1
|
Ying J, Chen X, Lv T, Jie F, Tian H. Mendelian randomization analysis to explore the relationship between cathepsins and malignant ovarian tumors. Medicine (Baltimore) 2024; 103:e40219. [PMID: 39560510 PMCID: PMC11575957 DOI: 10.1097/md.0000000000040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/04/2024] [Indexed: 11/20/2024] Open
Abstract
Cysteine cathepsins are a family of lysosomal proteases that are often overexpressed in several human malignancies and haves been linked to cellular genomic alterations, disturbances in genomic stability, and the onset and spread of cancer. Recent studies have shown alterations in cysteine cathepsins in malignant ovarian tumors. However, it remains unclear whether there is a causal relationship between ovarian cancer, and its subtypes, and the cathepsin family. This study utilized two-sample Mendelian randomization (MR) analysis to examine this potential causal relationship. Genetic instruments derived from publicly available genetic summary data were used for the analyses. For MR analysis, the inverse-variance weighted method, weighted median method, and MR-Egger regression were employed. Multivariate MR analysis was performed concurrently. Univariate MR analysis indicated a strong correlation between decreased incidence of low-grade serous ovarian cancer and elevated levels of cathepsin L2 (odds ratio = 0.803, 95% confidence interval = 0.685-0.942, P = .007), whereas clear cell ovarian cancer showed a strong correlation with elevated levels of cathepsin H (odds ratio = 1.149, 95% confidence interval = 1.036-1.274, P = .008). Multivariate analysis, adjusted for 9 different cathepsins as covariates, confirmed the genetic relationships between cathepsin L2 and low-grade serous ovarian cancer and between cathepsin H and clear cell ovarian cancer. Our results suggest a causal relationship between cathepsins and ovarian malignancy and its subtypes. Cathepsin L2 has a protective effect on low-grade serous ovarian cancer, whereas cathepsin H is an adverse risk factor for clear cell ovarian cancer.
Collapse
Affiliation(s)
- Jiaqi Ying
- Gynaecology and Obstetrics, Women and Children’s Hospital of Zhoushan, Zhoushan, China
| | - Xia Chen
- Outpatient Department, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
| | - Tian Lv
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical, University, Zhuji, China
| | - Fang Jie
- Gynaecology and Obstetrics, Women and Children’s Hospital of Shaoxing, Shaoxing, China
| | - Huanyong Tian
- Department of Radiotherapy, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
| |
Collapse
|
2
|
Rot AE, Hrovatin M, Bokalj B, Lavrih E, Turk B. Cysteine cathepsins: From diagnosis to targeted therapy of cancer. Biochimie 2024; 226:10-28. [PMID: 39245316 DOI: 10.1016/j.biochi.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Cysteine cathepsins are a fascinating group of proteolytic enzymes that play diverse and crucial roles in numerous biological processes, both in health and disease. Understanding these proteases is essential for uncovering novel insights into the underlying mechanisms of a wide range of disorders, such as cancer. Cysteine cathepsins influence cancer biology by participating in processes such as extracellular matrix degradation, angiogenesis, immune evasion, and apoptosis. In this comprehensive review, we explore foundational research that illuminates the diverse and intricate roles of cysteine cathepsins as diagnostic markers and therapeutic targets for cancer. This review aims to provide valuable insights into the clinical relevance of cysteine cathepsins and explore their capacity to advance personalised and targeted medical interventions in oncology.
Collapse
Affiliation(s)
- Ana Ercegovič Rot
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Matija Hrovatin
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Bor Bokalj
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Ernestina Lavrih
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Kwon YJ, Lee J, Seo EB, Lee J, Park J, Kim SK, Yu H, Ye SK, Chang PS. Cysteine protease I29 propeptide from Calotropis procera R. Br. As a potent cathepsin L inhibitor and its suppressive activity in breast cancer metastasis. Sci Rep 2024; 14:23218. [PMID: 39368988 PMCID: PMC11457494 DOI: 10.1038/s41598-024-73578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024] Open
Abstract
Breast cancer metastasis is associated with a poor prognosis and a high rate of mortality. Cathepsin L (CTSL) is a lysosomal cysteine protease that promotes tumor metastasis by degrading the extracellular matrix. Gene set enrichment analysis revealed that CTSL expression was higher in tumorous than in non-tumorous tissues of breast cancer patients and that high-level CTSL expression correlated positively with the epithelial-mesenchymal transition. Therefore, we hypothesized that inhibiting CTSL activity in tumor cells would prevent metastasis. In this study, we characterized the inhibitory activity of SnuCalCpI15, the I29 domain of a CTSL-like cysteine protease from Calotropis procera R. Br., and revealed that the propeptide stereoselectively inhibited CTSL in a reversible slow-binding manner, with an inhibitory constant (Ki) value of 1.38 ± 0.71 nM, indicating its potency as an exogenous inhibitor in anti-cancer therapy. SnuCalCpI15 was localized intracellularly in MDA-MB-231 breast cancer cells and suppressed tumor cell migration and invasion. These results demonstrate the potential of SnuCalCpI15 as a novel agent to prevent breast cancer metastasis.
Collapse
Affiliation(s)
- Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Cosmetic Science, Kyungsung University, Busan, 48434, Republic of Korea
| | - Juno Lee
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Juchan Lee
- Department of Agricultural Biotechnology, Seoul National University College of Agricultural and Life Sciences, Seoul, 08826, Republic of Korea
| | - Jaehyeon Park
- Department of Agricultural Biotechnology, Seoul National University College of Agricultural and Life Sciences, Seoul, 08826, Republic of Korea
| | - Seul-Ki Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyunjong Yu
- Major of Food Science and Biotechnology, Division of Bio-Convergence, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
| | - Pahn-Shick Chang
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Agricultural Biotechnology, Seoul National University College of Agricultural and Life Sciences, Seoul, 08826, Republic of Korea.
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Zhang L, Zhao Y, Yang J, Zhu Y, Li T, Liu X, Zhang P, Cheng J, Sun S, Wei C, Fu J. CTSL, a prognostic marker of breast cancer, that promotes proliferation, migration, and invasion in cells in triple-negative breast cancer. Front Oncol 2023; 13:1158087. [PMID: 37456247 PMCID: PMC10342200 DOI: 10.3389/fonc.2023.1158087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction In the world, the incidence of breast cancer has surpassed that of lung cancer, and it has become the first malignant tumor among women. Triple-negative breast cancer (TNBC) shows an extremely heterogeneous malignancy toward high recurrence, metastasis, and mortality, but there is a lack of effective targeted therapy. It is urgent to develop novel molecular targets in the occurrence and therapeutics for TNBC, and novel therapeutic strategies to block the recurrence and metastasis of TNBC. Methods In this study, CTSL (cathepsin L) expression in tissues and adjacent tissues of TNBC patients was monitored by immunohistochemistry and western blots. The correlations between CTSL expressions and clinicopathological characteristics in the patient tissues for TNBC were analyzed. Cell proliferation, migration, and invasion assay were also performed when over-expressed or knocked-down CTSL. Results We found that the level of CTSL in TNBC is significantly higher than that in the matched adjacent tissues, and associated with differentiated degree, TNM Stage, tumor size, and lymph node metastatic status in TNBC patients. The high level of CTSL was correlated with a short RFS (p<0.001), OS (p<0.001), DMFS (p<0.001), PPS (p= 0.0025) in breast cancer from online databases; while in breast cancer with lymph node-positive, high level of CTSL was correlated with a short DMFS (p<0.001) and RFS (p<0.001). Moreover, in vitro experiments showed that CTSL overexpression promotes the abilities for proliferation, migration, and invasion in MCF-7 and MDA-MB-231 cell lines, while knocking-down CTSL decreases its characteristics in MDA-MB-231 cell lines. Conclusion CTSL might involve into the regulation of the proliferation, invasion, and metastasis of TNBC. Thus, CTSL would be a novel, potential therapeutic, and prognostic target of TNBC.
Collapse
Affiliation(s)
- Lianmei Zhang
- Department of Pathology, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Taizhou People's Hospital of Nanjing University of Chinese Medicine, Jiangsu, China
| | - Yang Zhao
- Department of Pathology, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Jing Yang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Yaning Zhu
- Department of Pathology, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Ting Li
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Suan Sun
- Department of Pathology, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
O’Connell C, VandenHeuvel S, Kamat A, Raghavan S, Godin B. The Proteolytic Landscape of Ovarian Cancer: Applications in Nanomedicine. Int J Mol Sci 2022; 23:9981. [PMID: 36077371 PMCID: PMC9456334 DOI: 10.3390/ijms23179981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer (OvCa) is one of the leading causes of mortality globally with an overall 5-year survival of 47%. The predominant subtype of OvCa is epithelial carcinoma, which can be highly aggressive. This review launches with a summary of the clinical features of OvCa, including staging and current techniques for diagnosis and therapy. Further, the important role of proteases in OvCa progression and dissemination is described. Proteases contribute to tumor angiogenesis, remodeling of extracellular matrix, migration and invasion, major processes in OvCa pathology. Multiple proteases, such as metalloproteinases, trypsin, cathepsin and others, are overexpressed in the tumor tissue. Presence of these catabolic enzymes in OvCa tissue can be exploited for improving early diagnosis and therapeutic options in advanced cases. Nanomedicine, being on the interface of molecular and cellular scales, can be designed to be activated by proteases in the OvCa microenvironment. Various types of protease-enabled nanomedicines are described and the studies that focus on their diagnostic, therapeutic and theranostic potential are reviewed.
Collapse
Affiliation(s)
- Cailin O’Connell
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Sabrina VandenHeuvel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Aparna Kamat
- Division of Gynecologic Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Obstetrics and Gynecology, Houston Methodist Hospital, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences at McGovern Medical School-UTHealth, Houston, TX 77030, USA
| |
Collapse
|
7
|
Yan C, Liu Q, Jia R. Construction and Validation of a Prognostic Risk Model for Triple-Negative Breast Cancer Based on Autophagy-Related Genes. Front Oncol 2022; 12:829045. [PMID: 35186763 PMCID: PMC8854264 DOI: 10.3389/fonc.2022.829045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
Background Autophagy plays an important role in triple-negative breast cancer (TNBC). However, the prognostic value of autophagy-related genes (ARGs) in TNBC remains unknown. In this study, we established a survival model to evaluate the prognosis of TNBC patients using ARGs signature. Methods A total of 222 autophagy-related genes were downloaded from The Human Autophagy Database. The RNA-sequencing data and corresponding clinical data of TNBC were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed autophagy-related genes (DE-ARGs) between normal samples and TNBC samples were determined by the DESeq2 package. Then, univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses were performed. According to the LASSO regression results based on univariate Cox, we identified a prognostic signature for overall survival (OS), which was further validated by using the Gene Expression Omnibus (GEO) cohort. We also found an independent prognostic marker that can predict the clinicopathological features of TNBC. Furthermore, a nomogram was drawn to predict the survival probability of TNBC patients, which could help in clinical decision for TNBC treatment. Finally, we validated the requirement of an ARG in our model for TNBC cell survival and metastasis. Results There are 43 DE-ARGs identified between normal and tumor samples. A risk model for OS using CDKN1A, CTSD, CTSL, EIF4EBP1, TMEM74, and VAMP3 was established based on univariate Cox regression and LASSO regression analysis. Overall survival of TNBC patients was significantly shorter in the high-risk group than in the low-risk group for both the training and validation cohorts. Using the Kaplan–Meier curves and receiver operating characteristic (ROC) curves, we demonstrated the accuracy of the prognostic model. Multivariate Cox regression analysis was used to verify risk score as an independent predictor. Subsequently, a nomogram was proposed to predict 1-, 3-, and 5-year survival for TNBC patients. The calibration curves showed great accuracy of the model for survival prediction. Finally, we found that depletion of EIF4EBP1, one of the ARGs in our model, significantly reduced cell proliferation and metastasis of TNBC cells. Conclusion Based on six ARGs (CDKN1A, CTSD, CTSL, EIF4EBP1, TMEM74, and VAMP3), we developed a risk prediction model that can help clinical doctors effectively predict the survival status of TNBC patients. Our data suggested that EIF4EBP1 might promote the proliferation and migration in TNBC cell lines. These findings provided a novel insight into the vital role of the autophagy-related genes in TNBC and may provide new therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Cheng Yan
- School of Pharmacy, Xinxiang University, Xinxiang, China
- Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Xinxiang University, Xinxiang, China
- Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, China
| | - Qingling Liu
- School of Pharmacy, Xinxiang University, Xinxiang, China
| | - Ruoling Jia
- School of Pharmacy, Xinxiang University, Xinxiang, China
- *Correspondence: Ruoling Jia,
| |
Collapse
|
8
|
Oncolytic reovirus induces ovarian cancer cell apoptosis in a TLR3-dependent manner. Virus Res 2021; 301:198440. [PMID: 33940002 DOI: 10.1016/j.virusres.2021.198440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023]
Abstract
Globally, ovarian cancer is the seventh most common cancer and the eighth-most common cause of cancer death among women with a five-year survival rate of less than 45%. Although reovirus is known to be effective for treating ovarian cancer, some types of tumor cells still exhibit resistance to reovirus. In order to solve this resistance problem in the treatment of ovarian cancer, we selected the reovirus-resistant OV-90 ovarian cancer cells to study reovirus oncolytic effects. We found that the viability of OV-90 cells decreased after reovirus double-stranded RNA (dsRNA) genome transfection. Interestingly, we observed that chemical blockage of the Toll-like receptor 3 (TLR3)-dsRNA binding complex in OV-90 cells and the inhibition of downstream TLR3 signaling disrupted OV-90 apoptosis triggered by reovirus dsRNA. Together, these results demonstrate that reovirus dsRNA induces reovirus-resistant tumor cell apoptosis through the TLR3 signaling pathway.
Collapse
|
9
|
Quinacrine-Induced Autophagy in Ovarian Cancer Triggers Cathepsin-L Mediated Lysosomal/Mitochondrial Membrane Permeabilization and Cell Death. Cancers (Basel) 2021; 13:cancers13092004. [PMID: 33919392 PMCID: PMC8122252 DOI: 10.3390/cancers13092004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/01/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Ovarian cancer (OC) is the most common cause of cancer-related deaths among women worldwide, and its incidence has been increasing and has continued to prove resistant to a variety of therapeutics. This observation is principally disturbing given the amount of money invested in identifying novel therapies for this disease. A comparatively rapid and economical pipeline for identification of novel drugs is drug repurposing. We reported earlier that the antimalarial drug Quinacrine (QC) also has anticancer activity and here we discovered that QC significantly upregulates cathepsin L (CTSL) and promoting autophagic flux in ovarian cancer. QC-induced CTSL activation promotes lysosomal membrane permeability resulting in active CTSL release into the cytosol, which promotes Bid cleavage, mitochondrial membrane permeability, cytochrome-c release and cell death in both in-vitro and in-vivo models. Therefore, QC is a promising candidate for OC treatment. Abstract We previously reported that the antimalarial compound quinacrine (QC) induces autophagy in ovarian cancer cells. In the current study, we uncovered that QC significantly upregulates cathepsin L (CTSL) but not cathepsin B and D levels, implicating the specific role of CTSL in promoting QC-induced autophagic flux and apoptotic cell death in OC cells. Using a Magic Red® cathepsin L activity assay and LysoTracker red, we discerned that QC-induced CTSL activation promotes lysosomal membrane permeability (LMP) resulting in the release of active CTSL into the cytosol to promote apoptotic cell death. We found that QC-induced LMP and CTSL activation promotes Bid cleavage, mitochondrial outer membrane permeabilization (MOMP), and mitochondrial cytochrome-c release. Genetic (shRNA) and pharmacological (Z-FY(tBU)-DMK) inhibition of CTSL markedly reduces QC-induced autophagy, LMP, MOMP, apoptosis, and cell death; whereas induced overexpression of CTSL in ovarian cancer cell lines has an opposite effect. Using recombinant CTSL, we identified p62/SQSTM1 as a novel substrate of CTSL, suggesting that CTSL promotes QC-induced autophagic flux. CTSL activation is specific to QC-induced autophagy since no CTSL activation is seen in ATG5 knockout cells or with the anti-malarial autophagy-inhibiting drug chloroquine. Importantly, we showed that upregulation of CTSL in QC-treated HeyA8MDR xenografts corresponds with attenuation of p62, upregulation of LC3BII, cytochrome-c, tBid, cleaved PARP, and caspase3. Taken together, the data suggest that QC-induced autophagy and CTSL upregulation promote a positive feedback loop leading to excessive autophagic flux, LMP, and MOMP to promote QC-induced cell death in ovarian cancer cells.
Collapse
|
10
|
Moskovich D, Alfandari A, Finkelshtein Y, Weisz A, Katzav A, Kidron D, Edelstein E, Veroslavski D, Perets R, Arbib N, Kadan Y, Fishman A, Lerer B, Ellis M, Ashur-Fabian O. DIO3, the thyroid hormone inactivating enzyme, promotes tumorigenesis and metabolic reprogramming in high grade serous ovarian cancer. Cancer Lett 2020; 501:224-233. [PMID: 33221455 DOI: 10.1016/j.canlet.2020.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/18/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022]
Abstract
High grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy with a need for better understanding the disease pathogenesis. The biologically active thyroid hormone, T3, is considered a tumor suppressor by promoting cell differentiation and mitochondrial respiration. Tumors evolved a strategy to avoid these anticancer actions by expressing the T3 catabolizing enzyme, Deiodinase type 3 (DIO3). This stimulates cancer proliferation and aerobic glycolysis (Warburg effect). We identified DIO3 expression in HGSOC cell lines, tumor tissues from mice and human patients, fallopian tube (FT) premalignant lesion and secretory cells of normal FT, considered the disease site-of-origin. Stable DIO3 knockdown (DIO3-KD) in HGSOC cells led to increased T3 bioavailability and demonstrated induced apoptosis and attenuated proliferation, migration, colony formation, oncogenic signaling, Warburg effect and tumor growth in mice. Proteomics analysis further indicated alterations in an array of cancer-relevant proteins, the majority of which are involved in tumor suppression and metabolism. Collectively this study establishes the functional role of DIO3 in facilitating tumorigenesis and metabolic reprogramming, and proposes this enzyme as a promising target for inhibition in HGSOC.
Collapse
Affiliation(s)
- Dotan Moskovich
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Alfandari
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Finkelshtein
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avivit Weisz
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Israel
| | - Aviva Katzav
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Israel
| | - Debora Kidron
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Pathology, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Israel
| | - Evgeny Edelstein
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Israel
| | - Daniel Veroslavski
- Clinical Research Institute at Rambam, Division of Oncology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Perets
- Clinical Research Institute at Rambam, Division of Oncology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nissim Arbib
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Gynecological Oncology Unit, The Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Yfat Kadan
- Gynecological Oncology Unit, The Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Ami Fishman
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Gynecological Oncology Unit, The Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Bernard Lerer
- Biological Psychiatry Laboratory Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Martin Ellis
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Ashur-Fabian
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Rudzińska M, Parodi A, Maslova VD, Efremov YM, Gorokhovets NV, Makarov VA, Popkov VA, Golovin AV, Zernii EY, Zamyatnin AA. Cysteine Cathepsins Inhibition Affects Their Expression and Human Renal Cancer Cell Phenotype. Cancers (Basel) 2020; 12:cancers12051310. [PMID: 32455715 PMCID: PMC7281206 DOI: 10.3390/cancers12051310] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Renal cancer would greatly benefit from new therapeutic strategies since, in advanced stages, it is refractory to classical chemotherapeutic approaches. In this context, lysosomal protease cysteine cathepsins may represent new pharmacological targets. In renal cancer, they are characterized by a higher expression, and they were shown to play a role in its aggressiveness and spreading. Traditional studies in the field were focused on understanding the therapeutic potentialities of cysteine cathepsin inhibition, while the direct impact of such therapeutics on the expression of these enzymes was often overlooked. In this work, we engineered two fluoromethyl ketone-based peptides with inhibitory activity against cathepsins to evaluate their potential anticancer activity and impact on the lysosomal compartment in human renal cancer. Molecular modeling and biochemical assays confirmed the inhibitory properties of the peptides against cysteine cathepsin B and L. Different cell biology experiments demonstrated that the peptides could affect renal cancer cell migration and organization in colonies and spheroids, while increasing their adhesion to biological substrates. Finally, these peptide inhibitors modulated the expression of LAMP1, enhanced the expression of E-cadherin, and altered cathepsin expression. In conclusion, the inhibition of cysteine cathepsins by the peptides was beneficial in terms of cancer aggressiveness; however, they could affect the overall expression of these proteases.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
| | - Valentina D. Maslova
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia;
| | - Yuri M. Efremov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia;
| | - Neonila V. Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
| | - Vasily A. Popkov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Andrey V. Golovin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Evgeni Y. Zernii
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (N.V.G.); (V.A.M.); (A.V.G.); (E.Y.Z.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Correspondence: ; Tel.: +74-95-622-9843
| |
Collapse
|
12
|
Park S, Kwon W, Park JK, Baek SM, Lee SW, Cho GJ, Ha YS, Lee JN, Kwon TG, Kim MO, Ryoo ZY, Han SH, Han JE, Choi SK. Suppression of cathepsin a inhibits growth, migration, and invasion by inhibiting the p38 MAPK signaling pathway in prostate cancer. Arch Biochem Biophys 2020; 688:108407. [PMID: 32407712 DOI: 10.1016/j.abb.2020.108407] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022]
Abstract
Prostate cancer has the highest incidence among men in advanced countries, as well as a high mortality rate. Despite the efforts of numerous researchers to identify a gene-based therapeutic target as an effective treatment of prostate cancer, there is still a need for further research. The cathepsin gene family is known to have a close correlation with various cancer types and is highly expressed across these cancer types. This study aimed at investigating the correlation between the cathepsin A (CTSA) gene and prostate cancer. Our findings indicated a significantly elevated level of CTSA gene expression in the tissues of patients with prostate cancer when compared with normal prostate tissues. Furthermore, the knockdown of the CTSA gene in the representative prostate cancer cell lines PC3 and DU145 led to reduced proliferation and a marked reduction in anchorage-independent colony formation, which was shown to be caused by cell cycle arrest in the S phase. In addition, CTSA gene-knockdown prostate cancer cell lines showed a substantial decrease in migration and invasion, as well as a decrease in the marker genes that promote epithelial mesenchymal transition (EMT). Such phenotypic changes in prostate cancer cell lines through CTSA gene suppression were found to be mainly caused by reduced p38 MAPK protein phosphorylation; i.e. the inactivation of the p38 MAPK cell signaling pathway. Tumorigenesis was also found to be inhibited in CTSA gene-knockdown prostate cancer cell lines when a xenograft assay was carried out using Balb/c nude mice, and the p38 MAPK phosphorylation was inhibited in tumor tissues. Thus, the CTSA gene is presumed to play a key role in human prostate cancer tissues through high-level expression, and the suppression of the CTSA gene leads to the inhibition of prostate cancer cell proliferation, colony formation, and metastasis. The mechanism, by which these effects occur, was demonstrated to be the inactivation of the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Song Park
- Department of Brain and Cognitive Science, DGIST, Republic of Korea; Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Wookbong Kwon
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Jin-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Su-Min Baek
- College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seoung-Woo Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Gil-Jae Cho
- College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Myoung Ok Kim
- The School of Animal BT Science, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Se-Hyeon Han
- School of Media Communication, Hanyang University, Wangsibri-ro 222, Seongdonggu, Seoul, Republic of Korea; Department of News-team, SBS(Seoul Broadcasting Station), Mokdongseo-ro 161, Seoul, Republic of Korea
| | - Jee Eun Han
- College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Seong-Kyoon Choi
- Division of Biotechnology, DGIST, Daegu, Republic of Korea; Core Protein Resources Center, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
13
|
Tabish TA, Pranjol MZI, Whatmore JL, Zhang S. Status and Future Directions of Anti-metastatic Cancer Nanomedicines for the Inhibition of Cathepsin L. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
14
|
Abstract
Alternative splicing of precursor mRNA is a key mediator of gene expression regulation leading to greater diversity of the proteome in complex organisms. Systematic sequencing of the human genome and transcriptome has led to our understanding of how alternative splicing of critical genes leads to multiple pathological conditions such as cancer. For many years, proteases were known only for their roles as proteolytic enzymes, acting to regulate/process proteins associated with diverse cellular functions. However, the differential expression and altered function of various protease isoforms, such as (i) anti-apoptotic activities, (ii) mediating intercellular adhesion, and (iii) modifying the extracellular matrix, are evidence of their specific contribution towards shaping the tumor microenvironment. Revealing the alternative splicing of protease genes and characterization of their protein products/isoforms with distinct and opposing functions creates a platform to understand how protease isoforms contribute to specific cancer hallmarks. Here, in this review, we address cancer-specific isoforms produced by the alternative splicing of proteases and their distinctive roles in the tumor microenvironment.
Collapse
Affiliation(s)
- Chamikara Liyanage
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Achala Fernando
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
15
|
Wang X, He Y, Ye Y, Zhao X, Deng S, He G, Zhu H, Xu N, Liang S. SILAC-based quantitative MS approach for real-time recording protein-mediated cell-cell interactions. Sci Rep 2018; 8:8441. [PMID: 29855483 PMCID: PMC5981645 DOI: 10.1038/s41598-018-26262-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/04/2018] [Indexed: 02/05/2023] Open
Abstract
In tumor microenvironment, interactions among multiple cell types are critical for cancer progression. To understand the molecular mechanisms of these complex interplays, the secreted protein analysis between malignant cancer cells and the surrounding nonmalignant stroma is a good viewpoint to investigate cell-cell interactions. Here, we developed two stable isotope labeling of amino acids in cell culture (SILAC)-based mass spectrometry (MS)/MS approaches termed spike-in SILAC and triple-SILAC to quantify changes of protein secretion level in a cell co-cultured system. Within the co-culture system of CT26 and Ana-1 cells, the spike-in SILAC and triple-SILAC MS approaches are sensitive to quantitatively measure protein secretion changes. Three representative quantified proteins (Galectin-1, Cathepsin L1 and Thrombospondin-1) by two SILAC-based MS methods were further validated by Western blotting, and the coming result matched well with SILACs’. We further applied these two SILACs to human cell lines, NCM460 and HT29 co-culture system, for evaluating the feasibility, which confirmed the spike-in and triple SILAC were capable of monitoring the changed secreted proteins of human cell lines. Considering these two strategies in time consuming, sample complexity and proteome coverage, the triple-SILAC way shows more efficiency and economy for real-time recording secreted protein levels in tumor microenvironment.
Collapse
Affiliation(s)
- Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and National Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China.,Chengdu Center for Disease Control and Prevention, Chengdu, 610041, P. R. China
| | - Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and National Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Yang Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and National Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Xinyu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and National Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Shi Deng
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, P. R. China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and National Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, P. R. China
| | - Ningzhi Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and National Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China.,Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, P. R. China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and National Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China.
| |
Collapse
|
16
|
Giroud M, Dietzel U, Anselm L, Banner D, Kuglstatter A, Benz J, Blanc JB, Gaufreteau D, Liu H, Lin X, Stich A, Kuhn B, Schuler F, Kaiser M, Brun R, Schirmeister T, Kisker C, Diederich F, Haap W. Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors. J Med Chem 2018; 61:3350-3369. [DOI: 10.1021/acs.jmedchem.7b01869] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maude Giroud
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Uwe Dietzel
- Rudolf-Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Lilli Anselm
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - David Banner
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andreas Kuglstatter
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jörg Benz
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jean-Baptiste Blanc
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Delphine Gaufreteau
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Haixia Liu
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, 720 Cailun Road, Pudong, Shanghai 201203, China
| | - Xianfeng Lin
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, 720 Cailun Road, Pudong, Shanghai 201203, China
| | - August Stich
- Department of Tropical Medicine, Medical Mission Institute, Salvatorstrasse 7, 97074 Würzburg, Germany
| | - Bernd Kuhn
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Franz Schuler
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Tanja Schirmeister
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Caroline Kisker
- Rudolf-Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - François Diederich
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Wolfgang Haap
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
17
|
Sui H, Shi C, Yan Z, Wu M. Overexpression of Cathepsin L is associated with chemoresistance and invasion of epithelial ovarian cancer. Oncotarget 2018; 7:45995-46001. [PMID: 27351223 PMCID: PMC5216776 DOI: 10.18632/oncotarget.10276] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023] Open
Abstract
Paclitaxel is recommended as a first-line chemotherapeutic agent against, ovarian cancer, however, the development of chemoresistance is a major obstacle in patients with aggressive ovarian cancer and results in recurrence after conventional therapy. The key molecule or mechanism associated with paclitaxel resistance in ovarian cancer still remains unclear. Cathepsin L (CTSL) is overexpressed in various cancers, however, the association between CTSL expression and paclitaxel resistance remains unclear. In the present study, we investigated the role of CTSL in paclitaxel-resistant SKOV3/TAX cells by CTSL silencing. Expression of CTSL was examined by immunohistochemistry and qRT-PCR in 58 clinical samples, and in SKOV3 cells and SKOV3/TAX cells. Effects of CTSL knockdown on ovarian cancer cell proliferation, apoptosis, migration, and invasion were also studied. The IHC and real-time PCR results showed that the difference of CTSL expression between ovarian cancer and the adjacent non-tumourous ovarian tissues was statistically significant. Western blot analysis showed that the CTSL was overexpressed in SKOV3/TAX cells and weakly detectable in paclitaxel-sensitive SKOV3 cells. Knocking-down of CTSL in ovarian cancer cells could decrease cell proliferation, migration, and invasion, and potentiate apoptosis induced by paclitaxel, suggesting CTSL may contribute to Paclitaxel resistance in ovarian cancer.
Collapse
Affiliation(s)
- Hongying Sui
- Department of Gynecological Oncology, Hunan cancer hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
| | - Caixia Shi
- Department of Gynecological Oncology, Hunan cancer hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
| | - Zhipeng Yan
- Department of Gynecological Oncology, Hunan cancer hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
| | - Mei Wu
- Department of Gynecological Oncology, Hunan cancer hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
| |
Collapse
|
18
|
Yamashita K, Iwatake M, Okamoto K, Yamada SI, Umeda M, Tsukuba T. Cathepsin K modulates invasion, migration and adhesion of oral squamous cell carcinomas in vitro. Oral Dis 2017; 23:518-525. [PMID: 28117540 DOI: 10.1111/odi.12643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/27/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cathepsin K was initially discovered as an osteoclast-specific cysteine proteinase, but the enzyme is also expressed in various cancers including oral squamous cell carcinomas. This study aimed to clarify the function of cathepsin K in oral squamous cell carcinomas. MATERIALS AND METHODS Expression levels of cathepsin K were examined in six types of cell carcinomas. Carcinomas overexpressing cathepsin K were constructed. Effects of cathepsin K overexpression and treatment with odanacatib, a specific cathepsin K inhibitor, on cell invasion, migration and adhesion were analysed. RESULTS Different levels of cathepsin K were expressed in carcinomas. Cathepsin K was predominantly localised in lysosomes. Cathepsin K overexpression impaired the proliferation of carcinomas. Invasion analysis showed that cathepsin K overexpression enhanced invasion and migration of carcinomas, whereas inhibition of cathepsin K by odanacatib caused the opposite effects in carcinomas. Cathepsin K overexpression also increased cell adhesion and slightly increased surface expression of the adhesion receptor CD29/integrin β1 . CONCLUSIONS The enhanced invasion of carcinomas resulting from cathepsin K overexpression is probably due to the increased cell migration and adhesion. Thus, cathepsin K is implicated not only in protein degradation but also in invasion, migration and adhesion of oral squamous cell carcinomas.
Collapse
Affiliation(s)
- K Yamashita
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - M Iwatake
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - K Okamoto
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - S-I Yamada
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - M Umeda
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - T Tsukuba
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
19
|
Knockdown of cathepsin L sensitizes ovarian cancer cells to chemotherapy. Oncol Lett 2016; 11:4235-4239. [PMID: 27313771 DOI: 10.3892/ol.2016.4494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/16/2016] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is a leading gynecological malignancy associated with high mortality. The development of acquired drug resistance is the primary cause of chemotherapy failure in the treatment of ovarian cancer. To examine the mechanism underlying paclitaxel resistance in ovarian cancer and attempt to reverse it, the present study induced a TAX-resistant ovarian cancer cell line, SKOV3/TAX. Cathepsin L (CTSL) has been found to be overexpressed in ovarian cancer. The aim of the present study was to investigate the possible involvement of CTSL in the development of TAX resistance in ovarian cancer. CTSL expression was knocked down in SKOV3 ovarian cancer cells and their phenotypic changes were analyzed. The effects of silenced CTSL on the resistant cell line were investigated by proliferation and apoptosis analysis compared with control SKOV3 cells. CTSL was more highly expressed in SKOV3/TAX cells compared with SKOV3 cells. Paclitaxel treatment downregulated the expression of CTSL in SKOV-3 but not in the paclitaxel-resistant SKOV3/TAX cells. CTSL small hairpin RNA (shRNA) knockdown significantly potentiated apoptosis induced by paclitaxel compared with SKOV3/TAX cells transfected with control shRNA, suggesting that CTSL contributes to paclitaxel resistance in ovarian cancer cells and that CTSL silencing can enhance paclitaxel-mediated cell apoptosis. Thus, CTSL should be explored as a candidate of therapeutic target for modulating paclitaxel sensitivity in ovarian cancer.
Collapse
|
20
|
Giroud M, Harder M, Kuhn B, Haap W, Trapp N, Schweizer WB, Schirmeister T, Diederich F. Fluorine Scan of Inhibitors of the Cysteine Protease Human Cathepsin L: Dipolar and Quadrupolar Effects in the π-Stacking of Fluorinated Phenyl Rings on Peptide Amide Bonds. ChemMedChem 2016; 11:1042-7. [DOI: 10.1002/cmdc.201600132] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/23/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Maude Giroud
- Laboratorium für Organische Chemie; ETH Zürich; Wolfgang-Pauli-Strasse 10, HCI 8093 Zürich Switzerland
| | - Michael Harder
- Laboratorium für Organische Chemie; ETH Zürich; Wolfgang-Pauli-Strasse 10, HCI 8093 Zürich Switzerland
| | - Bernd Kuhn
- Small Molecule Research; Roche Innovation Center Basel; F. Hoffmann-La Roche AG; Grenzacherstrasse 124, Building 92 4070 Basel Switzerland
| | - Wolfgang Haap
- Small Molecule Research; Roche Innovation Center Basel; F. Hoffmann-La Roche AG; Grenzacherstrasse 124, Building 92 4070 Basel Switzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie; ETH Zürich; Wolfgang-Pauli-Strasse 10, HCI 8093 Zürich Switzerland
| | - W. Bernd Schweizer
- Laboratorium für Organische Chemie; ETH Zürich; Wolfgang-Pauli-Strasse 10, HCI 8093 Zürich Switzerland
| | - Tanja Schirmeister
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Staudinger Weg 5 55128 Mainz Germany
| | - François Diederich
- Laboratorium für Organische Chemie; ETH Zürich; Wolfgang-Pauli-Strasse 10, HCI 8093 Zürich Switzerland
| |
Collapse
|
21
|
Xu H, Ma Y, Zhang Y, Pan Z, Lu Y, Liu P, Lu B. Identification of Cathepsin K in the Peritoneal Metastasis of Ovarian Carcinoma Using In-silico, Gene Expression Analysis. J Cancer 2016; 7:722-9. [PMID: 27076854 PMCID: PMC4829559 DOI: 10.7150/jca.14277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/22/2016] [Indexed: 12/22/2022] Open
Abstract
Ovarian carcinomas (OC) are often found in the advanced stage with wide peritoneal dissemination. Differentially-expressed genes (DEGs) between primary ovarian carcinoma (POC) and peritoneal metastatic ovarian carcinomas (PMOC) may have diagnostic and therapeutic values. In this study, we identified 246 DEGs by in-silico analysis using microarrays for 153 POCs and 57 PMOCs. Pathway analysis shows that many of these genes are associated with lipid metabolism. Microfluidic, card-based, quantitative PCR validated 19 DEGs in PMOCs versus POCs (p<0.05). Immunohistochemistry confirmed overexpression of MMP13, CTSK, FGF1 and GREM1 in PMOCs (p<0.05). ELISA detection indicated that serum CTSK levels were significantly increased in OCs versus controls (p<0.001). CTSK levels discriminated between OCs and healthy controls (ROC 0.739; range 0.685-0.793). Combining CA125 and HE4 with CTSK levels produced an improved specificity in the predictive of OCs (sensitivity 88.3%, specificity 92.0%, Youden's index 80.3%). Our study suggests that CTSK levels may be helpful in the diagnosis of primary, ovarian carcinoma.
Collapse
Affiliation(s)
- Haiming Xu
- 1. Institute of Bioinformatics, School of Agriculture & Biological Technology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Ma
- 2. Department of Clinical Laboratory, 4Gynecologic Oncology, 6Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Zhang
- 2. Department of Clinical Laboratory, 4Gynecologic Oncology, 6Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.; 3. Department of Clinical Laboratory, Yiwu Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Zimin Pan
- 4. Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Lu
- 4. Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.; 5. Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pengyuan Liu
- 5. Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bingjian Lu
- 6. Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Ha Y, Choi HK. Recent conjugation strategies of small organic fluorophores and ligands for cancer-specific bioimaging. Chem Biol Interact 2016; 248:36-51. [DOI: 10.1016/j.cbi.2016.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 01/03/2023]
|
23
|
The Potential Role of the Proteases Cathepsin D and Cathepsin L in the Progression and Metastasis of Epithelial Ovarian Cancer. Biomolecules 2015; 5:3260-79. [PMID: 26610586 PMCID: PMC4693277 DOI: 10.3390/biom5043260] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancies and has a poor prognosis due to relatively unspecific early symptoms, and thus often advanced stage, metastasized cancer at presentation. Metastasis of EOC occurs primarily through the transcoelomic route whereby exfoliated tumor cells disseminate within the abdominal cavity, particularly to the omentum. Primary and metastatic tumor growth requires a pool of proangiogenic factors in the microenvironment which propagate new vasculature in the growing cancer. Recent evidence suggests that proangiogenic factors other than the widely known, potent angiogenic factor vascular endothelial growth factor may mediate growth and metastasis of ovarian cancer. In this review we examine the role of some of these alternative factors, specifically cathepsin D and cathepsin L.
Collapse
|
24
|
Chen Y, Ni H, Zhao Y, Chen K, Li M, Li C, Zhu X, Fu Q. Potential Role of lncRNAs in Contributing to Pathogenesis of Intervertebral Disc Degeneration Based on Microarray Data. Med Sci Monit 2015; 21:3449-58. [PMID: 26556537 PMCID: PMC4646231 DOI: 10.12659/msm.894638] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Our study intended to identify potential long non-coding RNAs (lncRNAs) and genes, and to elucidate the underlying mechanisms of intervertebral disc degeneration (IDD). Material/Methods The microarray of GSE56081 was downloaded from the Gene Expression Omnibus database, including 5 human control nucleus pulposus tissues and 5 degenerative nucleus pulposus tissues, which was on the basis of GPL15314 platform. Identification of differentially expressed lncRNAs and mRNAs were performed between the 2 groups. Then, gene ontology (GO) and pathway enrichment analyses were performed to analyze the biological functions and pathways for the differentially expressed mRNAs. Simultaneously, lncRNA-mRNA weighted coexpression network was constructed using the WGCNA package, followed by GO and KEGG pathway enrichment analyses for the genes in the modules. Finally, the protein-protein interaction (PPI) network was visualized. Results A total of 135 significantly up- and 170 down-regulated lncRNAs and 2133 significantly up- and 1098 down-regulated mRNAs were identified. Additionally, UBA52 (ubiquitin A-52 residue ribosomal protein fusion product 1), with the highest connectivity degree in PPI network, was remarkably enriched in the pathway of metabolism of proteins. Eight lncRNAs – LINC00917, CTD-2246P4.1, CTC-523E23.5, RP4-639J15.1, RP11-363G2.4, AC005082.12, MIR132, and RP11-38F22.1 – were observed in the modules of lncRNA-mRNA weighted coexpression network. Moreover, SPHK1 in the green-yellow module was significantly enriched in positive regulation of cell migration. Conclusions LncRNAs LINC00917, CTD-2246P4.1, CTC-523E23.5, RP4-639J15.1, RP11-363G2.4, AC005082.12, MIR132, and RP11-38F22.1 were differentially expressed and might play important roles in the development of IDD. Key genes, such as UBA52 and SPHK1, may be pivotal biomarkers for IDD.
Collapse
Affiliation(s)
- Yu Chen
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Haijian Ni
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Yingchuan Zhao
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Kai Chen
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Ming Li
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Cheng Li
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Xiaodong Zhu
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Qiang Fu
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| |
Collapse
|