1
|
Li T, Wen G, Zhao H, Qu Y, Wu H, Sun Y, Zhao J, Li W. Protein-based supramolecular adhesive capable of on-demand adhesion and anti-adhesion for preventing undesired epidural tissue adhesion. CHEMICAL ENGINEERING JOURNAL 2025; 505:159778. [DOI: 10.1016/j.cej.2025.159778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
|
2
|
He MT, Park G, Park DH, Choi M, Ku S, Go SH, Lee YG, Song SJ, Ahn CW, Jang YP, Kang KS. So Shiho Tang Reduces Inflammation in Lipopolysaccharide-Induced RAW 264.7 Macrophages and Dextran Sodium Sulfate-Induced Colitis Mice. Biomolecules 2024; 14:451. [PMID: 38672468 PMCID: PMC11047977 DOI: 10.3390/biom14040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
So Shiho Tang (SSHT) is a traditional herbal medicine commonly used in Asian countries. This study evaluated the anti-inflammatory effect of SSHT and the associated mechanism using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and murine dextran sodium sulfate (DSS)-induced ulcerative colitis models. Pre-treatment of RAW 264.7 macrophages with SSHT significantly reduced LPS-induced inflammation by decreasing nitrite production and regulating the mitogen-activated protein kinase pathway. Meanwhile, in mice, DSS-induced colitis symptoms, including colon shortening and body weight loss, were attenuated by SSHT. Moreover, representative compounds of SSHT, including glycyrrhizic acid, ginsenoside Rb1, baicalin, saikosaponin A, and saikosaponin B2, were quantified, and their effects on nitrite production were measured. A potential anti-inflammatory effect was detected in LPS-induced RAW 264.7 cells. Our findings suggest that SSHT is a promising anti-inflammatory agent. Its representative components, including saikosaponin B2, ginsenoside Rb1, and baicalin, may represent the key active compounds responsible for eliciting the anti-inflammatory effects and can, therefore, serve as quality control markers in SSHT preparations.
Collapse
Affiliation(s)
- Mei Tong He
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| | - Geonha Park
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Do Hwi Park
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| | - Minsik Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Sejin Ku
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Seung Hyeon Go
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Yun Gyo Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Seok Jun Song
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Chang-Wook Ahn
- Dr. Ahn’s Surgery Clinic, Osan 18144, Republic of Korea;
| | - Young Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| |
Collapse
|
3
|
Kazak F, Uyar A, Coskun P, Yaman T. Nobiletin alleviates methotrexate-induced hepatorenal toxicity in rats. Biotech Histochem 2024; 99:134-146. [PMID: 38563051 DOI: 10.1080/10520295.2024.2335168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
We investigated the possible ameliorative effects of nobiletin (NBL) against methotrexate (MTX)-induced hepatorenal toxicity in rats. Twenty-eight Wistar albino rats were randomly divided into four groups, namely: Control; MTX (administered 20 mg/kg MTX); MTX+NBL (administered 20 mg/kg MTX and 10 mg/kg NBL per day); and NBL (administered 10 mg/kg/day NBL). Histopathological, immunohistochemical and biochemical analyses were performed on the kidney and liver tissues of rats at the end of the study. MTX caused renal toxicity, as indicated by increases in malondialdehyde (MDA) and caspase-3, as well as decreases in reduced glutathione (GSH), glucose-6-phosphate dehydrogenase (G6PD), glutathione peroxidase (GPx), catalase (CAT) and B-cell lymphoma-2 (Bcl-2). MTX also caused hepatotoxicity, as indicated by increases in 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor alpha (TNF-α), MDA and caspase-3 and decrease in interleukin 10 (IL-10), GSH, total antioxidant capacity, GPx, G6PD, CAT and Bcl-2. MTX caused histopathological changes in kidney and liver tissues indicating tissue and cellular damage. Administration of NBL concurrently with methotrexate reduced oxidative stress, inflammatory and apoptotic signs, and prevented kidney and liver damage caused by methotrexate. We consider NBL has attenuating and ameliorating effects on methotrexate-induced hepatorenal toxicity.
Collapse
Affiliation(s)
- Filiz Kazak
- Department of Biochemistry, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Pinar Coskun
- Department of Biochemistry, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Turan Yaman
- Department of Pathology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
4
|
Gao Y, Zhang L, Zhang F, Liu R, Liu L, Li X, Zhu X, Liang Y. Traditional Chinese medicine and its active substances reduce vascular injury in diabetes via regulating autophagic activity. Front Pharmacol 2024; 15:1355246. [PMID: 38505420 PMCID: PMC10949535 DOI: 10.3389/fphar.2024.1355246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Due to its high prevalence, poor prognosis, and heavy burden on healthcare costs, diabetic vascular complications have become a significant public health issue. Currently, the molecular and pathophysiological mechanisms underlying diabetes-induced vascular complications remain incompletely understood. Autophagy, a highly conserved process of lysosomal degradation, maintains intracellular homeostasis and energy balance via removing protein aggregates, damaged organelles, and exogenous pathogens. Increasing evidence suggests that dysregulated autophagy may contribute to vascular abnormalities in various types of blood vessels, including both microvessels and large vessels, under diabetic conditions. Traditional Chinese medicine (TCM) possesses the characteristics of "multiple components, multiple targets and multiple pathways," and its safety has been demonstrated, particularly with minimal toxicity in liver and kidney. Thus, TCM has gained increasing attention from researchers. Moreover, recent studies have indicated that Chinese herbal medicine and its active compounds can improve vascular damage in diabetes by regulating autophagy. Based on this background, this review summarizes the classification, occurrence process, and related molecular mechanisms of autophagy, with a focus on discussing the role of autophagy in diabetic vascular damage and the protective effects of TCM and its active compounds through the regulation of autophagy in diabetes. Moreover, we systematically elucidate the autophagic mechanisms by which TCM formulations, individual herbal extracts, and active compounds regulate diabetic vascular damage, thereby providing new candidate drugs for clinical treatment of vascular complications in diabetes. Therefore, further exploration of TCM and its active compounds with autophagy-regulating effects holds significant research value for achieving targeted therapeutic approaches for diabetic vascular complications.
Collapse
Affiliation(s)
- Yankui Gao
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Lei Zhang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Fei Zhang
- Department of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Lanzhou, China
| | - Rong Liu
- Department of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lei Liu
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaoyan Li
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiangdong Zhu
- Department of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Yonglin Liang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
5
|
Glycyrrhizic acid inhibits myeloid differentiation of hematopoietic stem cells by binding S100 calcium binding protein A8 to improve cognition in aged mice. Immun Ageing 2023; 20:12. [PMID: 36906583 PMCID: PMC10007777 DOI: 10.1186/s12979-023-00337-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/03/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Glycyrrhizic acid (GA), a saponin compound often used as a flavoring agent, can elicit anti-inflammatory and anti-tumor effects, and alleviate aging. However, the specific mechanism by which GA alters immune cell populations to produce these beneficial effects is currently unclear. RESULTS In this study, we systematically analyzed single-cell sequencing data of peripheral blood mononuclear cells from young mice, aged mice, and GA-treated aged mice. Our in vivo results show that GA reduced senescence-induced increases in macrophages and neutrophils, and increased numbers of lymphoid lineage subpopulations specifically reduced by senescence. In vitro, GA significantly promoted differentiation of Lin-CD117+ hematopoietic stem cells toward lymphoid lineages, especially CD8+ T cells. Moreover, GA inhibited differentiation of CD4+ T cells and myeloid (CD11b+) cells by binding to S100 calcium-binding protein 8 (S100A8) protein. Overexpression of S100A8 in Lin- CD117+ hematopoietic stem cells enhanced cognition in aged mice and the immune reconstitution of severely immunodeficient B-NDG (NOD.CB17-Prkdcscid/l2rgtm1/Bcgen) mice. CONCLUSIONS Collectively, GA exerts anti-aging effects by binding to S100A8 to remodel the immune system of aged mice.
Collapse
|
6
|
Ferrous iron-induced formation of glycyrrhizic acid hydrogels for Staphylococcus aureus-infected wound healing. Colloids Surf B Biointerfaces 2023; 221:112977. [DOI: 10.1016/j.colsurfb.2022.112977] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
7
|
Lin TY, Wu TH, Tzou RD, Hsu YC, Lee KT, Tsai TH. Radix Glycyrrhizae Preparata Induces Cell Cycle Arrest and Induced Caspase-Dependent Apoptosis in Glioblastoma Multiforme. Neurol Int 2022; 14:804-823. [PMID: 36278690 PMCID: PMC9590052 DOI: 10.3390/neurolint14040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and devastating brain tumor characterized by poor prognosis and high rates of recurrence. Despite advances in multidisciplinary treatment, GBM constinues to have a poor overall survival. The Radix Glycyrrhizae Preparata (RGP) has been reported to possess anti-allergic, neuroprotective, antioxidative, and anti-inflammatory activities. However, it not clear what effect it may have on tumorigenesis in GBM. This study demonstrated that RGP reduced glioma cell viability and attenuated glioma cell locomotion in GBM8401 and U87MG cells. RGP treated cells had significant increase in the percentage of apoptotic cells and rise in the percentage of caspase-3 activity. In addition, the results of study's cell cycle analysis also showed that RGP arrested glioma cells at G2/M phase and Cell failure pass the G2 checkpoint by RGP treatment in GBM8401 Cells. Based on the above results, it seems to imply that RGP activated DNA damage checkpoint system and cell cycle regulators and induce apoptosis in established GBM cells. In conclusion, RGP can inhibit proliferation, cell locomotion, cell cycle progression and induce apoptosis in GBM cells in vitro.
Collapse
Affiliation(s)
- Tsung-Ying Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Tung-Hsuan Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Rong-Dar Tzou
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Yi-Chiang Hsu
- School of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| | - Kuan-Ting Lee
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
8
|
Wang H, Zhang B, Dong W, Li Y, Zhao L, Zhang Y. Effect of Diammonium Glycyrrhizinate in Improving Focal Cerebral Ischemia-Reperfusion Injury in Rats Through Multiple Mechanisms. Dose Response 2022; 20:15593258221142792. [PMID: 36479318 PMCID: PMC9720820 DOI: 10.1177/15593258221142792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVE Acute ischemic stroke is a current major disabling and killer disease worldwide. We aimed to investigate the protective effect and mechanism of diammonium glycyrrhizinate in alleviating acute ischemic stroke. METHODS Ninety male Sprague Dawley (SD) rats (weighing 250-300 g) were randomly allocated into three groups: sham operation group (sham group), diammonium glycyrrhizinate group (DG group) and model group (model group) each with 30 individuals. A rat model of focal CIR injury was established by reversible middle cerebral artery occlusion. RESULTS Zea-Longa scores for the rats in the DG group and model group were 7-fold and 8-fold higher than those of the sham group 2 h post-surgery (2.90 ± 0.99 vs. 0.30 ± 0.53, P < .05; 2.80 ± 0.61 vs. 0.30 ± 0.53, P < .05, respectively). Three days after model establishment, the scores of DG group were 26.92% lower compared with those of the model group (1.90 ± 0.76 vs. 2.60 ± 0.62, P < .05). In addition, compared with the sham group, the number of Nissl bodies and Akt-positive cells in were 27.35% and 30.42% lower in the hippocampus of the DG group (Nissl bodies: 83.40 ± 7.01 vs. 115.60 ± 11.97, p < 0.05; Akt-positive cells: 94.70 ± 8.23 vs. 136.10 ± 10.37, P < .05) and 58.65% and 57.31% lower in the model group (Nissl bodies: 47.80 ± 4.91 vs. 115.60 ± 11.97, P < .05; Akt-positive cells: 58.10 ± 4.98 vs. 136.10 ± 10.37, P < 0.05), respectively. However, the number of Nissl bodies and Akt-positive cells in the hippocampus of DG group were 74.48% and 62.9% higher compared with the model group, respectively (Nissl bodies: 83.40 ± 7.01 vs. 47.80 ± 4, P < 0.05; Akt-positive cells: 94.70 ± 8.23 vs. 58.10 ± 4.98, P < .05). In addition, compared with the sham group, the number of caspase-3-positive cells, the expression level of p38 mitogen-activated protein kinase (MAPK) and the expression of matrix metallopeptidase 9 (MMP-9) were 2-fold, 34.38%, 64.78% higher in the DG group (caspase-3-positive cells: 78.70 ± 6.52 vs. 27.10 ±3.00, P < .05; p-38MAPK: 0.43 ± 0.15 vs. 0.32 ± 0.10, P < .05; MMP-9: 14.83 ± 1.18 vs. 9.00 ± 2.05, P < .05, respectively), and more than 3-fold, 1-fold and 1-fold higher in model group (caspase-3-positive cells: 121.10 ± 11.04 vs. 27.10 ± 3.00, P < .05; p-38MAPK: 0.70 ± 0.12 vs. 0.32 ± 0.10, P < .05; MMP-9: 19.00 ± 1.90 vs. 9.00 ± 2.05, P < .05), respectively. However, the number of caspase-3-positive cells and the expression levels of p-38MAPK and MMP-9 were 35.01%, 38.57% and 28.12% lower in DG group compared with the model group (caspase-3-positive cells: 78.70 ± 6.52 vs. 121.10 ± 11.04, P < .05; p-38MAPK: 0.43 ± 0.15 vs. 0.70 ± 0.12, P < .05; MMP-9: 14.83 ± 1.18 vs. 19.00 ± 1.90, P < .05). CONCLUSIONS Our study showed that diammonium glycyrrhizinate at 20 mg/kg/day had a protective effect on cerebral ischemia-reperfusion injury in rats by promoting formation of Nissl bodies and increasing protein expression of Akt while decreasing that of caspase-3, p38 MAPK and MMP-9, either directly or indirectly, by inhibiting apoptosis and reducing neuroinflammation. All these mechanisms resulted in improved overall neurological function.
Collapse
Affiliation(s)
- Hong Wang
- Rehabilitation Medical Department,
Tianjin
Union Medical Center, Rehabilitation
Medical Research Center of Tianjin, Tianjin, China
| | - Binbin Zhang
- Department of Neurology,
Dongli District
Hospital, Tianjin, Chian
| | - Weiwei Dong
- Department of Nuclear Medicine,
The
Fourth Central Clinical School, Tianjin Medical
University, Tianjin, China
| | - Yuying Li
- Department of Neurology,
Tianjin
Medical University General Hospital,
Tianjin, China
| | - Liwen Zhao
- Department of Neurosurgery,
Tianjin
Medical University General Hospital Airport
Site, Tianjin, China
| | - Ying Zhang
- Rehabilitation Medical Department,
Tianjin
Union Medical Center, Rehabilitation
Medical Research Center of Tianjin, Tianjin, China
| |
Collapse
|
9
|
Zhang H, Wang J, Lang W, Liu H, Zhang Z, Wu T, Li H, Bai L, Shi Q. Albiflorin ameliorates inflammation and oxidative stress by regulating the NF-κB/NLRP3 pathway in Methotrexate-induced enteritis. Int Immunopharmacol 2022; 109:108824. [PMID: 35561481 DOI: 10.1016/j.intimp.2022.108824] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/16/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022]
Abstract
Methotrexate (MTX) treats various diseases but also damages intestinal barrier and leads to enteritis. Albiflorin (ALB) has a variety of pharmacological effects, including antioxidant, anti-inflammation and anti-apoptosis. In the present study, we evaluated the therapeutic effect of ALB on MTX-induced enteritis and investigated the possible mechanisms involved. Male SD rats were intraperitoneally injected with 7 mg/kg MTX for three consecutive days to establish the enteritis model. ALB (20 or 40 mg/kg/day) was intragastrically administrated since two days prior MTX treatment and lasted for six days. We found that ALB treatment increased body weight and intestinal weight of rats with MTX injection. The disease activity index (DAI) score was also decreased after ALB administration. In histological examination, ALB treatment attenuated inflammatory cells infiltration and promoted survival of goblet cells. In detection of inflammatory-associated factors, ALB treatment decreased CD68+ cells infiltration, inhibited myeloperoxidase activity, and suppressed intercellular cell adhesion molecule-1 and cyclooxygenase-2 expression. Additionally, ALB reduced malondialdehyde, glutathione levels, inhibited superoxide dismutase activity and suppressed reactive oxygen species production. Moreover, ALB treatment effectively inhibited NLRP3, as well as caspase 1 p20 and interleukin (IL)-1β and 18 expression. Finally, nuclear factor-κB (NF-κB) p65 phosphorylation and nuclear translocation were also demonstrated to be blocked upon ALB treatment. In conclusion, our findings indicated that ALB alleviated MTX-induced enteritis via inhibiting the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Haihua Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Jing Wang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Wuying Lang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi 726000, People's Republic of China
| | - Hongli Liu
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Zhiqiang Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Tonglei Wu
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Hongqiang Li
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Liya Bai
- Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Qiumei Shi
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China.
| |
Collapse
|
10
|
Wang J, Li G, Zhong W, Zhang H, Yang Q, Chen L, Wang J, Yang X. Effect of Dietary Paeoniae Radix Alba Extract on the Growth Performance, Nutrient Digestibility and Metabolism, Serum Biochemistry, and Small Intestine Histomorphology of Raccoon Dog During the Growing Period. Front Vet Sci 2022; 9:839450. [PMID: 35445094 PMCID: PMC9014091 DOI: 10.3389/fvets.2022.839450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Paeoniae radix alba extract (PRA extract) has the functions of regulating immunity, resisting inflammation, and has antioxidant properties. However, current recommendations of dietary PRA extract levels for raccoon dogs were inadequate. The purpose of this experimental study was to gain information allowing for better estimating the effects of PRA extract on raccoon dogs, and their PRA requirements. Fifty healthy male raccoon dogs of (120 ± 5) days old were randomly divided into 5 groups (group PRA0, PRA1, PRA2, PRA4, PRA8) with 10 animals in each group and 1 in each replicate. Five kinds of experimental diets were prepared with five levels of Paeoniae radix alba extract (0, 1, 2, 4, 8 g/kg) in the basic diet. The prefeeding period was 7 days and the experimental period was 40 days. The results showed that the average daily feed intake in group PRA1 and PRA2 was significantly higher than that in other groups (P < 0.01). The dry matter excretion in group PRA8 was significantly higher than that in other groups (P < 0.01), while the dry matter digestibility and protein digestibility in group PRA8 were significantly lower than those in other groups (P < 0.01). Nitrogen retention in group PRA1 and PRA2 was significantly higher than that in group PRA8 (P < 0.05). With the increase of the content of Paeoniae radix alba extract in diet, the activity of alkaline phosphatase in group PRA2 was significantly higher than that in group PRA0 (P < 0.05); The activity of serum SOD in group PRA4 was significantly higher than that in other groups (P < 0.01). The content of serum IgA in group PRA2 was significantly higher than that in other groups (P < 0.05). The content of TNF-α in intestinal mucosa in group PRA1 and group PRA2 was significantly lower than that in group PRA0 (P < 0.05). In conclusion, we found that dietary Paeoniae radix alba extract intake significantly improved the feed intake and nitrogen deposition of Ussuri raccoon dog, increased the content of serum IgA and reduced the content of TNF-α in the small intestinal mucosa. We suggest that an estimated dietary Paeoniae radix alba extract level of 1 to 2 g/kg could be used as a guide to achieve the optimal performance of raccoon dogs.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guangyu Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Animal Science and Technology, Qingdao Agriculture University, Qingdao, China
| | - Wei Zhong
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Haihua Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Qianlong Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lihong Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jinming Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xuewen Yang
- China Animal Husbandry Group, Beijing, China
| |
Collapse
|
11
|
Lang W, Cheng M, Zheng X, Zhao Y, Qu Y, Jia Z, Gong H, Ali I, Tang J, Zhang H. Forsythiaside A alleviates methotrexate-induced intestinal mucositis in rats by modulating the NLRP3 signaling pathways. Int Immunopharmacol 2021; 103:108466. [PMID: 34933162 DOI: 10.1016/j.intimp.2021.108466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
Abstract
Most chemotherapeutic drugs can kill the tumor cells, but also cause a vast damage to body, such as intestinal mucositis (IM). The present study was design to find out the effect of Forsythiaside A (FTA) on chemotherapeutic-induced IM in rats. Briefly, for 3 consecutive days, male Sprague-Dawley rats were treated with 7 mg / kg methotrexate (MTX) to establish IM and simultaneously administered with 40 or 80 mg / kg FTA for 7 days. Our results showed that the final body weight and daily food intake were increased, and the disease activity index was reduced in the MTX group after FTA treatment. The MTX group showed the pathological alterations like the inflammatory cells infiltration, the mucosal layer destruction, glands expansion, intestinal villi structure disorder and goblet cells reduction, while we found that 80 mg / kg FTA treatment displayed evident reversal effects. ELISA further suggested that TNF-α, IL-1β and IL-18 levels in serum in MTX-induced rats were reduced after 80 mg / kg FTA treatment. Moreover, FTA decreased the number of leukocytes, neutrophils and lymphocytes in peripheral blood. Western blot and immunofluorescence results indicated that the expression levels of NLRP3, cleaved caspase 1, cleaved IL-1β and CD68 positive rate were down-regulated in MTX-induced rats after 80 mg / kg FTA intervention. The findings of the current study suggested that FTA effectively inhibited MTX-induced IM in rats by attenuating the activation of the NLRP3 signaling pathways.
Collapse
Affiliation(s)
- Wuying Lang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Beixin Street 10, Shangluo, China; Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources Co. Ltd, Beixin Street 10, Shangluo, China
| | - Min Cheng
- College of Biology Pharmacy and Food Engineering, Shangluo University, Beixin Street 10, Shangluo, China; Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources Co. Ltd, Beixin Street 10, Shangluo, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, China
| | - Yongping Zhao
- College of Biology Pharmacy and Food Engineering, Shangluo University, Beixin Street 10, Shangluo, China; Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources Co. Ltd, Beixin Street 10, Shangluo, China
| | - Yunlong Qu
- College of Biology Pharmacy and Food Engineering, Shangluo University, Beixin Street 10, Shangluo, China; Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources Co. Ltd, Beixin Street 10, Shangluo, China
| | - Zhao Jia
- College of Biology Pharmacy and Food Engineering, Shangluo University, Beixin Street 10, Shangluo, China; Shaanxi Qinling Industrial Technology Research Institute of Special Biological Resources Co. Ltd, Beixin Street 10, Shangluo, China
| | - Haizhou Gong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, China
| | - Ihsan Ali
- College of veterinary science faculty of animal husbandry and veterinary science, the University of Agriculture Peshawar, Pakistan
| | - Jingwen Tang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Beixin Street 10, Shangluo, China
| | - Haihua Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (under planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, No. 360 Hebei Street, Haigang District, Qinhuangdao 066004, China.
| |
Collapse
|
12
|
Zeeshan M, Atiq A, Ain QU, Ali J, Khan S, Ali H. Evaluating the mucoprotective effects of glycyrrhizic acid-loaded polymeric nanoparticles in a murine model of 5-fluorouracil-induced intestinal mucositis via suppression of inflammatory mediators and oxidative stress. Inflammopharmacology 2021; 29:1539-1553. [PMID: 34420176 DOI: 10.1007/s10787-021-00866-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/13/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES 5-Fluorouracil (5-FU), a chemotherapeutic drug, has severe deteriorating effects on the intestine, leading to mucositis. Glycyrrhizic acid is a compound derived from a common herbal plant Glycyrrhiza glabra, with mucoprotective, antioxidant and anti-inflammatory actions, however, associated with poor pharmacokinetics. Owing to the remarkable therapeutic action of glycyrrhizic acid-loaded polymeric nanocarriers in inflammatory bowel disease, we explored their activity against 5-FU-induced intestinal mucositis in mice. Polymeric nanocarriers have proven to be efficient drug delivery vehicles for the long-term treatment of inflammatory diseases, but have not yet been explored for 5-FU-induced mucositis. Therefore, this study aimed to produce glycyrrhizic acid-loaded polylactic-co-glycolic acid (GA-PLGA) nanoparticles to evaluate their protective and therapeutic effects in a 5-FU-induced mucositis model. METHODS GA-PLGA nanoparticles were prepared using a modified double emulsion method, physicochemically characterized, and tested for in vitro drug release. Thereafter, mucositis was induced by 5-FU (50 mg/kg; IP) administration to the mice for the first 3 days (day 0, 1, 2), and mice were treated orally with GA-PLGA nanoparticles for 7 days (day 0-6). RESULTS GA-PLGA nanoparticles significantly reduced mucositis severity measured by body weight, diarrhea score, distress, and anorexia. Further, 5-FU induced intestinal histopathological damage, altered villi-crypt length, reduced goblet cell count, elevated pro-inflammatory mediators, and suppressed antioxidant enzymes, all of which were reversed by GA-PLGA nanoparticles. CONCLUSION Morphological, behavioral, histological, and biochemical results suggested that GA-PLGA nanoparticles were efficient, biocompatible, targeted, and sustained release drug delivery nano-vehicle for enhanced mucoprotective, anti-inflammatory, and antioxidant effects in 5-FU-induced intestinal mucositis.
Collapse
Affiliation(s)
- Mahira Zeeshan
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Ayesha Atiq
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Qurat Ul Ain
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Jawad Ali
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
13
|
Moustafa GO, Shalaby A, Naglah AM, Mounier MM, El-Sayed H, Anwar MM, Nossier ES. Synthesis, Characterization, In Vitro Anticancer Potentiality, and Antimicrobial Activities of Novel Peptide-Glycyrrhetinic-Acid-Based Derivatives. Molecules 2021; 26:4573. [PMID: 34361728 PMCID: PMC8346995 DOI: 10.3390/molecules26154573] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 01/10/2023] Open
Abstract
Glycyrrhetinic acid (GA) is one of many interesting pentacyclic triterpenoids showing significant anticancer activity by triggering apoptosis in tumor cell lines. This study deals with the design and synthesis of new glycyrrhetinic acid (GA)-amino acid peptides and peptide ester derivatives. The structures of the new derivatives were established through various spectral and microanalytical data. The novel compounds were screened for their in vitro cytotoxic activity. The evaluation results showed that the new peptides produced promising cytotoxic activity against the human breast MCF-7 cancer cell line while comparing to doxorubicin. On the other hand, only compounds 3, 5, and 7 produced potent activity against human colon HCT-116 cancer cell line. The human liver cancer (HepG-2) cell line represented a higher sensitivity to peptide 7 (IC50; 3.30 μg/mL), while it appeared insensitive to the rest of the tested peptides. Furthermore, compounds 1, 3, and 5 exhibited a promising safety profile against human normal skin fibroblasts cell line BJ-1. In order to investigate the mode of action, compound 5 was selected as a representative example to study its in vitro effect against the apoptotic parameters and Bax/BCL-2/p53/caspase-7/caspase-3/tubulin, and DNA fragmentation to investigate beta (TUBb). Additionally, all the new analogues were subjected to antimicrobial assay against a panel of Gram-positive and Gram-negative bacteria and the yeast candida Albicans. All the tested GA analogues 1-8 exhibited more antibacterial effect against Micrococcus Luteus than gentamicin, but they exhibited moderate antimicrobial activity against the tested bacterial and yeast strains. Molecular docking studies were also simulated for compound 5 to give better rationalization and put insight to the features of its structure.
Collapse
Affiliation(s)
- Gaber O. Moustafa
- National Research Centre, Peptide Chemistry Department, Chemical Industries Research Division, Cairo 12622, Egypt;
| | - Ahmed Shalaby
- National Research Centre, Peptide Chemistry Department, Chemical Industries Research Division, Cairo 12622, Egypt;
| | - Ahmed M. Naglah
- National Research Centre, Peptide Chemistry Department, Chemical Industries Research Division, Cairo 12622, Egypt;
- Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa M. Mounier
- National Research Centre, Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, 33-El Bohouth St., Giza 12622, Egypt;
| | - Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11111, Egypt;
| | - Manal M. Anwar
- National Research Centre, Department of Therapeutic Chemistry, Cairo 12622, Egypt;
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt;
| |
Collapse
|
14
|
Sun Z, He G, Huang N, Thilakavathy K, Lim JCW, Kumar SS, Xiong C. Glycyrrhizic Acid: A Natural Plant Ingredient as a Drug Candidate to Treat COVID-19. Front Pharmacol 2021; 12:707205. [PMID: 34305613 PMCID: PMC8298820 DOI: 10.3389/fphar.2021.707205] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
The total number of cumulative cases and deaths from the COVID-19 pandemic caused by SARS-CoV-2 is still increasing worldwide. Although many countries have actively implemented vaccination strategies to curb the epidemic, there is no specific efficient therapeutic drug for this virus to effectively reduce deaths. Therefore, the underappreciated macromolecular compounds have become the spotlight of research. Furthermore, the medicinal compounds in plants that provide myriad possibilities to treat human diseases have become of utmost importance. Experience indicates that Traditional Chinese medicine effectively treats SARS and has been used for treating patients with COVID-19 in China. As one of the world's oldest herbal remedies, licorice is used for treating patients with all stages of COVID-19. Glycyrrhizic acid (GA), the main active compound in licorice, has been proven effective in killing the SARS virus. Meanwhile, as a natural plant molecule, GA can also directly target important protein structures of the SARS-CoV-2 virus and inhibit the replication of SARS-CoV-2. In this review, we summarized the immune synergy of GA and its potential role in treating COVID-19 complications. Besides, we reviewed its anti-inflammatory effects on the immune system and its positive effects in cooperation with various drugs to fight against COVID-19 and its comorbidities. The purpose of this review is to elucidate and suggest that GA can be used as a potential drug during COVID-19 treatment.
Collapse
Affiliation(s)
- Zhong Sun
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Guozhong He
- School of Public Health, Kunming Medical University, Kunming, China
| | - Ninghao Huang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Karuppiah Thilakavathy
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Genetics and Regenerative Medicine Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jonathan Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - S. Suresh Kumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Chenglong Xiong
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Yu Y, Chen J, Zhang X, Wang Y, Wang S, Zhao L, Wang Y. Identification of anti-inflammatory compounds from Zhongjing formulae by knowledge mining and high-content screening in a zebrafish model of inflammatory bowel diseases. Chin Med 2021; 16:42. [PMID: 34059101 PMCID: PMC8166029 DOI: 10.1186/s13020-021-00452-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) are chronic relapsing intestinal inflammations with increasing global incidence, and new drug development remains in urgent demand for IBD management. To identify effective traditional Chinese medicine (TCM) formulae and compounds in IBD treatment, we innovatively combined the techniques of knowledge mining, high-content screening and high-resolution mass spectrometry, to conduct a systematic screening in Zhongjing formulae, which is a large collection of TCM prescriptions with most abundant clinical evidences. METHODS Using Word2vec-based text learning, the correlations between 248 Zhongjing formulae and IBD typical symptoms were analyzed. Next, from the top three formulae with predicted relationship with IBD, TCM fractions were prepared and screened on a transgenic zebrafish IBD model for their therapeutic effects. Subsequently, the chemical compositions of the fraction hits were analyzed by mass spectrometry, and the major compounds were further studied for their anti-IBD effects and potential mechanisms. RESULTS Through knowledge mining, Peach Blossom Decoction, Pulsatilla Decoction, and Gegen Qinlian Decoction were predicted to be the three Zhongjing formulae mostly related to symptoms typical of IBD. Seventy-four fractions were prepared from the three formulae and screened in TNBS-induced zebrafish IBD model by high-content analysis, with the inhibition on the intestinal neutrophil accumulation and ROS level quantified as the screening criteria. Six herbal fractions showed significant effects on both pathological processes, which were subsequently analyzed by mass spectrometry to determine their chemical composition. Based on the major compounds identified by mass spectrometry, a second-round screen was conducted and six compounds (palmatine, daidzin, oroxyloside, chlorogenic acid, baicalin, aesculin) showed strong inhibitory effects on the intestinal inflammation phenotypes. The expression of multiple inflammatory factors, including il1β, clcx8a, mmp and tnfα, were increased in TNBS-treated fish, which were variously inhibited by the compounds, with aesculin showing the most potent effects. Moreover, aesculin and daidzin also upregulated e-cadherin's expression. CONCLUSION Taken together, we demonstrated the regulatory effects of several TCM formulae and their active compounds in the treatment of IBD, through a highly efficient research strategy, which can be applied in the discovery of effective TCM formulae and components in other diseases.
Collapse
Affiliation(s)
- Yunru Yu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shufang Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
16
|
Zou W, Gong L, Zhou F, Long Y, Li Z, Xiao Z, Ouyang B, Liu M. Anti-inflammatory effect of traditional Chinese medicine preparation Penyanling on pelvic inflammatory disease. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113405. [PMID: 32979412 DOI: 10.1016/j.jep.2020.113405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Penyanling is made up of Smilacis Glabrae Rhizoma (SG, from Smilar glabra Roxb.), Angelicae Sinensis Radix (AS, from Angelica sinensis (Oliv.) Diels), Salviae Miltiorrhizae Radix et Rhizoma (SM, from Salvia miltiorrhiza Bunge), Sargentodoxae Caulis (SC, from Sargentodoxa cuneata (Oliv.) Rehd.et Wils.), Linderae Radix (LR, from Lindera aggregata (Sims) Kosterm.), Paeoniae Radix Rubra (PR, from Paeonia lactiflora Pall.), Sparganii Rhizoma (SR, from Sparganium stoloniferum (Graebn.) Buch.-Ham.), Corydalis Rhizoma (CoR, from Corydalis yanhusuo W. T. Wang), Cyperi Rhizoma (CyR, from Cyperus rotundus Linn.), Glycyrrhizae Radix et Rhizoma (GR, from Glycyrrhiza uralensis Fisch.), and Patrinia Scabiosaefolia (PS, from Patrinia scabiosaefolia Fisch. ex Trev.) recorded in Chinese Pharmacopoeia. It has been used on pelvic inflammatory disease (PID) for more than twenty years. AIM OF THE STUDY This study was carried out to illustrate its pharmacological action and clarify its substantial composition. MATERIALS AND METHODS The anti-inflammatory effects of Penyanling were studied on a PID rat model and a lipopolysaccharides (LPS)-stimulated THP-1 cell line. Histological changes and levels of inflammatory factors in the uterine tube of the PID rat were examined. Levels of nuclear factor-kappa B (NF-κB) in the nuclear of THP-1 cells and NF-κB, IκB-α, and FPR2 in the cytoplasm were tested by Western blot analysis. Substances within Penyanling were scanned with liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-Q-TOF-MS). The contents of total flavonoids, phenolics, and saponins were quantified. RESULTS The anti-inflammatory effects of Penyanling were observed on PID rats, such as suppressing the infiltrations of lymphocytes and neutrophils in the uterine tube, decreasing the release of interleukin (IL)-1β, IL-6, IL-8, and monocyte chemotactic protein (MCP)-1, and promoting the production of lipoxin A4 (LXA4). On the other hand, Penyanling regulated the activity of NF-κB signal pathway on the LPS-stimulated THP-1 cell line, which suggested the potential mechanism of its anti-inflammatory effect. Besides, it could promote the expression of formyl peptide receptor 2 (FPR2), which suggested its effect on enhancing the resolution of inflammation. Seventy-six substances were identified by their accurate molecular weights, mass fragment patterns, retention times, and standards if available. Most of these substances were flavonoids, phenolics, saponins, and alkaloids. The contents of total flavonoids, phenolics, and saponins within Penyanling were 0.186, 1.371, and 4.321 mg/mL, respectively. CONCLUSION Penyanling showed an anti-inflammatory effect on PID, and its potential mechanism involved suppressing NF-κB signal pathway and promoting the resolution of inflammation. The main substances within it were flavonoids, phenolics, saponins, and alkaloids.
Collapse
Affiliation(s)
- Wei Zou
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, PR China
| | - Linna Gong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Fenghua Zhou
- School of Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Yao Long
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, PR China
| | - Zhen Li
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, PR China
| | - Zuoqi Xiao
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, PR China
| | - Bo Ouyang
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, PR China
| | - Menghua Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
17
|
Richard SA. Exploring the Pivotal Immunomodulatory and Anti-Inflammatory Potentials of Glycyrrhizic and Glycyrrhetinic Acids. Mediators Inflamm 2021; 2021:6699560. [PMID: 33505216 PMCID: PMC7808814 DOI: 10.1155/2021/6699560] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022] Open
Abstract
Licorice extract is a Chinese herbal medication most often used as a demulcent or elixir. The extract usually consists of many components but the key ingredients are glycyrrhizic (GL) and glycyrrhetinic acid (GA). GL and GA function as potent antioxidants, anti-inflammatory, antiviral, antitumor agents, and immuneregulators. GL and GA have potent activities against hepatitis A, B, and C viruses, human immunodeficiency virus type 1, vesicular stomatitis virus, herpes simplex virus, influenza A, severe acute respiratory syndrome-related coronavirus, respiratory syncytial virus, vaccinia virus, and arboviruses. Also, GA was observed to be of therapeutic valve in human enterovirus 71, which was recognized as the utmost regular virus responsible for hand, foot, and mouth disease. The anti-inflammatory mechanism of GL and GA is realized via cytokines like interferon-γ, tumor necrotizing factor-α, interleukin- (IL-) 1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, and IL-17. They also modulate anti-inflammatory mechanisms like intercellular cell adhesion molecule 1 and P-selectin, enzymes like inducible nitric oxide synthase (iNOS), and transcription factors such as nuclear factor-kappa B, signal transducer and activator of transcription- (STAT-) 3, and STAT-6. Furthermore, DCs treated with GL were capable of influencing T-cell differentiation toward Th1 subset. Moreover, GA is capable of blocking prostaglandin-E2 synthesis via blockade of cyclooxygenase- (COX-) 2 resulting in concurrent augmentation nitric oxide production through the enhancement of iNOS2 mRNA secretion in Leishmania-infected macrophages. GA is capable of inhibiting toll-like receptors as well as high-mobility group box 1.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P. O. Box MA 128, Ho, Ghana
| |
Collapse
|
18
|
Protective Impacts of Moringa oleifera Leaf Extract against Methotrexate-Induced Oxidative Stress and Apoptosis on Mouse Spleen. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6738474. [PMID: 32565869 PMCID: PMC7275960 DOI: 10.1155/2020/6738474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
Objective The current study was aimed to examine the possible ameliorative impacts of MO leaf extract (MOLE) against MTX-induced alterations on oxidative stress of mouse spleen and explore the possible molecular mechanism that controls such impacts. Methods Adult male mice were allocated into 4 groups: control, Moringa oleifera leaf extract (MOLE), MTX, and MOLE plus MTX. Mice received MOLE orally for a week before MTX injection and continued for 12 days. Serum and spleen were sampled for biochemical and quantitative gene expressions. Results As compared with the MTX-injected group, MOLE effectively reduced the changes in total proteins, spleen MDA, SOD and catalase activities, and changes in serum antioxidants levels. Moreover, there is downregulation of antioxidant genes (SOD and catalase) and antiapoptotic genes (XIAP and Bcl-xl) along with upregulation in Bax and caspase-3 mRNA (apoptotic genes) in the MTX-injected group. MTX induced changes in IL-1β, IL-6, TNF-α, and IL-10 expression. MOLE restored and ameliorated the changes induced in biochemical, antioxidants, apoptosis, and apoptosis associated genes that were induced by MTX intoxication. Conclusion Current findings indicated that pretreatment with MOLE to MTX-intoxicated mice showed the potential usage of MO for oxidative stress and apoptosis treatment.
Collapse
|
19
|
Wang H, Ge X, Qu H, Wang N, Zhou J, Xu W, Xie J, Zhou Y, Shi L, Qin Z, Jiang Z, Yin W, Xia J. Glycyrrhizic Acid Inhibits Proliferation of Gastric Cancer Cells by Inducing Cell Cycle Arrest and Apoptosis. Cancer Manag Res 2020; 12:2853-2861. [PMID: 32425599 PMCID: PMC7187946 DOI: 10.2147/cmar.s244481] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/01/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Glycyrrhizic acid (GA) is the main active ingredient extracted from Chinese herb licorice root, and it shows anti-tumor effects in many cancer types, while its role in gastric cancer (GC) is still unknown. In this study, we evaluated the effects of GA on GC cells and explored the underlying mechanisms. METHODS The anti-proliferation effect of GA on GC cells was assessed by CCK-8, colony formation, and EdU assay. The effects of GA on cell cycle and apoptosis were detected by flow cytometer. Western blotting was performed to explore the underlying mechanisms. RESULTS Our results showed that GA had a time- and dose-dependent inhibitory effect on proliferation of GC cells. Flow cytometer analysis demonstrated that GA would lead to G1/S-phase arrest and apoptosis. GA treatment down-regulated the levels of G1 phase-related proteins, including cyclin D1, D2, D3, E1, and E2. In terms of apoptosis, GA treatment up-regulated the levels of Bax, cleaved PARP, and pro-caspase-3, -8, -9, but did not influence their cleavage patterns. The expression of Bcl-2, survivin and p65 was attenuated after treatment. Besides, GA would down-regulate the phosphorylation of PI3K/AKT pathway. CONCLUSION This study focused on inhibitory effect of GA on GC cells by inducing cell cycle arrest and apoptosis. Several important cyclins- and apoptosis-related proteins were involved in the regulation of GA to GC cells, and phosphorylated PI3K and AKT were attenuated. The results of this study indicated that GA is a potential and promising anti-cancer drug for GC.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of General Surgery, Wuxi Clinical College Affiliated to Nantong University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Xuhui Ge
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing210029, Jiangsu, People’s Republic of China
| | - Huiheng Qu
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of General Surgery, Wuxi Clinical College Affiliated to Nantong University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Ning Wang
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of General Surgery, Wuxi Clinical College Affiliated to Nantong University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Jiawen Zhou
- The State Key Laboratory of Reproductive Medicine; Key Laboratory for Aging & Disease, Research Centre for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing211166, Jiangsu, People’s Republic of China
| | - Wenjing Xu
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of General Surgery, Wuxi Clinical College Affiliated to Nantong University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Jingjing Xie
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of General Surgery, Wuxi Clinical College Affiliated to Nantong University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Yongping Zhou
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of General Surgery, Wuxi Clinical College Affiliated to Nantong University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Liqing Shi
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Zhongke Qin
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Zhuang Jiang
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of General Surgery, Wuxi Clinical College Affiliated to Nantong University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Wenjie Yin
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of General Surgery, Wuxi Clinical College Affiliated to Nantong University, Wuxi214002, Jiangsu, People’s Republic of China
| |
Collapse
|
20
|
Oral administration of green tea polyphenols (TP) improves ileal injury and intestinal flora disorder in mice with Salmonella typhimurium infection via resisting inflammation, enhancing antioxidant action and preserving tight junction. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103654] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
21
|
Geng ZK, Li YQ, Cui QH, DU RK, Tian JZ. Exploration of the mechanisms of Ge Gen Decoction against influenza A virus infection. Chin J Nat Med 2019; 17:650-662. [PMID: 31526500 PMCID: PMC7128581 DOI: 10.1016/s1875-5364(19)30079-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Indexed: 12/16/2022]
Abstract
Ge Gen Decoction (GGD), a Traditional Chinese Medicine prescription, is mainly used to treat infectious respiratory diseases and can relieve the symptoms of influenza A virus (IAV) infection. However, the underlying mechanism of GGD against IAV infection remains unclear. In this study, we found that GGD had moderate anti-IAV activity in vitro. GGD was more effective when given before the viral infection and targeted the viral attachment and replication stages rather than the internalization stage. In vivo, GGD treatment reduced thevirus titers of lung tissue significantly and improved the survival rate, lung index, and pulmonary histopathological changes in H1N1-infected mice. We observed the changes in several key immuno-related indexes in GGD administrated H1N1-infected mice with anti-IAV drug oseltamivir phosphate as the control. GGD treatment decreased the expression of TNF-α and improved Th1/Th2 immune balance to reduce the excessive immune response in H1N1-infected mice. Besides, the expression of the toll-like receptor 7 signaling pathway in H1N1-infected mice decreased after GGD treatment. Our results showed that GGD has anti-IAV activity and can modulate the immune system to relieve lung inflammation.
Collapse
Affiliation(s)
- Zi-Kai Geng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ya-Qun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qing-Hua Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China
| | - Rui-Kun DU
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China
| | - Jing-Zhen Tian
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
22
|
Wang S, Li L, Shi L. Identification of a key candidate gene‑phenotype network mediated by glycyrrhizic acid using pharmacogenomic analysis. Mol Med Rep 2019; 20:2657-2666. [PMID: 31322195 PMCID: PMC6691250 DOI: 10.3892/mmr.2019.10494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/27/2019] [Indexed: 11/17/2022] Open
Abstract
Glycyrrhizic acid (GA) is primarily used as an anti-inflammatory agent in cases of chronic hepatitis. However, its underlying mechanisms in diverse biological processes and its reported benefits are yet to be fully elucidated. In the current study, an analytical method based on pharmacogenomics was established to mine disease-modulatory activities mediated by GA. Five primary protein targets and 138 functional partners were identified for GA by querying open-source databases, including Drugbank and STRING. Subsequently, GA-associated primary and secondary protein targets were integrated into Cytoscape to construct a protein-protein interaction network to establish connectivity. GA-associated target genes were then clustered based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The tumor necrosis factor axis was revealed to be a primary module regulated by GA-associated targets. Furthermore, 12 hub genes were queried to assess their potential anti-cancer effects using cBioPortal. The results indicated that pharmacogenomics-based analysis improved understanding of the underlying drug-target events of GA and provided predictive and definitive leads for future studies.
Collapse
Affiliation(s)
- Shiqun Wang
- Xiaoshan Biotechnology Center, Yangtze Delta Region Institute of Tsinghua University, Hangzhou, Zhejiang 311231, P.R. China
| | - Lu Li
- Department of Nephrology, Affiliated Children's Hospital of Zhejiang University, Hangzhou, Zhejiang 310052, P.R. China
| | - Long Shi
- Xiaoshan Biotechnology Center, Yangtze Delta Region Institute of Tsinghua University, Hangzhou, Zhejiang 311231, P.R. China
| |
Collapse
|
23
|
Natural products in licorice for the therapy of liver diseases: Progress and future opportunities. Pharmacol Res 2019; 144:210-226. [PMID: 31022523 DOI: 10.1016/j.phrs.2019.04.025] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/16/2022]
Abstract
Liver diseases related complications represent a significant source of morbidity and mortality worldwide, creating a substantial economic burden. Oxidative stress, excessive inflammation, and dysregulated energy metabolism significantly contributed to liver diseases. Therefore, discovery of novel therapeutic drugs for the treatment of liver diseases are urgently required. Licorice is one of the most commonly used herbal drugs in Traditional Chinese Medicine for the treatment of liver diseases and drug-induced liver injury (DILI). Various bioactive components have been isolated and identified from the licorice, including glycyrrhizin, glycyrrhetinic acid, liquiritigenin, Isoliquiritigenin, licochalcone A, and glycycoumarin. Emerging evidence suggested that these natural products relieved liver diseases and prevented DILI through multi-targeting therapeutic mechanisms, including anti-steatosis, anti-oxidative stress, anti-inflammation, immunoregulation, anti-fibrosis, anti-cancer, and drug-drug interactions. In the current review, we summarized the recent progress in the research of hepatoprotective and toxic effects of different licorice-derived bioactive ingredients and also highlighted the potency of these compounds as promising therapeutic options for the treatment of liver diseases and DILI. We also outlined the networks of underlying molecular signaling pathways. Further pharmacology and toxicology research will contribute to the development of natural products in licorice and their derivatives as medicines with alluring prospect in the clinical application.
Collapse
|
24
|
Simultaneous quantification of fifteen compounds in rat plasma by LC-MS/MS and its application to a pharmacokinetic study of Chaihu-Guizhi decoction. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1105:15-25. [DOI: 10.1016/j.jchromb.2018.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/22/2018] [Accepted: 12/08/2018] [Indexed: 12/16/2022]
|
25
|
张 韫, 蔡 云, 刘 媛, 赵 博, 李 国. [Glycyrrhetinic acid selectively inhibits proliferation of hepatocellular carcinoma cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:477-482. [PMID: 29735451 PMCID: PMC6765654 DOI: 10.3969/j.issn.1673-4254.2018.04.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the selective inhibitory effect of glycyrrhetinic acid on 4 hepatocellular carcinoma (HCC) cells with different proliferation rates and explore the underlying mechanisms. METHODS MTT method was used to detect the proliferation rates of 4 HCC cell lines, namely SMMC-7721, SK-HEP1, HEPG2 and HEP3B. Following treatment of the cells with glycyrrhetinic acid (5, 10, 20, 30, 40, and 60 µmol/L), the cell viability was analyzed using MTT assay and the expressions of total ERK protein, p-ERK protein and topoisomerase IIα were detected using Western blotting. RESULTS Among the 4 cell lines, SMMC-7721 had the lowest and SK-HEP1 had the highest proliferation rate. Treatment with glycyrrhetinic acid for 48 h dose-dependently inhibited the proliferation of all the 4 cell lines in vitro and produced the strongest inhibitory effect in SMMC-7721 cells with the IC50 of 28.04 µmol/L. The proliferation rate of the cells was positively correlated with the expression levels of p-ERK and topoisomerase IIα, which were the lowest in SMMC-7721 cells and the highest in SK-HEP1 cells. Treatment with 50 µmol/L glycyrrhetinic acid significantly down-regulated the expressions of p-ERK and topoisomerase IIα in the 4 HCC cell lines (P<0.05), while 25 µmol/L glycyrrhetinic acid significantly reduced the expression of topoisomerase IIα and p-ERK in SMMC-7721, HEPG2 and HEP3B cells (P<0.05) but not in SK-HEP1 cells. CONCLUSION Glycyrrhetinic acid can inhibit the proliferation of different HCC cells particularly in cells with a low proliferation rate. The inhibitory effect of glycyrrhetinic acid might be mediated by reducing the expressions of topoisomerase IIα and inhibiting the ERK pathway.
Collapse
Affiliation(s)
- 韫琪 张
- 南方医科大学南方医院药学部//南方医院合理用药评价与药物递送发展实验室//南方医科大学药学院广东省 新药筛选重点实验室,广东 广州 510515Department of Pharmacy, Nanfang Hospital/Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital/ Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutics, Southern Medical University, Guangzhou 510515, China
| | - 云 蔡
- 广州医科大学附属第三医院药学部,广东 广州 510150Department of Pharmacy, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - 媛 刘
- 南方医科大学南方医院药学部//南方医院合理用药评价与药物递送发展实验室//南方医科大学药学院广东省 新药筛选重点实验室,广东 广州 510515Department of Pharmacy, Nanfang Hospital/Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital/ Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutics, Southern Medical University, Guangzhou 510515, China
| | - 博欣 赵
- 南方医科大学南方医院药学部//南方医院合理用药评价与药物递送发展实验室//南方医科大学药学院广东省 新药筛选重点实验室,广东 广州 510515Department of Pharmacy, Nanfang Hospital/Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital/ Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutics, Southern Medical University, Guangzhou 510515, China
| | - 国锋 李
- 南方医科大学南方医院药学部//南方医院合理用药评价与药物递送发展实验室//南方医科大学药学院广东省 新药筛选重点实验室,广东 广州 510515Department of Pharmacy, Nanfang Hospital/Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital/ Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutics, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
Li B, Yang Y, Chen L, Chen S, Zhang J, Tang W. 18α-Glycyrrhetinic acid monoglucuronide as an anti-inflammatory agent through suppression of the NF-κB and MAPK signaling pathway. MEDCHEMCOMM 2017; 8:1498-1504. [PMID: 30108861 PMCID: PMC6071922 DOI: 10.1039/c7md00210f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/28/2017] [Indexed: 01/19/2023]
Abstract
Based on the SAR analysis of glycyrrhizin, 18α-glycyrrhetinic acid monoglucuronide (18α-GAMG) with strong inhibition against LPS-induced NO and IL-6 production in RAW264.7 cells was discovered. Western blotting and immunofluorescence results showed that 18α-GAMG reduced the expression of iNOS, COX-2, and MAPKs, as well as activation of NF-κB in the LPS-stimulated RAW264.7 cells. Further in vivo results showed that 18α-GAMG could significantly improve the pathological changes of CCl4-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Bo Li
- School of Pharmacy , Anhui Medical University , Hefei 230032 , China . ; ; Tel: (+86) 551 65161115
| | - Yongan Yang
- Elion Nature Biological Technology Co., Ltd , Nanjing 210038 , China
| | - Liuzeng Chen
- School of Pharmacy , Anhui Medical University , Hefei 230032 , China . ; ; Tel: (+86) 551 65161115
| | - Shichao Chen
- School of Pharmacy , Anhui Medical University , Hefei 230032 , China . ; ; Tel: (+86) 551 65161115
| | - Jing Zhang
- Anhui Prevention and Treatment Center for Occupational Disease , Anhui No. 2 Province People's Hospital , Hefei 230022 , China .
| | - Wenjian Tang
- School of Pharmacy , Anhui Medical University , Hefei 230032 , China . ; ; Tel: (+86) 551 65161115
| |
Collapse
|