1
|
Zhang Y, Huang J, Li S, Jiang J, Sun J, Chen D, Pang Q, Wu Y. Pyrroloquinoline Quinone Alleviates Mitochondria Damage in Radiation-Induced Lung Injury in a MOTS-c-Dependent Manner. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20944-20958. [PMID: 39259217 DOI: 10.1021/acs.jafc.4c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radiation-induced lung injury (RILI) is a prevalent complication of thoracic tumor radiotherapy and accidental radiation exposure. Pyrroloquinoline quinone (PQQ), a novel vitamin B, plays a crucial role in delaying aging, antioxidation, anti-inflammation, and antiapoptosis. This study aims to investigate the protective effect and mechanisms of PQQ against RILI. C57BL/6 mice were exposed to a 20 Gy dose of X-ray radiation on the entire thorax with or without daily oral administration of PQQ for 2 weeks. PQQ effectively mitigated radiation-induced lung tissue damage, inflammation, oxidative stress, and epithelial cell apoptosis. Additionally, PQQ significantly inhibited oxidative stress and mitochondrial damage in MLE-12 cells. Mechanistically, PQQ upregulated the mRNA and protein levels of MOTS-c in irradiated lung tissue and MLE-12 cells. Knockdown of MOTS-c by siRNA substantially attenuated the protective effects of PQQ on oxidative stress, inflammation, and apoptosis. In conclusion, PQQ alleviates RILI by preserving mitochondrial function through a MOTS-c-dependent mechanism, suggesting that PQQ may serve as a promising nutraceutical intervention against RILI.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214122, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Jianfeng Huang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214122, China
| | - Shengpeng Li
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Junlin Jiang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214122, China
| | - Jiaojiao Sun
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Qingfeng Pang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214122, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Yaxian Wu
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214122, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| |
Collapse
|
2
|
Karetnikova ES, Livanova AA, Fedorova AA, Markov AG. Early Radiation-Induced Changes in Lung Tissue and Intercellular Junctions: Implications for Tissue Repair and Fibrosis. PATHOPHYSIOLOGY 2024; 31:531-544. [PMID: 39449521 PMCID: PMC11503413 DOI: 10.3390/pathophysiology31040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Early changes in lung tissue following ionizing radiation (IR) initiate processes that may lead to either regeneration or fibrosis. Intercellular junction proteins play a crucial role in the organization and function of epithelial tissues, both under normal conditions and after injuries. Alterations in the expression and localization of these proteins can influence the fate of epithelial cells. This study aims to investigate the effects of IR on lung tissue structure, as well as on the levels and distribution of intercellular junction proteins. Wistar rats were subjected to total X-ray irradiation at doses of 2 and 10 Gy. Lung tissue samples were collected for Western blot and histological analysis 72 h post-IR. IR at doses of 2 and 10 Gy led to structural changes in lung tissue and elevated levels of E-cadherin. The 10 Gy IR resulted in increased claudin-4 and occludin in lung parenchyma, decreased claudin-8 and claudin-12 in bronchial epithelium and endothelium, and suppression of apoptosis. Data evaluation indicated that alterations in the protein composition of intercellular junctions are essential processes in lung tissue at early stages after IR, and at least some of these alterations are associated with adaptation.
Collapse
Affiliation(s)
- Ekaterina S. Karetnikova
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Interoception Laboratory, Pavlov Institute of Physiology RAS, 199034 St. Petersburg, Russia
| | - Alexandra A. Livanova
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Arina A. Fedorova
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander G. Markov
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Interoception Laboratory, Pavlov Institute of Physiology RAS, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Ichihara E, Hasegawa K, Kudo K, Tanimoto Y, Nouso K, Oda N, Mitsumune S, Yamada H, Takata I, Hagiya H, Mitsuhashi T, Taniguchi A, Toyooka S, Tsukahara K, Aokage T, Tsukahara H, Kiura K, Maeda Y. A randomized controlled trial of teprenone in terms of preventing worsening of COVID-19 infection. PLoS One 2023; 18:e0287501. [PMID: 37883347 PMCID: PMC10602324 DOI: 10.1371/journal.pone.0287501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/26/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Some COVID-19 patients develop life-threatening disease accompanied by severe pneumonitis. Teprenone induces expression of heat-shock proteins (HSPs) that protect against interstitial pneumonia in preclinical models. We explored whether teprenone prevented worsening of COVID-19 infections. METHODS This open-label, randomized, pilot phase 2 clinical trial was conducted at five institutions in Japan. We randomized patients hospitalized for COVID-19 with fever to teprenone or no-teprenone groups in a 1:1 ratio. We stratified patients by sex, age < and ≥ 70 years and the existence (or not) of complications (hypertension, diabetes, ischemic heart disease, chronic pulmonary disease and active cancer). No limitation was imposed on other COVID-19 treatments. The primary endpoint was the intubation rate. RESULTS One hundred patients were included, 51 in the teprenone and 49 in the no- teprenone groups. The intubation rate did not differ significantly between the two groups: 9.8% (5/51) vs. 2.0% (1/49) (sub-hazard ratio [SHR] 4.99, 95% confidence interval [CI]: 0.59-42.1; p = 0.140). The rates of intra-hospital mortality and intensive care unit (ICU) admission did not differ significantly between the two groups: intra-hospital mortality 3.9% (2/51) vs. 4.1% (2/49) (hazard ratio [HR] 0.78, 95%CI: 0.11-5.62; p = 0.809); ICU admission 11.8% (6/51) vs. 6.1% (3/49) (SHR 1.99, 95%CI: 0.51-7.80; p = 0.325). CONCLUSION Teprenone afforded no clinical benefit. TRIAL REGISTRATION Japan Registry of Clinical Trials jRCTs061200002 (registered on 20/May/2020).
Collapse
Affiliation(s)
- Eiki Ichihara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Kou Hasegawa
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kenichiro Kudo
- Department of Respiratory Medicine, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Yasushi Tanimoto
- Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Naohiro Oda
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Sho Mitsumune
- Department of Respiratory Medicine, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Haruto Yamada
- Department of Infectious Disease, Okayama City Hospital, Okayama, Japan
| | - Ichiro Takata
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Hideharu Hagiya
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiharu Mitsuhashi
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Akihiko Taniguchi
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kohei Tsukahara
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyuki Aokage
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
4
|
Zhou R, Jin C, Jiao L, Zhang S, Tian M, Liu J, Yang S, Yao W, Zhou F. GGA (geranylgeranylacetone) ameliorates bleomycin-induced lung inflammation and pulmonary fibrosis by inhibiting apoptosis and oxidative stress. Mol Biol Rep 2023; 50:7215-7224. [PMID: 37418084 DOI: 10.1007/s11033-023-08590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Fibrosis is a response to ongoing cellular injury, disruption, and tissue remodeling, the pathogenesis of which is unknown, and is characterized by extracellular matrix deposition. The antifibrotic effect of Geranylgeranylacetone (GGA), as an inducer of Heat shock protein 70 (HSP70), in liver, kidney and pulmonary fibrosis has been supported by multiple preclinical evidence. However, despite advances in our understanding, the precise roles of HSP70 in fibrosis require further investigation. The purpose of this study was to investigate whether GGA could participate in the progression of pulmonary fibrosis in mice through apoptosis, oxidative stress and inflammation. METHODS AND RESULTS B-cell lymphoma-2(Bcl-2) and Bcl2-Associated X (Bax) are two proteins related to apoptosis. Anti-apoptotic factor Bcl-2 and pro-apoptotic factor Bax are often involved in the apoptotic process in the form of dimer. Immunofluorescence and Western blot results showed that bleomycin (BLM) and transforming growth factor-β (TGF-β) inhibited Bcl-2 expression and promoted Bax expression in vitro and in vivo, respectively. In contrast, GGA treatment reverses this change. Reactive oxygen species (ROS), Malondialdehyde (MDA) and superoxide dismutase (SOD) are markers of oxidative stress, which often reflect oxidative injury of cells. The detection of ROS, MDA and SOD expression showed that TGF-β and BLM treatment could significantly promote oxidative stress, while GGA treatment could alleviate oxidative stress damage. In addition, BLM significantly elevated Tumor necrosis factor-α(TNF-α), Interleukin1β (IL-1β) and Interleukin 6 (IL-6), while scutellarin reversed the above alterations except for that of GGA. RESULTS Taken together, GGA suppressed apoptotic, oxidative stress and inflammation in BLM-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Chaomei Jin
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Linlin Jiao
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Siyu Zhang
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Mei Tian
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Jiamin Liu
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Songtai Yang
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Wu Yao
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| | - Fang Zhou
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| |
Collapse
|
5
|
Prevention of High Glucose-Mediated EMT by Inhibition of Hsp70 Chaperone. Int J Mol Sci 2021; 22:ijms22136902. [PMID: 34199046 PMCID: PMC8268552 DOI: 10.3390/ijms22136902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Hyperglycemia may contribute to the progression of carcinomas by triggering epithelial-to-mesenchymal transition (EMT). Some proteostasis systems are involved in metastasis; in this paper, we sought to explore the mechanism of Hsp70 chaperone in EMT. We showed that knockdown of Hsp70 reduced cell migration capacity concomitantly with levels of mRNA of the Slug, Snail, and Twist markers of EMT, in colon cancer cells incubated in high glucose medium. Conversely, treatment of cells with Hsp70 inducer U-133 were found to elevate cell motility, along with the other EMT markers. To prove that inhibiting Hsp70 may reduce EMT efficiency, we treated cells with a CL-43 inhibitor of the HSF1 transcription factor, which lowered Hsp70 and HSF1 content in the control and induced EMT in carcinoma cells. Importantly, CL-43 reduced migration capacity, EMT-linked transcription factors, and increased content of epithelial marker E-cadherin in colon cancer cells of three lines, including one derived from a clinical sample. To prove that Hsp70 chaperone should be targeted when inhibiting the EMT pathway, we treated cancer cells with 2-phenylethynesulfonamide (PES) and demonstrated that the compound inhibited substrate-binding capacity of Hsp70. Furthermore, PES suppressed EMT features, cell motility, and expression of specific transcription factors. In conclusion, the Hsp70 chaperone machine efficiently protects mechanisms of the EMT, and the safe inhibitors of the chaperone are needed to hamper metastasis at its initial stage.
Collapse
|
6
|
Jarzebska N, Karetnikova ES, Markov AG, Kasper M, Rodionov RN, Spieth PM. Scarred Lung. An Update on Radiation-Induced Pulmonary Fibrosis. Front Med (Lausanne) 2021; 7:585756. [PMID: 33521012 PMCID: PMC7843914 DOI: 10.3389/fmed.2020.585756] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Radiation-induced pulmonary fibrosis is a common severe long-time complication of radiation therapy for tumors of the thorax. Current therapeutic options used in the clinic include only supportive managements strategies, such as anti-inflammatory treatment using steroids, their efficacy, however, is far from being satisfactory. Recent studies have demonstrated that the development of lung fibrosis is a dynamic and complex process, involving the release of reactive oxygen species, activation of Toll-like receptors, recruitment of inflammatory cells, excessive production of nitric oxide and production of collagen by activated myofibroblasts. In this review we summarized the current state of knowledge on the pathophysiological processes leading to the development of lung fibrosis and we also discussed the possible treatment options.
Collapse
Affiliation(s)
- Natalia Jarzebska
- Department of Anesthesiology and Critical Care Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Alexander G. Markov
- Department of General Physiology, Saint-Petersburg State University, Saint Petersburg, Russia
| | - Michael Kasper
- Institute of Anatomy, Technische Universität Dresden, Dresden, Germany
| | - Roman N. Rodionov
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Peter M. Spieth
- Department of Anesthesiology and Critical Care Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Zhou JM, Liang R, Zhu SY, Wang H, Zou M, Zou WJ, Nie SL. LncRNA WWC2-AS1 functions AS a novel competing endogenous RNA in the regulation of FGF2 expression by sponging miR-16 in radiation-induced intestinal fibrosis. BMC Cancer 2019; 19:647. [PMID: 31262262 PMCID: PMC6604321 DOI: 10.1186/s12885-019-5754-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 05/27/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Recently, long non-coding RNAs (lncRNAs) were considered as important gene expression regulators involving various biological processes. In this study, we explored the role of lncRNAs in the pathogenesis of radiation-induced intestinal fibrosis (RIF). METHODS LncRNAs were screened by microarray (Human LncRNA Array v3.0, Arraystar, Inc.) and the differentially expressed lncRNAs in RIF and non-RIF were analyzed by bioinformatics methods. The expression of WWC2-AS1/miR-16/FGF2 axis was compared on mRNA and protein level between human intestinal CCD-18Co fibroblasts cell lines and subepithelial SEMFs in response to radiation treatment. The significance of WWC2-AS1 in regulating FGF2 associated proliferation, migration, invasion and fibrosis of CCD-18Co and SEMFs by exposure to radiation was analyzed by shRNA (WWC2-AS1 shRNA) knock-down of endogenous WWC2-AS1. RESULTS WWC2-AS1 and FGF2 level was significantly higher while miR-16 was down-regulated in radiation-treated intestinal tissues. WWC2-AS1 more potently boosted FGF2 expression via reducing miR-16, and WWC2-AS1 shRNA remarkably inhibited FGF2 associated proliferation, migration, invasion and fibrosis of radiation treatment in vitro, further demonstrating physical interaction between miR-16 and WWC2-AS1 in radiation-induced fibrosis progress. CONCLUSIONS WWC2-AS1 was highly expressed in RIF, may function as a ceRNA in the regulation of FGF2 by binding miR-16. Targeting WWC2-AS1 thus may benefit radiation-induced fibrosis treatment.
Collapse
Affiliation(s)
- Ju-Mei Zhou
- Department of Radiotherapy, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 People’s Republic of China
- Key Laboratory of Translational Radiation Oncology, Hunan Province Changsha, 410013 People’s Republic of China
| | - Rong Liang
- Department of Oncology, Xiangtan Central Hospital, Xiangtan, 411100 People’s Republic of China
| | - Su-Yu Zhu
- Department of Radiotherapy, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 People’s Republic of China
- Key Laboratory of Translational Radiation Oncology, Hunan Province Changsha, 410013 People’s Republic of China
| | - Hui Wang
- Department of Radiotherapy, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 People’s Republic of China
- Key Laboratory of Translational Radiation Oncology, Hunan Province Changsha, 410013 People’s Republic of China
| | - Min Zou
- Department of Radiotherapy, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 People’s Republic of China
- Key Laboratory of Translational Radiation Oncology, Hunan Province Changsha, 410013 People’s Republic of China
| | - Wei-Jing Zou
- Department of Radiotherapy, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 People’s Republic of China
- Key Laboratory of Translational Radiation Oncology, Hunan Province Changsha, 410013 People’s Republic of China
| | - Shao-Lin Nie
- Department of Intestinal Surgery, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283, Tongzipo Road, Yuelu District, Changsha, 410013 Hunan Province People’s Republic of China
| |
Collapse
|
8
|
Liu Z, Liang X, Li X, Liu X, Zhu M, Gu Y, Zhou P. MiRNA-21 functions in ionizing radiation-induced epithelium-to-mesenchymal transition (EMT) by downregulating PTEN. Toxicol Res (Camb) 2019; 8:328-340. [PMID: 31160967 DOI: 10.1039/c9tx00019d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022] Open
Abstract
Radiation-induced pulmonary fibrosis (RIPF) results from thoracic radiotherapy and severely limits the use of radiotherapy. Recent studies suggest that epithelium-to-mesenchymal transition (EMT) contributes to pulmonary fibrosis. Although miRNA dysregulation participates in a variety of pathophysiologic processes, their roles in fibrotic lung diseases and EMT are unclear. In this study, we aimed to identify key miRNAs involved in this process using a mouse model of RIPF previously established by irradiation with a single dose (20 Gy) of 60Co γ-rays. At 2-weeks post-irradiation, a set of significantly upregulated miRNAs was identified in lung tissue by miRNA array analysis. This included miR-21, which has been reported to contribute to the pulmonary fibrotic response induced by stereotactic body radiotherapy. Here, we showed that miR-21 expression increased in parallel with EMT progression in the lungs of irradiated mice. Ectopic miR-21 expression promoted EMT progression in lung epithelial cells. Furthermore, downregulation of miR-21 expression by transfection of its inhibitor inhibited ionizing radiation (IR)-induced EMT. Knockdown of PTEN, which is the functional target of miR-21, reversed the attenuation of IR-induced EMT mediated by miR-21 downregulation. Radiation treatment decreased PTEN expression and increased Akt phosphorylation; these effects were abolished by the miR-21 inhibitor. MiR-21 overexpression in lung epithelial cell also downregulated PTEN expression and upregulated Akt phosphorylation. In conclusion, we have demonstrated that miR-21 functions as a key regulator of IR-induced EMT in lung epithelial cells via the PTEN/Akt pathway. Targeting miR-21 is implicated as a novel therapeutic strategy for the prevention of RIPF.
Collapse
Affiliation(s)
- Zheng Liu
- School of Public Health , University of South China , Hengyang , Hunan Province 421001 , P. R. China . ; .,Beijing Key Laboratory for Radiobiology , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Xin Liang
- Graduate School , Anhui Medical University , Hefei , Anhui province 230032 , P. R. China
| | - Xueping Li
- School of Life Science , Shihezi University , Shihezi , Xinjiang Province 832003 , P. R. China
| | - Xiaodan Liu
- Beijing Key Laboratory for Radiobiology , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Yongqing Gu
- School of Public Health , University of South China , Hengyang , Hunan Province 421001 , P. R. China . ; .,Beijing Key Laboratory for Radiobiology , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Pingkun Zhou
- School of Public Health , University of South China , Hengyang , Hunan Province 421001 , P. R. China . ; .,Beijing Key Laboratory for Radiobiology , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| |
Collapse
|
9
|
Screening and Preliminary Verification of a Phage Display Single-Chain Antibody Library Against Coal Workers' Pneumoconiosis. J Occup Environ Med 2018; 58:1264-1269. [PMID: 27930489 DOI: 10.1097/jom.0000000000000907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES To construct a phage display human antibody library (PDHAL) against pneumoconiosis for the diagnosis and treatment of coal worker pneumoconiosis (CWP). METHODS The PDHAL was established via CWP blood and six positive antibodies were discovered. 867 coal workers (558 CWP and 309 without CWP) and 393 controls were recruited to validate the results. RESULTS A PDHAL against CWP was established, from which six strong positive clones were selected, sequenced and identified as VEGF, interleukin-18, HSP70, HER3, Gz-B and RF. Logistic regression analysis revealed that VEGF (OR (95% CI), 0.02 (0.01to 0.07), P < 0.05), RF-Ab (OR (95% CI): 0.46 (0.28 to 0.73), P < 0.05) and HSP70/HSP-70-Ab (OR (95% CI): 0.71 (0.53 to 0.95), P < 0.05) were protective factors for CWP after adjustment of confounding factors. CONCLUSION The serum VEGF, RF-Ab and HSP-70/HSP-70 antibodies were potential biomarkers for diagnosis and treatment of CWP.
Collapse
|
10
|
Geranylgeranylacetone Ameliorates Intestinal Radiation Toxicity by Preventing Endothelial Cell Dysfunction. Int J Mol Sci 2017; 18:ijms18102103. [PMID: 28991157 PMCID: PMC5666785 DOI: 10.3390/ijms18102103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 01/14/2023] Open
Abstract
Radiation-induced intestinal toxicity is common among cancer patients after radiotherapy. Endothelial cell dysfunction is believed to be a critical contributor to radiation tissue injury in the intestine. Geranylgeranylacetone (GGA) has been used to treat peptic ulcers and gastritis. However, the protective capacity of GGA against radiation-induced intestinal injury has not been addressed. Therefore, we investigated whether GGA affects intestinal damage in mice and vascular endothelial cell damage in vitro. GGA treatment significantly ameliorated intestinal injury, as evident by intestinal crypt survival, villi length and the subsequently prolonged survival time of irradiated mice. In addition, intestinal microvessels were also significantly preserved in GGA-treated mice. To clarify the effect of GGA on endothelial cell survival, we examined endothelial function by evaluating cell proliferation, tube formation, wound healing, invasion and migration in the presence or absence of GGA after irradiation. Our findings showed that GGA plays a role in maintaining vascular cell function; however, it does not protect against radiation-induced vascular cell death. GGA promoted endothelial function during radiation injury by preventing the loss of VEGF/VEGFR1/eNOS signaling and by down-regulating TNFα expression in endothelial cells. This finding indicates the potential impact of GGA as a therapeutic agent in mitigating radiation-induced intestinal damage.
Collapse
|