1
|
Zhang Q, Zhang Z, Liu Z, Wang C, Chen H, Shen L, Long C, Wei G, Liu X. Deficiency in the Rab25 gene leads to a decline in male fertility and testicular injury: Impact on the regulation of germ cell proliferation and apoptosis. Exp Cell Res 2024; 442:114285. [PMID: 39424096 DOI: 10.1016/j.yexcr.2024.114285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Rab25 is a member of the Rab family, functioning as a regulatory molecule in intracellular transport. Although its involvement in cellular functions and disease development is well-established, its precise roles in male reproductive physiology remain elusive. METHODS To explore the specific roles of Rab25 in testicular development and spermatogenesis, we established the Rab25-/- mouse model and Rab25 knockdown germ cell line (GC-2). We compared the fertility, sperm analysis, and testicular tissues between Rab25-/- and wild-type male mice. To delve deeper into potential mechanisms, we employed immunohistochemistry, TUNEL assay, Western Blotting, CCK-8 assay, etc. to evaluate cell proliferation and apoptosis in testicular tissues and GC-2 cells. RESULTS Our findings indicated that Rab25 was expressed in germ cells and Leydig cells in the testes. Although the weight of Rab25-/- mice testes exhibited no significant changes, fertility was compromised, with a decrease in sperm quantity and reduced motility. HE staining revealed a disorganized arrangement of germ cells and vacuolization. Additionally, chromatin marginalization and nuclear pyknosis were observed in the Rab25-/- mice. In both Rab25-/- mice testes and Rab25 knockdown GC-2 cells, we found that germ cell proliferation was reduced, while apoptosis was increased. CONCLUSIONS In conclusion, our study proposes that Rab25 plays a vital role in spermatogenesis by regulating the proliferation and apoptosis of germ cells.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhicheng Zhang
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhenmin Liu
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Chong Wang
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Hongsong Chen
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lianju Shen
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Chunlan Long
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Guanghui Wei
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xing Liu
- Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
2
|
Xu S, Cao B, Xuan G, Xu S, An Z, Zhu C, Li L, Tang C. Function and regulation of Rab GTPases in cancers. Cell Biol Toxicol 2024; 40:28. [PMID: 38695990 PMCID: PMC11065922 DOI: 10.1007/s10565-024-09866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The Rab small GTPases are characterized by the distinct intracellular localization and modulate various endocytic, transcytic and exocytic transport pathways. Rab proteins function as scaffolds that connect signaling pathways and intracellular membrane trafficking processes through the recruitment of effectors, such as tethering factors, phosphatases, motors and kinases. In different cancers, Rabs play as either an onco-protein or a tumor suppressor role, highly dependending on the context. The molecular mechanistic research has revealed that Rab proteins are involved in cancer progression through influences on migration, invasion, metabolism, exosome secretion, autophagy, and drug resistance of cancer cells. Therefore, targeting Rab GTPases to recover the dysregulated vesicle transport systems may provide potential strategy to restrain cancer progression. In this review, we discuss the regulation of Rab protein level and activity in modulating pathways involved in tumor progression, and propose that Rab proteins may serve as a prognostic factor in different cancers.
Collapse
Affiliation(s)
- Shouying Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Bin Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ge Xuan
- Department of Gynaecology, Ningbo Women and Children's Hospital, No.339 Liuting Road, Ningbo, 315012, China
| | - Shu Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zihao An
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chongying Zhu
- The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lin Li
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China.
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
3
|
Pharmacological Activities of Safflower Yellow and Its Clinical Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2108557. [PMID: 35795285 PMCID: PMC9252638 DOI: 10.1155/2022/2108557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Background. Safflower is an annual herb used in traditional Chinese herbal medicine. It consists of the dried flowers of the Compositae plant safflower. It is found in the central inland areas of Asia and is widely cultivated throughout the country. Its resistance to cold weather and droughts and its tolerance and adaptability to salts and alkalis are strong. Safflower has the effect of activating blood circulation, dispersing blood stasis, and relieving pain. A natural pigment named safflower yellow (SY) can be extracted from safflower petals. Chemically, SY is a water-soluble flavonoid and the main active ingredient of safflower. The main chemical constituents, pharmacological properties, and clinical applications of SY are reviewed in this paper, thereby providing a reference for the use of safflower in preventing and treating human diseases. Methods. The literature published in recent years was reviewed, and the main chemical components of SY were identified based on chemical formula and structure. The pharmacological properties of hydroxysafflor yellow A (HSYA), SYA, SYB, and anhydrosafflor yellow B (AHSYB) were reviewed. Results. The main chemical constituents of SY included HSYA, SYA, SYB, and AHSYB. These ingredients have a wide range of pharmacological activities. SY has protective effects on the heart, kidneys, liver, nerves, lungs, and brain. Moreover, its effects include, but are not limited to, improving cardiovascular and cerebrovascular diseases, abirritation, regulating lipids, and treating cancer and diabetic complications. HSYA is widely recognised as an effective ingredient to treat cardiovascular and cerebrovascular diseases. Conclusion. SY has a wide range of pharmacological activities, among which improving cardiovascular and cerebrovascular diseases are the most significant.
Collapse
|
4
|
Cancer-driving mutations and variants of components of the membrane trafficking core machinery. Life Sci 2020; 264:118662. [PMID: 33127517 DOI: 10.1016/j.lfs.2020.118662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The core machinery for vesicular membrane trafficking broadly comprises of coat proteins, RABs, tethering complexes and SNAREs. As cellular membrane traffic modulates key processes of mitogenic signaling, cell migration, cell death and autophagy, its dysregulation could potentially results in increased cell proliferation and survival, or enhanced migration and invasion. Changes in the levels of some components of the core machinery of vesicular membrane trafficking, likely due to gene amplifications and/or alterations in epigenetic factors (such as DNA methylation and micro RNA) have been extensively associated with human cancers. Here, we provide an overview of association of membrane trafficking with cancer, with a focus on mutations and variants of coat proteins, RABs, tethering complex components and SNAREs that have been uncovered in human cancer cells/tissues. The major cellular and molecular cancer-driving or suppression mechanisms associated with these components of the core membrane trafficking machinery shall be discussed.
Collapse
|
5
|
Wei Z, Liu G, Jia R, Zhang W, Li L, Zhang Y, Wang Z, Bai X. Targeting secretory leukocyte protease inhibitor (SLPI) inhibits colorectal cancer cell growth, migration and invasion via downregulation of AKT. PeerJ 2020; 8:e9400. [PMID: 32742768 PMCID: PMC7367054 DOI: 10.7717/peerj.9400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
The secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor which plays important role in bacterial infection, inflammation, wound healing and epithelial proliferation. Dysregulation of SLPI has been reported in a variety of human cancers including glioblastoma, lung, breast, ovarian and colorectal carcinomas and is associated with tumor aggressiveness and metastatic potential. However, the pathogenic role of SLPI in colorectal cancer is still unclear. Here we showed that SLPI mRNA level was significantly upregulated in colorectal cancer tissues compared to adjacent normal controls. Targeting SLPI by siRNA inhibited proliferation, migration and invasion of colorectal cancer cells lines HT29 and HT116 in vitro. Mechanistically, blockage of cancer cell growth and metastasis after SLPI knockdown was associated with down-regulation of AKT signaling. In conclusion, SLPI regulated colorectal cell growth and metastasis via AKT signaling. SLPI may be a novel biomarker and therapeutic target for colorectal cancer. Targeting AKT signaling may be effective for colorectal cancer treatment.
Collapse
Affiliation(s)
- Zhijiang Wei
- The First Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou, China
| | - Guiying Liu
- The First Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou, China
| | - Rufu Jia
- The Brain Science Unit, CangZhou Central Hospital, Cangzhou, China
| | - Wei Zhang
- The First Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou, China
| | - Li Li
- The Brain Science Unit, CangZhou Central Hospital, Cangzhou, China
| | - Yuanyuan Zhang
- The First Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou, China
| | - Zhijing Wang
- The Brain Science Unit, CangZhou Central Hospital, Cangzhou, China
| | - Xiyong Bai
- The First Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
6
|
Chauhan IS, Rao GS, Singh N. Enhancing the copy number of Ldrab6 gene in Leishmania donovani parasites mediates drug resistance through drug-thiol conjugate dependent multidrug resistance protein A (MRPA). Acta Trop 2019; 199:105158. [PMID: 31491399 DOI: 10.1016/j.actatropica.2019.105158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 08/06/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
Abstract
Visceral leishmaniasis (VL) is a neglected tropical disease caused by protozoan Leishmania donovani parasite which may be fatal if left untreated. While drug-sensitive parasites are able to live and multiply within the host macrophages, they develop resistance to drugs used against them for survival and multiplication in the infected patients undergoing routine treatment. Development of new agents devoid of such drug resistance potential is achievable by identifying new drug targets in the parasite. One such target is the key regulator of intracellular vesicular trafficking protein, RabGTPase which belongs to the Ras GTPase superfamily. We recently elucidated whole genome sequence (WGS) of L. donovani (clinical Indian isolate; BHU 1220, GenBank: AVPQ00000000.1) and identified Ldrab6 gene. We now provide experimental evidence for this gene's ability to impart drug-resistant phenotype to wild-type (sensitive) Leishmania upon transfection. trans-Dibenzalacetone (DBA), a synthetic analog of curcumin, was used to determine its antileishmanial activity in wild-type parasites and parasites transfected with Ldrab6 gene. Dose-response study showed that DBA had no effect on transfected parasites at 20 µg/mL dose, whereas wild-type promastigotes showed 50% inhibition (IC50) at the same dose. This indicates the development of resistant mechanism in the transfected parasites due to enhancement of the copy number of Ldrab6 gene in L. donovani parasites. Flow cytometric analysis revealed elevated level of thiols in transfectants when compared to wild-type parasites treated with DBA. To assess the functional activity of multidrug resistance-associated protein (MRP) pump in transfectants, the accumulation of calcein, a known MRP pump substrate and probenecid, a known MRP pump regulator, were analyzed. The results indicate that Ldrab6 gene in Leishmania conferred resistance by the well-established mechanism of drug-thiol conjugation and sequestration by ABC transporter multidrug resistance-protein A (MRPA). Accordingly, Leishmania parasites transfected with Ldrab6 gene can be used as an experimental cell line for the screening of new lead molecules for their propensity to develop drug resistance.
Collapse
|
7
|
Jeong H, Lim KM, Goldenring JR, Nam KT. Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice. Biomol Ther (Seoul) 2019; 27:553-561. [PMID: 31564077 PMCID: PMC6824620 DOI: 10.4062/biomolther.2019.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 11/05/2022] Open
Abstract
Rab25, a member of the Rab11 small GTPase family, is central to achieving cellular polarity in epithelial tissues. Rab25 is highly expressed in epithelial cells of various tissues including breast, vagina, cervix, the gastrointestinal tract, and skin. Rab25 plays key roles in tumorigenesis, mainly by regulating epithelial differentiation and proliferation. However, its role in skin physiology is relatively unknown. In this study, we demonstrated that Rab25 knock-out (KO) mice show a skin barrier dysfunction with high trans-epidermal water loss and low cutaneous hydration. To examine this observation, we investigated the histology and epidermal differentiation markers of the skin in Rab25 KO mice. Rab25 KO increased cell proliferation at the basal layer of epidermis, whereas the supra-basal layer remained unaffected. Ceramide, which is a critical lipid component for skin barrier function, was not altered by Rab25 KO in its distribution or amount, as determined by immunohistochemistry. Notably, levels of epidermal differentiation markers, including loricrin, involucrin, and keratins (5, 14, 1, and 10) increased prominently in Rab25 KO mice. In line with this, depletion of Rab25 with single hairpin RNA increased the expression of differentiation markers in a human keratinocyte cell line, HaCaT. Transcriptomic analysis of the skin revealed increased expression of genes associated with skin development, epidermal development, and keratinocyte differentiation in Rab25 KO mice. Collectively, these results suggested that Rab25 is involved in the regulation of epidermal differentiation and proliferation.
Collapse
Affiliation(s)
- Haengdueng Jeong
- Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - James R Goldenring
- Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine and the Nashville VA Medical Center, Nashville, TN 37232, USA
| | - Ki Taek Nam
- Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Skrypek N, Bruneel K, Vandewalle C, De Smedt E, Soen B, Loret N, Taminau J, Goossens S, Vandamme N, Berx G. ZEB2 stably represses RAB25 expression through epigenetic regulation by SIRT1 and DNMTs during epithelial-to-mesenchymal transition. Epigenetics Chromatin 2018; 11:70. [PMID: 30445998 PMCID: PMC6240308 DOI: 10.1186/s13072-018-0239-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Background Epithelial mesenchymal transition (EMT) is tightly regulated by a network of transcription factors (EMT-TFs). Among them is the nuclear factor ZEB2, a member of the zinc-finger E-box binding homeobox family. ZEB2 nuclear localization has been identified in several cancer types, and its overexpression is correlated with the malignant progression. ZEB2 transcriptionally represses epithelial genes, such as E-cadherin (CDH1), by directly binding to the promoter of the genes it regulates and activating mesenchymal genes by a mechanism in which there is no full agreement. Recent studies showed that EMT-TFs interact with epigenetic regulatory enzymes that alter the epigenome, thereby providing another level of control. The role of epigenetic regulation on ZEB2 function is not well understood. In this study, we aimed to characterize the epigenetic effect of ZEB2 repressive function on the regulation of a small Rab GTPase RAB25. Results Using cellular models with conditional ZEB2 expression, we show a clear transcriptional repression of RAB25 and CDH1. RAB25 contributes to the partial suppression of ZEB2-mediated cell migration. Furthermore, a highly significant reverse correlation between RAB25 and ZEB2 expression in several human cancer types could be identified. Mechanistically, ZEB2 binds specifically to E-box sequences on the RAB25 promoter. ZEB2 binding is associated with the local increase in DNA methylation requiring DNA methyltransferases as well as histone deacetylation (H3K9Ac) depending on the activity of SIRT1. Surprisingly, SIRT1 and DNMTs did not interact directly with ZEB2, and while SIRT1 inhibition decreased the stability of long-term repression, it did not prevent down-regulation of RAB25 and CDH1 by ZEB2. Conclusions ZEB2 expression is resulting in drastic changes at the chromatin level with both clear DNA hypermethylation and histone modifications. Here, we revealed that SIRT1-mediated H3K9 deacetylation helps to maintain gene repression but is not required for the direct ZEB2 repressive function. Targeting epigenetic enzymes to prevent EMT is an appealing approach to limit cancer dissemination, but inhibiting SIRT1 activity alone might have limited effect and will require drug combination to efficiently prevent EMT. Electronic supplementary material The online version of this article (10.1186/s13072-018-0239-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolas Skrypek
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kenneth Bruneel
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Cindy Vandewalle
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Eva De Smedt
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bieke Soen
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Nele Loret
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Joachim Taminau
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Centre for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
| | - Niels Vandamme
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Data Mining and Modeling for Biomedicine, VIB Inflammation Research Center, Ghent, Belgium.,VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
9
|
Rab25 acts as an oncogene in luminal B breast cancer and is causally associated with Snail driven EMT. Oncotarget 2018; 7:40252-40265. [PMID: 27259233 PMCID: PMC5130006 DOI: 10.18632/oncotarget.9730] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
The Rab GTPases regulate vesicular trafficking machinery that transports and delivers a diverse pool of cargo, including growth factor receptors, integrins, nutrient receptors and junction proteins to specific intracellular sites. The trafficking machinery is indeed a major posttranslational modifier and is critical for cellular homeostasis. Deregulation of this stringently controlled system leads to a wide spectrum of disorders including cancer. Herein we demonstrate that Rab25, a key GTPase, mostly decorating the apical recycling endosome, is a dichotomous variable in breast cancer cell lines with higher mRNA and protein expression in Estrogen Receptor positive (ER+ve) lines. Rab25 and its effector, Rab Coupling Protein (RCP) are frequently coamplified and coordinately elevated in ER+ve breast cancers. In contrast, Rab25 levels are decreased in basal-like and almost completely lost in claudin-low tumors. This dichotomy exists despite the presence of the 1q amplicon that hosts Rab25 across breast cancer subtypes and is likely due to differential methylation of the Rab25 promoter. Functionally, elevated levels of Rab25 drive major hallmarks of cancer including indefinite growth and metastasis but in case of luminal B breast cancer only. Importantly, in such ER+ve tumors, coexpression of Rab25 and its effector, RCP is significantly associated with a markedly worsened clinical outcome. Importantly, in claudin-low cell lines, exogenous Rab25 markedly inhibits cell migration. Similarly, during Snail-induced epithelial to mesenchymal transition (EMT) exogenous Rab25 potently reverses Snail-driven invasion. Overall, this study substantiates a striking context dependent role of Rab25 in breast cancer where Rab25 is amplified and enhances aggressiveness in luminal B cancers while in claudin-low tumors, Rab25 is lost indicating possible anti-tumor functions.
Collapse
|
10
|
Wang S, Hu C, Wu F, He S. Rab25 GTPase: Functional roles in cancer. Oncotarget 2017; 8:64591-64599. [PMID: 28969096 PMCID: PMC5610028 DOI: 10.18632/oncotarget.19571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Rab25, a small GTPase belongs to the Rab protein family, has a pivotal role in cancer pathophysiology. Rab25 governs cell-surface receptors recycling and cellular signaling pathways activation, allowing it to control a diverse range of cellular functions, including cell proliferation, cell motility and cell death. Aberrant expression of Rab25 was linked to cancer development. Majority of research findings revealed that Rab25 is an oncogene. Elevated expression of Rab25 was correlated with poor prognosis and aggressiveness of renal, lung, breast, ovarian and other cancers. However, tumor suppressor function of Rab25 was reported in several cancers, such as colorectal cancer, indicating the tumor type-specific function of Rab25. In this review, we recapitulate the current knowledge of Rab25 in cancer development and therapy.
Collapse
Affiliation(s)
- Sisi Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Feng ZH, Fang Y, Zhao LY, Lu J, Wang YQ, Chen ZH, Huang Y, Wei JH, Liang YP, Cen JJ, Pan YH, Liao B, Chen W, Luo JH. RIN1 promotes renal cell carcinoma malignancy by activating EGFR signaling through Rab25. Cancer Sci 2017; 108:1620-1627. [PMID: 28612496 PMCID: PMC5543468 DOI: 10.1111/cas.13297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
We previously identified the important role of RIN1 expression in the prognosis of clear cell renal cell carcinoma (ccRCC). The role of RIN1 in ccRCC malignancy and underlying molecular mechanisms remain unclear. Here we report that ccRCC cells and tissues expressed more RIN1 than normal controls. Gain‐of‐function and loss‐of‐function studies demonstrated that RIN1 enhanced ccRCC cell growth, migration and invasion abilities in vitro and promoted tumor growth and metastasis in vivo. Mechanistic studies revealed that RIN1 has an activating effect on EGFR signaling in ccRCC. In addition, we unveil Rab25, a critical GTPase in ccRCC malignancy, as a functional RIN1 interacting partner. Knockdown of Rab25 eliminated the augmentation of carcinoma cell proliferation, migration and invasion by ectopic RIN1. We also confirmed that RIN1 and Rab25 expression correlates with the overall‐survival of ccRCC patients from TCGA. These findings suggest that RIN1 plays an important oncogenic role in ccRCC malignancy by activation of EGFR signaling through interacting with Rab25, and RIN1 could be employed as an effective therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Zi-Hao Feng
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yong Fang
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang-Yun Zhao
- Department of Urology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jun Lu
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yong-Qian Wang
- Department of Musculoskeletal Oncology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhen-Hua Chen
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yong Huang
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin-Huan Wei
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan-Ping Liang
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun-Jie Cen
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi-Hui Pan
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bing Liao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Chen
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun-Hang Luo
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Hou R, Jiang L, Yang Z, Wang S, Liu Q. Rab14 is overexpressed in ovarian cancers and promotes ovarian cancer proliferation through Wnt pathway. Tumour Biol 2016; 37:16005–16013. [PMID: 27718127 DOI: 10.1007/s13277-016-5420-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 09/23/2016] [Indexed: 01/01/2023] Open
Abstract
The Rab GTPase family protein Rab14 has been implicated in cancer development. However, its clinical significance in ovarian cancers and its biological effects have not been examined. The present study aims to examine the clinical significance, biological roles, and molecular mechanism of Rab14 in ovarian cancer progression. We examined expression pattern of Rab14 in 122 cases of ovarian cancer specimens using immunohistochemistry and found Rab14 overexpression correlated with FIGO stage (p = 0.0041). We depleted Rab14 in SKOV3 cells using siRNA and overexpressed Rab14 in SW626 cells. Knockdown of Rab14 inhibited cell growth and invasion while its overexpression facilitated cell growth and invasion. In addition, Rab14 overexpression increased paclitaxel resistance in SW626 cells while its depletion reduced drug resistance. Then, we investigated the role of Rab14 in the regulation of WNT/β-catenin signaling, demonstrating Rab14 overexpression regulated GSK3β phosphorylation and nuclear β-catenin accumulation. Rab14 depletion inhibited while its overexpression enhanced TCF transcriptional activity with corresponding change of Wnt target genes including MMP7 and c-myc. Wnt inhibitor abolished the effect of Rab14 on cell proliferation and Wnt target genes. In conclusion, the present study demonstrated that Rab14 promotes aggressiveness of ovarian cancer cell through, at least partly, Wnt signaling pathway.
Collapse
Affiliation(s)
- Rui Hou
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Luo Jiang
- Department of Ultrasonography, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhuo Yang
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shizhuo Wang
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qifang Liu
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Overexpression of Rab25 promotes hepatocellular carcinoma cell proliferation and invasion. Tumour Biol 2015; 37:7713-8. [PMID: 26692100 DOI: 10.1007/s13277-015-4606-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/07/2015] [Indexed: 01/17/2023] Open
Abstract
Rab25 was reported to be associated with several human cancers and malignant biological behavior of cancer cells. The goal of the present study was to determine its expression pattern and biological function in human hepatocellular carcinoma (HCC). We examined Rab25 protein in 92 cases of HCC tissues and 3 HCC cell lines. The results showed that Rab25 was upregulated in HCC tissues and cells compared with normal liver tissues and cell line. Rab25 overexpression correlated with advanced tumor stage and nodal metastasis. Rab25 small interfering RNA (siRNA) was employed in Bel7402 and SK-Hep-1 cell lines. Cell Counting Kit-8 (CCK-8) assay and colony formation assay showed that Rab25 depletion blocked cell growth rate and inhibited colony formation ability. Transwell assay showed that Rab25 depletion negatively regulated the invading ability of HCC cells. To explore the possible mechanisms, we checked several signaling pathways and found that Rab25 depletion downregulated AKT phosphorylation. In addition, luciferase reporter assay showed that Rab25 depletion inhibited the Wnt signaling pathway and its target genes such as cyclin D1, c-myc, and MMP7. In conclusion, Rab25 is overexpressed in human HCC and contributes to cancer cell proliferation and invasion possibly through regulation of the Wnt signaling pathway.
Collapse
|
14
|
Sui Y, Zheng X, Zhao D. Rab31 promoted hepatocellular carcinoma (HCC) progression via inhibition of cell apoptosis induced by PI3K/AKT/Bcl-2/BAX pathway. Tumour Biol 2015; 36:8661-70. [PMID: 26044564 DOI: 10.1007/s13277-015-3626-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 05/27/2015] [Indexed: 12/28/2022] Open
Abstract
Rab31 belongs to the Ras superfamily of small GTP-binding proteins, which has been found to regulate the vesicle transport from the Golgi apparatus to early and late endosomes. The investigation here detected the expression of Rab31 in 96 patients with hepatocellular carcinoma (HCC) and tried to identify its significance on outcome of HCCs after liver resection. By immunohistochemistry staining, it was found that Rab31 expression in HCC tissues was remarkably higher than that in adjacent liver tissues. Aberrant Rab31 overexpression in HCC tissues was identified to be associated with worse prognosis after liver resection. Univariate analysis showed that advanced tumor-nodes-metastasis (TNM) staging of HCC, intrahepatic metastases, portal vein invasion, and higher Rab31 were the predictive factors of poor prognosis. Multivariate analysis demonstrated that intrahepatic metastases and higher Rab31 were the independent prognostic factors. Furthermore, forced expression of Rab31 in Huh7 cells was found to promote cell growth via upregulation of Bcl-2/BAX ratio induced by PI3K/AKT. Correspondingly, silencing Rab31 induced cell apoptosis and in turn suppressed the growth capacity of MHCC97 cells in vitro. Taken together, this study provides the evidence of Rab31 overexpression in HCC, and Rab31 is potentially used as a novel biomarker of poor prognosis in patients with HCC. PI3K/AKT/Bcl-2/BAX axis was involved in Rab31-promoting HCC progression.
Collapse
Affiliation(s)
- Yanxia Sui
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Xiaoqiang Zheng
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Dongli Zhao
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|