1
|
Chen SY, Chiang CF, Su YF, Lin CY, Hung YJ, Huang TW, Shieh YS. Protein inhibitor of activated signal transducer and activator of transcription 2 is an oncoprotein in oral squamous cell carcinoma and related to cigarette smoking - An in vitro study. J Dent Sci 2024; 19:1983-1990. [PMID: 39347031 PMCID: PMC11437306 DOI: 10.1016/j.jds.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose Oral cancer is one of the most prevalent malignant tumors in Taiwan. Due to the heterogeneity of oral cancer cells, the five-year survival rate of patients is only 50%. Post-translational modifications contribute to protein diversity and directly influence cell functions. The protein inhibitor of activated signal transducer and activator of transcription 2 (PIAS2) is known to undergo post-translational modifications, yet its impact on oral cancer remains unclear. Materials and methods PIAS2 expression was modulated by transfecting cells with a PIAS2 expression vector or by knocking down PIAS2 using siRNA with low and high PIAS2 expression, respectively. These cells were subjected to invasion, migration, and proliferation assays to evaluate the effects of PIAS2. Changes in genotype, such as epithelial-mesenchymal transition (EMT) markers, were also examined. Additionally, the effect of cigarette smoke condensate (CSC) on PIAS2 expression in oral squamous cell carcinoma (OSCC) cells was investigated. Results Overexpression of PIAS2 significantly increased the malignant behaviors of oral cancer cells. In YD38 and SAS cells with low PIAS2 expression, overexpression of PIAS2 enhanced proliferation, invasion, and migration. PIAS2 overexpression also affected EMT gene expression, suppressing E-cadherin and increasing fibronectin expression. Conversely, PIAS2 knockdown in OECM1 and SCC25 cells suppressed malignant behaviors and reversed EMT markers, increasing E-cadherin and decreasing fibronectin expression. Furthermore, a dose-dependent increase in PIAS2 expression was observed when OSCC cells were treated with CSC. Conclusion PIAS2 functions as an oncogene in oral cancer, and cigarette smoking induces PIAS2 expression. Increased PIAS2 levels lead to enhanced malignancy in oral cancer.
Collapse
Affiliation(s)
- Szu-Yu Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Fu Chiang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Fu Su
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Che-Yi Lin
- Department of Oral and Maxillofacial Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Wang Huang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Shing Shieh
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
2
|
Li X, Rasul A, Sharif F, Hassan M. PIAS family in cancer: from basic mechanisms to clinical applications. Front Oncol 2024; 14:1376633. [PMID: 38590645 PMCID: PMC10999569 DOI: 10.3389/fonc.2024.1376633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Protein inhibitors of activated STATs (PIAS) are proteins for cytokine signaling that activate activator-mediated gene transcription. These proteins, as versatile cellular regulators, have been described as regulators of approximately 60 proteins. Dysregulation of PIAS is associated with inappropriate gene expression that promotes oncogenic signaling in multiple cancers. Multiple lines of evidence have revealed that PIAS family members show modulated expressions in cancer cells. Most frequently reported PIAS family members in cancer development are PIAS1 and PIAS3. SUMOylation as post-translational modifier regulates several cellular machineries. PIAS proteins as SUMO E3 ligase factor promotes SUMOylation of transcription factors tangled cancer cells for survival, proliferation, and differentiation. Attenuated PIAS-mediated SUMOylation mechanism is involved in tumorigenesis. This review article provides the PIAS/SUMO role in the modulation of transcriptional factor control, provides brief update on their antagonistic function in different cancer types with particular focus on PIAS proteins as a bonafide therapeutic target to inhibit STAT pathway in cancers, and summarizes natural activators that may have the ability to cure cancer.
Collapse
Affiliation(s)
- Xiaomeng Li
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farzana Sharif
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mudassir Hassan
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
3
|
Lemma RB, Ledsaak M, Fuglerud BM, Rodríguez-Castañeda F, Eskeland R, Gabrielsen OS. MYB regulates the SUMO protease SENP1 and its novel interaction partner UXT, modulating MYB target genes and the SUMO landscape. J Biol Chem 2023; 299:105062. [PMID: 37468105 PMCID: PMC10463205 DOI: 10.1016/j.jbc.2023.105062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
SUMOylation is a post-translational modification frequently found on nuclear proteins, including transcription factors (TFs) and coactivators. By controlling the activity of several TFs, SUMOylation may have far-reaching effects. MYB is an example of a developmental TF subjected to SUMO-mediated regulation, through both SUMO conjugation and SUMO binding. How SUMO affects MYB target genes is unknown. Here, we explored the global effect of reduced SUMOylation of MYB on its downstream gene programs. RNA-Seq in K562 cells after MYB knockdown and rescue with mutants having an altered SUMO status revealed a number of differentially regulated genes and distinct gene ontology term enrichments. Clearly, the SUMO status of MYB both quantitatively and qualitatively affects its regulome. The transcriptome data further revealed that MYB upregulates the SUMO protease SENP1, a key enzyme that removes SUMO conjugation from SUMOylated proteins. Given this role of SENP1 in the MYB regulome, we expanded the analysis, mapped interaction partners of SENP1, and identified UXT as a novel player affecting the SUMO system by acting as a repressor of SENP1. MYB inhibits the expression of UXT suggesting that MYB is able not only to control a specific gene program directly but also indirectly by affecting the SUMO landscape through SENP1 and UXT. These findings suggest an autoactivation loop whereby MYB, through enhancing SENP1 and reducing UXT, is itself being activated by a reduced level of repressive SUMOylation. We propose that overexpressed MYB, seen in multiple cancers, may drive this autoactivation loop and contribute to oncogenic activation of MYB.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Department of Biosciences, University of Oslo, Oslo, Norway; Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway.
| | - Marit Ledsaak
- Department of Biosciences, University of Oslo, Oslo, Norway; Faculty of Medicine, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | - Ragnhild Eskeland
- Department of Biosciences, University of Oslo, Oslo, Norway; Faculty of Medicine, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Faculty of Medicine, Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
4
|
Wang Z, Mo S, Han P, Liu L, Liu Z, Fu X, Tian Y. The role of UXT in tumors and prospects for its application in hepatocellular carcinoma. Future Oncol 2022; 18:3335-3348. [PMID: 36000398 DOI: 10.2217/fon-2022-0582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UXT is widely expressed in human and mouse tissues and aberrantly expressed in various tumor tissues. UXT may play a pro-cancer or tumor suppressor role in different tumor types and microenvironments with different mechanisms of action. Studies have shown that UXT can interact with related receptors to exert its functions and affect tumor proliferation and metastasis, leading to a poor prognosis when the biological functions of these tumors are changed. Interestingly, the signaling pathways and mechanism-related molecules that interact with UXT are closely related to the occurrence of hepatocellular carcinoma (HCC) during disease progression. This article reviews the research progress of UXT and prospects for its application in HCC, with the aim of providing possible scientific suggestions for the basic research, diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhengwang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaojian Mo
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Pengzhe Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lu Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ziang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xifeng Fu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yanzhang Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
5
|
Herranz-Montoya I, Park S, Djouder N. A comprehensive analysis of prefoldins and their implication in cancer. iScience 2021; 24:103273. [PMID: 34761191 PMCID: PMC8567396 DOI: 10.1016/j.isci.2021.103273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Prefoldins (PFDNs) are evolutionary conserved co-chaperones, initially discovered in archaea but universally present in eukaryotes. PFDNs are prevalently organized into hetero-hexameric complexes. Although they have been overlooked since their discovery and their functions remain elusive, several reports indicate they act as co-chaperones escorting misfolded or non-native proteins to group II chaperonins. Unlike the eukaryotic PFDNs which interact with cytoskeletal components, the archaeal PFDNs can bind and stabilize a wide range of substrates, possibly due to their great structural diversity. The discovery of the unconventional RPB5 interactor (URI) PFDN-like complex (UPC) suggests that PFDNs have versatile functions and are required for different cellular processes, including an important role in cancer. Here, we summarize their functions across different species. Moreover, a comprehensive analysis of PFDNs genomic alterations across cancer types by using large-scale cancer genomic data indicates that PFDNs are a new class of non-mutated proteins significantly overexpressed in some cancer types.
Collapse
Affiliation(s)
- Irene Herranz-Montoya
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Solip Park
- Computational Cancer Genomics Group, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| |
Collapse
|
6
|
Lynham J, Houry WA. The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:37-72. [DOI: 10.1007/978-3-030-00737-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Gauthier MS, Cloutier P, Coulombe B. Role of the PAQosome in Regulating Arrangement of Protein Quaternary Structure in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:25-36. [PMID: 30484151 DOI: 10.1007/978-3-030-00737-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The PAQosome, formerly known as the R2TP/PFDL complex, is an eleven-subunit cochaperone complex that assists HSP90 in the assembly of numerous large multisubunit protein complexes involved in essential cellular functions such as protein synthesis, ribosome biogenesis, transcription, splicing, and others. In this review, we discuss possible mechanisms of action and role of phosphorylation in the assembly of client complexes by the PAQosome as well as its potential role in cancer, ciliogenesis and ciliopathies.
Collapse
Affiliation(s)
| | | | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal, QC, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, QC, Canada.
| |
Collapse
|