2017.11.6.445] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND/OBJECTIVES Endoplasmic reticulum (ER) stress is positively associated with atherosclerosis via elevating macrophage cell death and plaque formation, in which oxidative stress plays a pivotal role. Antioxidative, lipid-lowering, and anti-atherogenic effects of kimchi, a Korean fermented vegetable, have been established, wherein capsaicin, ascorbic acid, quercetin, 3-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid, and lactic acids were identified. In this study, mechanisms of action of kimchi methanol extracts (KME) on fatty streak formation via suppression of ER stress and apoptosis in aorta were examined in low-density lipoprotein receptor knockout mice. MATERIALS AND METHODS Mice fed a high cholesterol diet with an oral administration of KME (KME group, 200 mg·kg-bw−1·day−1) or distilled water (control group) for 8 weeks (n = 20 for group). Plasma lipid and oxidative stress levels were evaluated. Protein expression was measured by western blot assay. Fatty streak lesion size and the degree of apoptosis were examined in the aorta. RESULTS Compared to the control group, in the KME group, plasma lipids levels were decreased and oxidative stress was alleviated (P < 0.05). Protein expression levels of nuclear factor (erythroid-derived 2)-like 2-mediated antioxidants in aorta were increased whereas those for ER stress markers, glucose regulated protein 78, phospho-protein kinase RNA-like ER kinase, phospho-eukaryotic initiation factor 2 subunit α, X-box binding protein 1, and C/EBP homologous protein were decreased in the KME group (P < 0.05). Moreover, apoptosis was suppressed via downregulation of phospho-c-Jun N-terminal kinase, bcl-2-associated X protein, caspases-9, and -3 with a concomitant upregulation of anti-apoptotic protein, B-cell lymphoma 2 (P < 0.05). Fatty streak lesion size was reduced and the degree of apoptosis was less severe in the KME group (P < 0.05). CONCLUSIONS In conclusion, antioxidant activity of KME might prevent fatty streak formation through, in part, inhibition of ER stress and apoptosis in aortic sinus where macrophages are harbored.
Collapse
Affiliation(s)
- Minji Woo
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Mijeong Kim
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Jeong Sook Noh
- Department of Food Science and Nutrition, Tongmyong University, Busan 48520, Korea
| | - Chan Hum Park
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 55365, Korea
| | - Yeong Ok Song
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
26
|
Barreca D, Gattuso G, Bellocco E, Calderaro A, Trombetta D, Smeriglio A, Laganà G, Daglia M, Meneghini S, Nabavi SM. Flavanones: Citrus phytochemical with health-promoting properties. Biofactors 2017; 43:495-506. [PMID: 28497905 DOI: 10.1002/biof.1363] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 12/26/2022]
Abstract
Citrus fruit and juices represent one of the main sources of compounds with a high potential for health promoting properties. Among these compounds, flavanones (such as hesperetin, naringenin, eriodictyol, isosakuranetin, and their respective glycosides), which occur in quantities ranging from ∼180 to 740 mg/L (depending on the Citrus species and cultivar) are responsible for many biological activities. These compounds support and enhance the body's defenses against oxidative stress and help the organism in the prevention of cardiovascular diseases, atherosclerosis, and cancer. Moreover, among other properties, they also show anti-inflammatory, antiviral, and antimicrobial activities. This review analyzes the biochemistry, pharmacology, and biology of Citrus flavanones, emphasizing the occurrence in Citrus fruits and juices and their bioavailability, structure-function correlations and ability to modulate signal cascades both in vitro and in vivo. © 2017 BioFactors, 43(4):495-506, 2017.
Collapse
Affiliation(s)
- Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Giuseppe Gattuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Ersilia Bellocco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Silvia Meneghini
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Mattera R, Benvenuto M, Giganti MG, Tresoldi I, Pluchinotta FR, Bergante S, Tettamanti G, Masuelli L, Manzari V, Modesti A, Bei R. Effects of Polyphenols on Oxidative Stress-Mediated Injury in Cardiomyocytes. Nutrients 2017; 9:nu9050523. [PMID: 28531112 PMCID: PMC5452253 DOI: 10.3390/nu9050523] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases are the main cause of mortality and morbidity in the world. Hypertension, ischemia/reperfusion, diabetes and anti-cancer drugs contribute to heart failure through oxidative and nitrosative stresses which cause cardiomyocytes nuclear and mitochondrial DNA damage, denaturation of intracellular proteins, lipid peroxidation and inflammation. Oxidative or nitrosative stress-mediated injury lead to cardiomyocytes apoptosis or necrosis. The reactive oxygen (ROS) and nitrogen species (RNS) concentration is dependent on their production and on the expression and activity of anti-oxidant enzymes. Polyphenols are a large group of natural compounds ubiquitously expressed in plants, and epidemiological studies have shown associations between a diet rich in polyphenols and the prevention of various ROS-mediated human diseases. Polyphenols reduce cardiomyocytes damage, necrosis, apoptosis, infarct size and improve cardiac function by decreasing oxidative stress-induced production of ROS or RNS. These effects are achieved by the ability of polyphenols to modulate the expression and activity of anti-oxidant enzymes and several signaling pathways involved in cells survival. This report reviews current knowledge on the potential anti-oxidative effects of polyphenols to control the cardiotoxicity induced by ROS and RNS stress.
Collapse
Affiliation(s)
- Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | | | - Sonia Bergante
- IRCCS "S. Donato" Hospital, San Donato Milanese, Piazza Edmondo Malan, 20097 Milan, Italy.
| | - Guido Tettamanti
- IRCCS "S. Donato" Hospital, San Donato Milanese, Piazza Edmondo Malan, 20097 Milan, Italy.
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", 00164 Rome, Italy.
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Center for Regenerative Medicine (CIMER), University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Center for Regenerative Medicine (CIMER), University of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
28
|
He S, Wang X, Zhong Y, Tang L, Zhang Y, Ling Y, Tan Z, Yang P, Chen A. Hesperetin post-treatment prevents rat cardiomyocytes from hypoxia/reoxygenation injury in vitro via activating PI3K/Akt signaling pathway. Biomed Pharmacother 2017; 91:1106-1112. [PMID: 28531921 DOI: 10.1016/j.biopha.2017.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/11/2017] [Accepted: 05/01/2017] [Indexed: 01/04/2023] Open
Abstract
Hesperidin (HES), a citrus fruit extract, has beneficial effects on various ischemia/reperfusion (I/R) models. Here, we investigated the possible positive effect of hesperetin (HPT), an active metabolite of HES, and identified the potential molecular mechanisms involved in cardiomyocytes H/R-induced injury. To construct the cardiomyocyte model of hypoxia/reoxygenation (H/R) injury, cultured neonatal rat cardiomyocytes were subjected to 3h of hypoxia followed by 3h of reoxygenation. Cell viability and apoptosis were detected. The levels of Apoptosis-related proteins and PI3K/Akt proteins were detected by western blot. Our results showed that HPT post-treatment significantly inhibited apoptosis by elevating the expression of Bcl-2, decreasing the expression of Bax and cleaved caspase-3, and diminished the apoptotic cardiomyocytes ratio. Mechanism studies demonstrated that HPT post-treatment up-regulated the expression levels of p-PI3K, and p-Akt. Co-treatment of the cardiomyocytes with the PI3K/Akt-specific inhibitor LY294002 blocked the HPT-induced cardioprotective effects. Taken together, these data suggested that HPT post-treatment prevented cardiomyocytes from H/R injury in vitro most likely through the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Shangfei He
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Xianbao Wang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Yongkang Zhong
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Lu Tang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Ya Zhang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Yuanna Ling
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Zhipeng Tan
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Pingzhen Yang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China
| | - Aihua Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Road, Guangzhou 510280, China.
| |
Collapse
|
29
|
Testai L, Calderone V. Nutraceutical Value of Citrus Flavanones and Their Implications in Cardiovascular Disease. Nutrients 2017; 9:nu9050502. [PMID: 28509871 PMCID: PMC5452232 DOI: 10.3390/nu9050502] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 01/23/2023] Open
Abstract
Background- Cardiovascular diseases, including myocardial infarction, dyslipidaemia and coronary artery pathology, are a major cause of illness and death in Western countries. Therefore, identifying effective therapeutic approaches and their cellular signalling pathways is a challenging goal for medicine. In this regard, several epidemiological studies demonstrate a relationship between the intake of flavonoid-rich foods and the reduction of cardiovascular risk factors and mortality. In particular, flavonoids present in citrus fruits, such as oranges, bergamots, lemons and grapefruit (95% from flavanones), are emerging for their considerable nutraceutical value. Methods- In this review an examination of literature was performed while considering both epidemiological, clinical and pre-clinical evidence supporting the beneficial role of the flavanone class. We evaluated studies in which citrus fruit juices or single flavanone administration and cardiovascular risk factors were analysed; to identify these studies, an electronic search was conducted in PUBMED for papers fulfilling these criteria and written in English. Results- In addition to epidemiological evidence and clinical studies demonstrating that fruits in the Citrus genus significantly reduce the incidence of cardiovascular disease risk, pre-clinical investigations highlight cellular and subcellular targets that are responsible for these beneficial effects. There has been special attention on evaluating intracellular pathways involved in direct cardiovascular and cardiometabolic effects mediated by naringenin, hesperetin and eriodictyol or their glycosylated derivatives. Conclusions- Although some mechanisms of action remain unclear and bioavailability problems remain to be solved, the current evidence supports the use of a nutraceutical approach with citrus fruits to prevent and cure several aspects of cardiovascular disease.
Collapse
Affiliation(s)
- Lara Testai
- Department of Farmacia, University of Pisa, via Bonanno, 6 56120 Pisa, Italy.
- Interdepartmental Center of Nutrafood, University of Pisa, via Del Borghetto, 80 56124 Pisa, Italy.
| | - Vincenzo Calderone
- Department of Farmacia, University of Pisa, via Bonanno, 6 56120 Pisa, Italy.
- Interdepartmental Center of Nutrafood, University of Pisa, via Del Borghetto, 80 56124 Pisa, Italy.
| |
Collapse
|
30
|
Inhibitory effects of hesperetin on Kv1.5 potassium channels stably expressed in HEK 293 cells and ultra-rapid delayed rectifier K + current in human atrial myocytes. Eur J Pharmacol 2016; 789:98-108. [DOI: 10.1016/j.ejphar.2016.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/29/2016] [Accepted: 07/07/2016] [Indexed: 12/16/2022]
|
31
|
Fernández-Solà J, Planavila Porta A. New Treatment Strategies for Alcohol-Induced Heart Damage. Int J Mol Sci 2016; 17:E1651. [PMID: 27690014 PMCID: PMC5085684 DOI: 10.3390/ijms17101651] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023] Open
Abstract
High-dose alcohol misuse induces multiple noxious cardiac effects, including myocyte hypertrophy and necrosis, interstitial fibrosis, decreased ventricular contraction and ventricle enlargement. These effects produce diastolic and systolic ventricular dysfunction leading to congestive heart failure, arrhythmias and an increased death rate. There are multiple, dose-dependent, synchronic and synergistic mechanisms of alcohol-induced cardiac damage. Ethanol alters membrane permeability and composition, interferes with receptors and intracellular transients, induces oxidative, metabolic and energy damage, decreases protein synthesis, excitation-contraction coupling and increases cell apoptosis. In addition, ethanol decreases myocyte protective and repair mechanisms and their regeneration. Although there are diverse different strategies to directly target alcohol-induced heart damage, they are partially effective, and can only be used as support medication in a multidisciplinary approach. Alcohol abstinence is the preferred goal, but control drinking is useful in alcohol-addicted subjects not able to abstain. Correction of nutrition, ionic and vitamin deficiencies and control of alcohol-related systemic organ damage are compulsory. Recently, several growth factors (myostatin, IGF-1, leptin, ghrelin, miRNA, and ROCK inhibitors) and new cardiomyokines such as FGF21 have been described to regulate cardiac plasticity and decrease cardiac damage, improving cardiac repair mechanisms, and they are promising agents in this field. New potential therapeutic targets aim to control oxidative damage, myocyte hypertrophy, interstitial fibrosis and persistent apoptosis In addition, stem-cell therapy may improve myocyte regeneration. However, these strategies are not yet approved for clinical use.
Collapse
Affiliation(s)
- Joaquim Fernández-Solà
- Alcohol Unit, Department of Internal Medicine, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain.
| | - Ana Planavila Porta
- Departament of Biochemistry and Molecular Biomedicine, Faculty of Biology, Avda Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
32
|
Liao PH, Kuo WW, Hsieh DJY, Yeh YL, Day CH, Chen YH, Chang SH, Padma VV, Chen YH, Huang CY. Heat-killed Lactobacillus Reuteri GMNL-263 Prevents Epididymal Fat Accumulation and Cardiac Injury in High-Calorie Diet-Fed Rats. Int J Med Sci 2016; 13:569-77. [PMID: 27499689 PMCID: PMC4974905 DOI: 10.7150/ijms.15597] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022] Open
Abstract
High-calorie diet-induced obesity leads to cardiomyocyte dysfunction and apoptosis. Impaired regulation of epididymal fat content in obese patients has been known to increase the risk of cardiac injury. In our study, a lactic acid bacteria, Lactobacillus reuteri GMNL-263, was evaluated for its potential to reduce body weight and body fat ratio and to prevent heart injury in rats with high-fat diet-induced obesity. Lactic acid bacteria supplementation restored the cardiac function and decreased the physiological changes in the heart of the obese rats. In addition, the Fas/Fas-associated protein pathway-induced caspase 3/e Poly polymerase mediated apoptosis in the cardiomyocytes of the obese rats was reversed in the Lr263-treated rats. These results reveal that fed with Lr-263 reduces body fat ratio, inhibits caspase 3-mediated apoptosis and restores cardiac function in obese rats through recovery of ejection fraction and fractional shortening. Our results indicated that the administration of Lr263 lactic acid bacteria can significantly down-regulate body fat and prevent cardiomyocyte injury in obese rats.
Collapse
Affiliation(s)
- Po-Hsiang Liao
- 1. Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- 2. Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- 3. School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Lan Yeh
- 4. Department of pathology, Changhua Christian Hospital, Changhua, Taiwan; 5. Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Cecilia-Hsuan Day
- 6. Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Ya-Hui Chen
- 7. Department of Research and Development, GenMont Biotech Incorporation, Tainan, Taiwan
| | - Sheng-Huang Chang
- 8. Department of Health, Tsao-Tun Psychiatric Center, Executive Yuan, Nantou, Taiwan
| | - V Vijaya Padma
- 9. Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Yi-Hsing Chen
- 7. Department of Research and Development, GenMont Biotech Incorporation, Tainan, Taiwan; 10. Institute of Biomedical Science, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Yang Huang
- 1. Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; 11. Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan; 12. Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
33
|
Han H, Hu J, Yan Q, Zhu J, Zhu Z, Chen Y, Sun J, Zhang R. Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model. Mol Med Rep 2015; 13:1517-24. [PMID: 26718099 PMCID: PMC4732861 DOI: 10.3892/mmr.2015.4726] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 11/25/2015] [Indexed: 12/21/2022] Open
Abstract
The transplantation of mesenchymal stem cells (MSCs) is considered to be a promising treatment for ischemic heart disease; however, the therapeutic effects and underlying mechanisms of action require further evaluation. Mitochondrial dysfunction is a key event in simulated ischemia/reperfusion (SI/R) injury. The purpose of the present study was to investigate the mechanism of mitochondrial transfer, which may be involved the antiapoptotic action of co-culture with MSCs. An in vitro model of simulated ischemia/reperfusion (SI/R) was used in the present study. The apoptotic indexes were significantly increased when H9c2 cardiomyocytes were induced in the SI/R group. Following co-culture with bone marrow-derived (BM)-MSCs, H9c2 cells exhibited marked resistance against the SI/R-induced apoptotic process. Besides, mitochondrial transfer via a tunneling nanotube (TNT) like structure was detected by confocal fluorescent microscopy. In addition, following pretreated with latrunculin-A (LatA), an inhibitor of TNT formation, the BM-MSCs were not able to rescue injured H9c2 cells from apoptosis, as previously observed. In conclusion, the anti-apoptotic ability of BM-MSCs may be partially attributed to the recovery of mitochondrial dysfunction in SI/R, and the formation of TNTs appears to be involved in this action of mitochondrial transfer between adjacent cells.
Collapse
Affiliation(s)
- Hui Han
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jinquan Hu
- Department of Orthopedic Surgery, Changzheng Hospital, Shanghai 200003, P.R. China
| | - Qiang Yan
- Department of Gynaecology and Obstetrics, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210008, P.R. China
| | - Jinzhou Zhu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhengbin Zhu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yanjia Chen
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jiateng Sun
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Ruiyan Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
34
|
Protective Effect of Oral Hesperetin Against Unilateral Striatal 6-Hydroxydopamine Damage in the Rat. Neurochem Res 2015; 41:1065-72. [DOI: 10.1007/s11064-015-1796-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 12/01/2015] [Accepted: 12/08/2015] [Indexed: 12/12/2022]
|
35
|
LI FANGFANG, YUAN YUAN, LIU YUAN, WU QINGQING, JIAO RONG, YANG ZHENG, ZHOU MENGQIAO, TANG QIZHU. Pachymic acid protects H9c2 cardiomyocytes from lipopolysaccharide-induced inflammation and apoptosis by inhibiting the extracellular signal-regulated kinase 1/2 and p38 pathways. Mol Med Rep 2015; 12:2807-13. [DOI: 10.3892/mmr.2015.3712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 02/06/2015] [Indexed: 11/05/2022] Open
|
36
|
Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci 2015; 124:64-74. [PMID: 25625242 DOI: 10.1016/j.lfs.2014.12.030] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/09/2014] [Accepted: 12/31/2014] [Indexed: 01/27/2023]
Abstract
Hesperidin (Hsd) and its aglycone, hesperetin (Hst), are two flavonoids from citrus species that have various biological properties, particularly those for the prevention of cancer and cardiovascular diseases. Studies have shown both anti-cancer and cancer chemopreventive effects for Hsd and Hst. Cancer chemopreventive properties of Hsd and Hst are mainly associated with their antioxidant, radical scavenging and anti-inflammatory activities. In addition, Hsd and Hst interfere at different stages of cancer. Unlike conventional anti-cancer drugs, Hsd and Hst inhibit tumor growth by targeting multiple cellular protein targets at the same time, including caspases, Bcl-2 (B-cell lymphoma 2) and Bax (Bcl-2 associated X protein) for the induction of apoptosis, and COX-2 (cyclooxygenase-2), MMP-2 (matrix metalloproteinase-2) and MMP-9 for the inhibition of angiogenesis and metastasis. The results of the recent basic and clinical studies revealed the beneficial effects for Hst, Hsd and their derivatives in the treatment of heart failure and cardiac remodeling, myocardial ischemia and infarction, and hypertension. In addition, the valuable effects of Hst and Hsd in the treatment of diabetes and dyslipidemia with their anti-platelet and anticoagulant effects make them good candidates in the treatment of various cardiovascular diseases. In this review, new findings regarding the molecular targets of Hsd and Hst, animal studies and clinical trials are discussed.
Collapse
|