1
|
Muller Guzzo EF, Rosa G, Lourenço de Lima AMD, Padilha R, Coitinho A. Piroxicam reduced the intensity of epileptic seizures in a kindling seizure model. Neurol Res 2024; 46:717-726. [PMID: 38679045 DOI: 10.1080/01616412.2024.2345032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/13/2024] [Indexed: 05/01/2024]
Abstract
Introduction: The close relationship between inflammatory processes and epileptic seizures is already known, although the exact pathophysiological mechanism is unclear. In this study, the anticonvulsant capacity of piroxicam, an anti-inflammatory drug, was evaluated. A rat pentylenetetrazole kindling model was used.Methods: Male Wistar rats, 8-9 weeks old, received piroxicam (0.15 and 0.30 mg/kg), diazepam (2 mg/kg) or saline for 14 days, and PTZ, on alternate days. Intraperitoneal was chosen as the route of administration. The intensity of epileptic seizures was assessed using a modified Racine scale. The open field test and object recognition analysis were performed at the beginning of the study to ensure the safety of the drugs used. At the end of the protocol, the animals were euthanized to measure the levels of inflammatory (TNF-a and IL-6) and anti-inflammatory (IL-10) cytokines in the cortex, hippocampus, and serum.Results:There were no changes in the open field test and object recognition analysis. Piroxicam was found to decrease Racine scale scores at both concentrations. The reported values for IL-6 levels remained steady in all structures, whereas the TNF-alpha level in the cortex was higher in animals treated with piroxicam than in the saline and diazepam subjects. Finally, animals treated with the anti-inflammatory drug presented reduced IL-10 levels in the cortex and hippocampus.onclusions: Using inflammation as a guiding principle, the anticonvulsant effect of PIRO could be associated with the hippocampal circuits, since this structure showed no increase in inflammatory cytokines.
Collapse
Affiliation(s)
| | - Gabriel Rosa
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Rafael Padilha
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Coitinho
- Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Kulkarni R, Mehta R, Goswami SK, Hammock BD, Morisseau C, Hwang SH, Mallappa O, Azeemuddin MM, Rafiq M, S N M. Neuroprotective effect of herbal extracts inhibiting soluble epoxide hydrolase (sEH) and cyclooxygenase (COX) against chemotherapy-induced cognitive impairment in mice. Biochem Biophys Res Commun 2023; 667:64-72. [PMID: 37209564 PMCID: PMC10849156 DOI: 10.1016/j.bbrc.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/22/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a novel clinical condition characterized by memory, learning, and motor function deficits. Oxidative stress and inflammation are potential factors contributing to chemotherapy's adverse effects on the brain. Inhibition of soluble epoxide hydrolase (sEH) has been proven effective in neuroinflammation and reversal of memory impairment. The research aims to evaluate the memory protective effect of sEH inhibitor and dual inhibitor of sEH and COX and compare its impact with herbal extracts with known nootropic activity in an animal model of CICI. In vitro sEH, the inhibitory activity of hydroalcoholic extracts of Sizygium aromaticum, Nigella sativa, and Mesua ferrea was tested on murine and human sEH enzyme as per the protocol, and IC50 was determined. Cyclophosphamide (50 mg/kg), methotrexate (5 mg/kg), and fluorouracil (5 mg/kg) combination (CMF) were administered intraperitoneally to induce CICI. The known herbal sEH inhibitor, Lepidium meyenii and the dual inhibitor of COX and sEH (PTUPB) were tested for their protective effect in the CICI model. The herbal formulation with known nootropic activity viz Bacopa monnieri and commercial formulation (Mentat) were also used to compare the efficacy in the CICI model. Behavioral parameter such as cognitive function was assessed by Morris Water Maze besides investigating oxidative stress (GSH and LPO) and inflammatory (TNFα, IL-6, BDNF and COX-2) markers in the brain. CMF-induced CICI, which was associated with increased oxidative stress and inflammation in the brain. However, treatment with PTUPB or herbal extracts inhibiting sEH preserved spatial memory via ameliorating oxidative stress and inflammation. S. aromaticum and N. sativa inhibited COX2, but M. Ferrea did not affect COX2 activity. Lepidium meyenii was the least effective, and mentat showed superior activity over Bacopa monnieri in preserving memory. Compared to untreated animals, the mice treated with PTUPB or hydroalcoholic extracts showed a discernible improvement in cognitive function in CICI.
Collapse
Affiliation(s)
- Rachana Kulkarni
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Richa Mehta
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Sumanta Kumar Goswami
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Onkaramurthy Mallappa
- Discovery Sciences Group, R&D Centre, Himalaya Wellness Company, Makali, Bengaluru, 562162, India
| | | | - Mohamed Rafiq
- Discovery Sciences Group, R&D Centre, Himalaya Wellness Company, Makali, Bengaluru, 562162, India
| | - Manjula S N
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| |
Collapse
|
3
|
Anadozie SO, Effiom DO, Adewale OB, Jude J, Zosela I, Akawa OB, Olayinka JN, Roux S. Hibiscus sabdariffa synthesized gold nanoparticles ameliorate aluminum chloride induced memory deficits through inhibition of COX-2/BACE-1 mRNA expression in rats. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
4
|
Abulizi A, Ran J, Ye Y, An Y, Zhang Y, Huang Z, Lin S, Zhou H, Lin D, Wang L, Lin Z, Li M, Yang B. Ganoderic acid improves 5-fluorouracil-induced cognitive dysfunction in mice. Food Funct 2021; 12:12325-12337. [PMID: 34821902 DOI: 10.1039/d1fo03055h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
5-Fluorouracil (5-FU) is a chemotherapeutic drug with a good anti-cancer effect on various types of cancers, such as colorectal cancer and breast cancer. However, previous studies have found that 5-FU could induce cognitive deficit in clinics. As ganoderic acid, isolated from Ganoderma lucidum, has a protective effect on neurons, this study investigated the effects of ganoderic acid (GA) against 5-FU-induced cognitive dysfunction with a series of behavioral tests and related indicators. Experimental results showed that GA significantly prevented the reduction of spatial and non-spatial memory in 5-FU-treated mice. In addition, GA not only ameliorated the damage to hippocampal neurons and mitochondrial structure, but also significantly improved abnormal protein expression of mitochondrial biogenesis related marker PGC-1α, and mitochondrial dynamics related markers MFN2, DRP1 and FIS1 in the hippocampi of 5-FU-treated mice. Moreover, GA could up-regulate the expression of neuronal survival and growth-related proteins, such as BDNF, p-ERK, p-CREB, p-Akt, p-GSK3β, Nrf2, p-mTOR, and p-S6, in the hippocampi of 5-FU-treated mice. These results suggest that GA could prevent cognitive dysfunction in mice treated with 5-FU via preventing mitochondrial impairment and enhancing neuronal survival and growth, which provide evidence for GA as a promising adjunctive therapy for chemotherapy related cognitive impairment in clinics.
Collapse
Affiliation(s)
- Abudumijiti Abulizi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Jianhua Ran
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Yuwei Ye
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Yongpan An
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Yukun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Zhizhen Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Simei Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Dongmei Lin
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianfu Wang
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhibin Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China. .,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
5
|
Ikram MF, Farhat SM, Mahboob A, Baig S, Yaqinuddin A, Ahmed T. Expression of DnMTs and MBDs in AlCl 3-Induced Neurotoxicity Mouse Model. Biol Trace Elem Res 2021; 199:3433-3444. [PMID: 33174148 DOI: 10.1007/s12011-020-02474-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Alteration in DNA methylation after aluminum exposure has been shown to contribute in pathogenesis of Alzheimer's disease (AD). This study is aimed to determine the effect of Al exposure (42 and 60 days) on learning and memory and the expression of proteins involved in DNA methylation (MBD1, MBD2, MBD3, MeCP2 (methyl CpG binding protein 2), DnMT1 and DnMT3a). Male BALB/c mice were treated with AlCl3 for either 42 days or 60 days. After treatment completion, learning and memory were compared to the control group using novel object recognition test, elevated plus maze test, open field test, and Morris water maze test. The treated animals and their respective controls were sacrificed after cognitive testing and samples from their whole cortex and hippocampus were harvested for gene expression analysis. Mice treated with AlCl3 showed significant cognitive deficit with impaired short-term memory, elevated anxiety, and deterioration in spatial and reference memory. The AlCl3 treatment showed significant reduction in the expression of MBDs in the whole cortex at 60 days of treatment as compared to control. AlCl3-treated animals showed decreased expression of MBDs and DnMT3a in the hippocampus for longer treated animals but strikingly, MBD2 showed significantly increased expression in AlCl3-treated animals at 60 days p ≤ 0.001. In conclusion, this study showed that AlCl3-treated animals showed significant memory and cognitive deficits and it is associated with significant changes in the expression of proteins involved in DNA methylation mechanism. Moreover, different Al exposure duration had slightly different effects.
Collapse
Affiliation(s)
- Muhammad Faisal Ikram
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
- Medical College, Ziauddin University, Karachi, Pakistan
| | - Syeda Mehpara Farhat
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Aamra Mahboob
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Saeeda Baig
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Ahmed Yaqinuddin
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
6
|
Molecular mechanisms of aluminum neurotoxicity: Update on adverse effects and therapeutic strategies. ADVANCES IN NEUROTOXICOLOGY 2021; 5:1-34. [PMID: 34263089 DOI: 10.1016/bs.ant.2020.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Chakrabarty T, Torres IJ, Bond DJ, Yatham LN. Inflammatory cytokines and cognitive functioning in early-stage bipolar I disorder. J Affect Disord 2019; 245:679-685. [PMID: 30447566 DOI: 10.1016/j.jad.2018.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/25/2018] [Accepted: 11/03/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Increased circulating inflammatory cytokines is a replicated finding in bipolar I disorder (BDI). Pro-inflammatory cytokines such as TNFα, IL-6 and IL-1 have also been associated with poorer cognitive functioning in patients with longer illness duration. However, the effect of inflammatory cytokines on cognition in early stage patients is not yet known. Here, we investigate the relationship between cytokines and cognition in BDI patients within three years of diagnosis. METHODS Serum pro-inflammatory (TNFα, IL-6 and IL-1α) and anti-inflammatory (IL-4 and IL-10) cytokine levels were compared between 51 early stage BDI patients and 20 healthy controls. 46 patients completed neuropsychological testing, and multiple regression analysis was used to assess the association between cytokine levels and cognition after accounting for relevant clinical and demographic variables. RESULTS TNFα was elevated at trend level significance in BDI patients compared to healthy controls, and was negatively associated with global cognition, processing speed, and working memory in patients. IL-6, IL-1α, IL-4 and IL-10 levels were comparable between groups and were not significantly associated with cognition. LIMITATIONS Direct causation cannot be established in this cross-sectional study; in addition, cytokine levels were not taken on the same day as neuropsychological testing for all patients. CONCLUSIONS TNFα may negatively impact cognition in early BDI. While replication is required in larger samples, these results suggest that inhibition of TNFα activity might be a strategy to preserve cognition in newly diagnosed BDI patients.
Collapse
Affiliation(s)
- Trisha Chakrabarty
- Department of Psychiatry, University of British Columbia, Room 2C7-2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Ivan J Torres
- Department of Psychiatry, University of British Columbia, Room 2C7-2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - David J Bond
- University of Minnesota Medical School, F282/2A West Building, 2450 Riverside Avenue South, Minneapolis, MN 55454, United States
| | - Lakshmi N Yatham
- Department of Psychiatry, University of British Columbia, Room 2C7-2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada.
| |
Collapse
|
8
|
Abstract
Cognitive impairments reported across psychiatric conditions (ie, major depressive disorder, bipolar disorder, schizophrenia, and posttraumatic stress disorder) strongly impair the quality of life of patients and the recovery of those conditions. There is therefore a great need for consideration for cognitive dysfunction in the management of psychiatric disorders. The redundant pattern of cognitive impairments across such conditions suggests possible shared mechanisms potentially leading to their development. Here, we review for the first time the possible role of inflammation in cognitive dysfunctions across psychiatric disorders. Raised inflammatory processes (microglia activation and elevated cytokine levels) across diagnoses could therefore disrupt neurobiological mechanisms regulating cognition, including Hebbian and homeostatic plasticity, neurogenesis, neurotrophic factor, the HPA axis, and the kynurenine pathway. This redundant association between elevated inflammation and cognitive alterations across psychiatric disorders hence suggests that a cross-disorder approach using pharmacological and nonpharmacological (ie, physical activity and nutrition) anti-inflammatory/immunomodulatory strategies should be considered in the management of cognition in psychiatry.
Collapse
|
9
|
Guan ZF, Zhang XM, Tao YH, Zhang Y, Huang YY, Chen G, Tang WJ, Ji G, Guo QL, Liu M, Zhang Q, Wang NN, Yu ZY, Wu GF, Tang ZP, Du ZG, Shang XL, Liu YC, Mei GH, Guo JC, Zhou HG. EGb761 improves the cognitive function of elderly db/db -/- diabetic mice by regulating the beclin-1 and NF-κB signaling pathways. Metab Brain Dis 2018; 33:1887-1897. [PMID: 30187180 PMCID: PMC6244769 DOI: 10.1007/s11011-018-0295-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/23/2018] [Indexed: 12/23/2022]
Abstract
To assess whether EGb761 could protect elderly diabetic mice with cognitive disorders and explore the role of beclin-1-mediated autophagy in these protective effects. Two-month-old male db/db-/- mice and wild-type C57/BL6 mice were randomly divided into six groups: db/db-/- control, db/db-/- 50 mg, db/db-/- 100 mg, wild-type (WT) control, WT 50 mg, and WT 100 mg. EGb761 (50 mg/kg or 100 mg/kg of bodyweight) was given by gavage once a day for 1 month from the age of 6 months. Y-maze and social choice tests were performed at 8th months. The blood pressure was measured. The imaging changes in the brain were measured using magnetic resonance imaging (MRI). The expression and distribution of beclin-1, LC3, and NF-κB were detected using immunohistochemistry staining and western blotting. Ultrastructure alterations in the hippocampus were observed using transmission electron microscopy. Compared with WT mice, the learning ability, memory and overall cognitive function of db/db-/- mice decreased (P < 0.05), and EGb761 could significantly improve the learning and memory function of db/db-/- mice (P < 0.05). EGb761 significantly improved systolic blood pressure in db/db-/- mice (P < 0.01). In addition, fMRI-bold showed a decline in the hippocampus of mice in the db/db-/- group compared with WT. EGb761 could improve these above changes. Immunohistochemistry staining and western blotting confirmed that EGb761 significantly increased beclin-1 and reduced LC3-II/I levels in the brains of db/db-/- mice (P < 0.05). NF-κB levels were obviously higher in the db/db-/- group than that in the WT group, and EGb761 significantly reduced NF-κB levels in db/db-/- mice (P < 0.05). There was a trend of increased autophagosomes in db/db-/- mice, but EGb761 did not change obviously the number of autophagosomes. Compared with normal aged WT mice, aging db/db-/- mice had more common complications of cerebral small vessel disease and cognitive dysfunction. EGb761 could significantly improve the cognitive function of aging db/db-/- mice via a mechanism that may involve the regulation of beclin-1, LC3, and NF-κB.
Collapse
Affiliation(s)
- Zhu-Fei Guan
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Ming Zhang
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ying-Hong Tao
- Department of Medical Examination Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yu Zhang
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yan-Yan Huang
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Gang Chen
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wei-Jun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Gang Ji
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qi-Lin Guo
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ming Liu
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Zhang
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Na-Na Wang
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhong-Yu Yu
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guo-Feng Wu
- Department of Emergency Neurology, Guiyang Medical University, Guiyang, 550004, China
| | - Zhou-Ping Tang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zun-Guo Du
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xi-Liang Shang
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ying-Chao Liu
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Guang-Hai Mei
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jing-Chun Guo
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Hou-Guang Zhou
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
10
|
Alghamdi BSA. Possible prophylactic anti-excitotoxic and anti-oxidant effects of virgin coconut oil on aluminium chloride-induced Alzheimer’s in rat models. J Integr Neurosci 2018; 17:593-607. [DOI: 10.3233/jin-180089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Badrah Saeed Ali Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Nguyen T, Fan T, George SR, Perreault ML. Disparate Effects of Lithium and a GSK-3 Inhibitor on Neuronal Oscillatory Activity in Prefrontal Cortex and Hippocampus. Front Aging Neurosci 2018; 9:434. [PMID: 29375364 PMCID: PMC5770585 DOI: 10.3389/fnagi.2017.00434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) plays a critical role in cognitive dysfunction associated with Alzheimer’s disease (AD), yet the mechanism by which GSK-3 alters cognitive processes in other disorders, such as schizophrenia, remains unknown. In the present study, we demonstrated a role for GSK-3 in the direct regulation of neuronal oscillations in hippocampus (HIP) and prelimbic cortex (PL). A comparison of the GSK-3 inhibitors SB 216763 and lithium demonstrated disparate effects of the drugs on spatial memory and neural oscillatory activity in HIP and PL. SB 216763 administration improved spatial memory whereas lithium treatment had no effect. Analysis of neuronal local field potentials in anesthetized animals revealed that whereas both repeated SB 216763 (2.5 mg/kg) and lithium (100 mg/kg) induced a theta frequency spike in HIP at approximately 10 Hz, only SB 216763 treatment induced an overall increase in theta power (4–12 Hz) compared to vehicle. Acute administration of either drug suppressed slow (32–59 Hz) and fast (61–100 Hz) gamma power. In PL, both drugs induced an increase in theta power. Repeated SB 216763 increased HIP–PL coherence across all frequencies except delta, whereas lithium selectively suppressed delta coherence. These findings demonstrate that GSK-3 plays a direct role in the regulation of theta oscillations in regions critically involved in cognition, and highlight a potential mechanism by which GSK-3 may contribute to cognitive decline in disorders of cognitive dysfunction.
Collapse
Affiliation(s)
- Tuan Nguyen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Theresa Fan
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Susan R George
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Melissa L Perreault
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Misiak B, Beszłej JA, Kotowicz K, Szewczuk-Bogusławska M, Samochowiec J, Kucharska-Mazur J, Frydecka D. Cytokine alterations and cognitive impairment in major depressive disorder: From putative mechanisms to novel treatment targets. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:177-188. [PMID: 28433456 DOI: 10.1016/j.pnpbp.2017.04.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/01/2017] [Indexed: 12/15/2022]
Abstract
Overwhelming evidence indicates the involvement of immune-inflammatory processes in the pathophysiology of major depressive disorder (MDD). Peripheral cytokine alterations serve as one of most consistently reported indices of subthreshold inflammatory state observed in MDD. Although cytokines cannot pass directly through the blood-brain barrier, a number of transport mechanisms have been reported. In addition, peripheral cytokines may impact central nervous system via downstream effectors of their biological activity. Animal model studies have provided evidence that cytokines might impact cognitive performance through direct and indirect effects on long-term potentiation, neurogenesis and synaptic plasticity. Therefore, it has been hypothesized that cytokine alterations might contribute to cognitive impairment that is widely observed in MDD and persists beyond episodes of acute relapse in the majority of patients. Although several studies have provided that peripheral cytokine alterations might be related to cognitive deficits in patients with MDD, the quality of evidence still leaves much to be desired due to methodological heterogeneity and limitations. In this article, we provide an overview of studies investigating the association between peripheral cytokine alterations and cognitive performance in MDD, discuss underlying mechanisms and neural substrates. Finally, we propose possible treatment targets related to cytokine alterations taking into account existing evidence for antidepressant efficacy of anti-inflammatory pharmacological treatment modalities.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 1 Marcinkowski Street, 50-368 Wroclaw, Poland.
| | - Jan Aleksander Beszłej
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | - Kamila Kotowicz
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| | | | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 26 Broniewski Street, 71-460 Szczecin, Poland
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University, 26 Broniewski Street, 71-460 Szczecin, Poland
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367 Wroclaw, Poland
| |
Collapse
|
13
|
Mhillaj E, Morgese MG, Tucci P, Furiano A, Luongo L, Bove M, Maione S, Cuomo V, Schiavone S, Trabace L. Celecoxib Prevents Cognitive Impairment and Neuroinflammation in Soluble Amyloid β-treated Rats. Neuroscience 2018; 372:58-73. [PMID: 29306052 DOI: 10.1016/j.neuroscience.2017.12.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Recent findings suggest that soluble forms of amyloid-β (sAβ) peptide contribute to synaptic and cognitive dysfunctions in early stages of Alzheimer's disease (AD). On the other hand, neuroinflammation and cyclooxygenase-2 (COX-2) enzyme have gained increased interest as key factors involved early in AD, although the signaling pathways and pathophysiologic mechanisms underlying a link between sAβ-induced neurotoxicity and inflammation are still unclear. Here, we investigated the effects of selective COX-2 enzyme inhibition on neuropathological alterations induced by sAβ administration in rats. To this purpose, animals received an intracerebroventricular (icv) injection of predominantly monomeric forms of sAβ and, 7 days after, behavioral as well as biochemical parameters and neurotransmitter alterations were evaluated. During this period, rats also received a sub-chronic treatment with celecoxib. Biochemical results demonstrated that icv sAβ injection significantly increased both COX-2 and pro-inflammatory cytokines expression in the hippocampus (Hipp) of treated rats. In addition, the number of hypertrophic microglial cells and astrocytes were upregulated in sAβ-treated group. Interestingly, rats treated with sAβ showed long-term memory deficits, as confirmed by a significant reduction of discrimination index in the novel object recognition test, along with reduced brain-derived neurotrophic factor expression and increased noradrenaline levels in the Hipp. Systemic administration of celecoxib prevented behavioral dysfunctions, as well as biochemical and neurotransmitter alterations. In conclusion, our results suggest that sAβ neurotoxicity might be associated to COX-2-mediated inflammatory pathways and that early treatment with selective COX-2 inhibitor might provide potential remedies to counterbalance the sAβ-induced effects.
Collapse
Affiliation(s)
- Emanuela Mhillaj
- Dept. of Physiology and Pharmacology, "Sapienza" University of Rome, Rome, Italy
| | - Maria Grazia Morgese
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paolo Tucci
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Furiano
- Dept. of Experimental Medicine, The Second University of Naples, Naples, Italy
| | - Livio Luongo
- Dept. of Experimental Medicine, The Second University of Naples, Naples, Italy
| | - Maria Bove
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Sabatino Maione
- Dept. of Experimental Medicine, The Second University of Naples, Naples, Italy
| | - Vincenzo Cuomo
- Dept. of Physiology and Pharmacology, "Sapienza" University of Rome, Rome, Italy
| | - Stefania Schiavone
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
14
|
Farhat SM, Mahboob A, Iqbal G, Ahmed T. Aluminum-Induced Cholinergic Deficits in Different Brain Parts and Its Implications on Sociability and Cognitive Functions in Mouse. Biol Trace Elem Res 2017; 177:115-121. [PMID: 27709498 DOI: 10.1007/s12011-016-0856-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/20/2016] [Indexed: 12/28/2022]
Abstract
Aluminum is associated with etiology of many neurodegenerative diseases specially Alzheimer's disease. Chronic exposure to aluminum via drinking water results in aluminum deposition in the brain that leads to cognitive deficits. The study aimed to determine the effects of aluminum on cholinergic biomarkers, i.e., acetylcholine level, free choline level, and choline acetyltransferase gene expression, and how cholinergic deficit affects novel object recognition and sociability in mice. Mice were treated with AlCl3 (250 mg/kg). Acetylcholine level, free choline level, and choline acetyltransferase gene expression were determined in cortex, hippocampus, and amygdala. The mice were subjected to behavior tests (novel object recognition and social novelty preference) to assess memory deficits. The acetylcholine level in cortex and hippocampus was significantly reduced in aluminum-treated animals, as compared to cortex and hippocampus of control animals. Acetylcholine level in amygdala of aluminum-treated animals remained unchanged. Free choline level in all the three brain parts was found unaltered in aluminum-treated mice. The novel object recognition memory was severely impaired in aluminum-treated mice, as compared to the control group. Similarly, animals treated with aluminum showed reduced sociability compared to the control mice group. Our study demonstrates that aluminum exposure via drinking water causes reduced acetylcholine synthesis in spite of normal free choline availability. This deficit is caused by reduced recycling of acetylcholine due to lower choline acetyltransferase level. This cholinergic hypofunction leads to cognitive and memory deficits. Moreover, hippocampus is the most affected brain part after aluminum intoxication.
Collapse
Affiliation(s)
- Syeda Mehpara Farhat
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Aamra Mahboob
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Ghazala Iqbal
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
15
|
Mahboob A, Farhat SM, Iqbal G, Babar MM, Zaidi NUSS, Nabavi SM, Ahmed T. Alpha-lipoic acid-mediated activation of muscarinic receptors improves hippocampus- and amygdala-dependent memory. Brain Res Bull 2016; 122:19-28. [PMID: 26912408 DOI: 10.1016/j.brainresbull.2016.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/30/2022]
Abstract
Aluminum (Al) is a neurotoxic agent which readily crosses the blood-brain-barrier (BBB) and accumulates in the brain leading to neurodegenerative disorders, characterised by cognitive impairment. Alpha-lipoic acid (ALA) is an antioxidant and has a potential to improve cognitive functions. This study aimed to evaluate the neuroprotective effect of ALA in AlCl3-induced neurotoxicity mouse model. Effect of ALA (25mg/kg/day) was evaluated in the AlCl3-induced neurotoxicity (AlCl3 150 mg/kg/day) mouse model on learning and memory using behaviour tests and on the expression of muscarinic receptor genes (using RT-PCR), in hippocampus and amygdala. Following ALA treatment, the expression of muscarinic receptor genes M1, M2 and choline acetyltransferase (ChaT) were significantly improved (p<0.05) relative to AlCl3-treated group. ALA enhanced fear memory (p<0.01) and social novelty preference (p<0.001) comparative to the AlCl3-treated group. Fear extinction memory was remarkably restored (p<0.001) in ALA-treated group demonstrated by reduced freezing response as compared to the AlCl3-treated group which showed higher freezing. In-silico analysis showed that racemic mixture of ALA has higher binding affinity for M1 and M2 compared to acetylcholine. These novel findings highlight the potential role of ALA in cognitive functions and cholinergic system enhancement thus presenting it an enviable therapeutic candidate for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Aamra Mahboob
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Syeda Mehpara Farhat
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Ghazala Iqbal
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Mustafeez Mujtaba Babar
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Najam-us-Sahar Sadaf Zaidi
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan.
| |
Collapse
|