1
|
Qiu S, Sun J, Su S, Wu W, Zhang J, Qi J, Xu Y. Traditional Chinese Medicine YangxinDingji alleviates arrhythmias through inhibition of sodium and L-type calcium channels. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119803. [PMID: 40239882 DOI: 10.1016/j.jep.2025.119803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese herbal formula YangxinDingji (YXDJ), derived from the classic ancient formula Zhigancao decoction that originated from Zhang Zhongjing's "shang han lun", is a modern preparation of a classic prescription, and is used for arrhythmia treatment in China. However, its antiarrhythmic mechanisms are not fully elucidated. AIM OF THE STUDY This study aimed to investigate the pharmacological and molecular mechanisms of YXDJ. MATERIALS AND METHODS Antiarrhythmic effects were evaluated in isolated guinea pig hearts subjected to ischemia/reperfusion (I/R) or isoproterenol (ISO) challenge, and in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) utilizing a multi-electrode array (MEA). Patch clamp recordings assessed the effects of YXDJ on sodium (INa, INa-L) and L-type calcium (ICa-L) currents, while potassium currents (IKr, IKs) were studied in heterologous cells. Optical mapping observed electrical activities and calcium transients. RESULTS YXDJ pretreatment at concentrations of 0.25, 0.5, and 1.0 mg/ml effectively prevented ventricular arrhythmias induced by I/R or ISO challenge, and mitigated electrical stimulation-induced arrhythmias in hiPSC-CMs. YXDJ inhibited INa, INa-L, and ICa-L currents in a concentration-dependent manner without affecting IKr and IKs, inhibited abnormal electrical activities and excitation reentry, decreased action potential duration dispersion and heterogeneity of excitation conduction, and restored intracellular calcium homeostasis. CONCLUSIONS Our results demonstrate that YXDJ exerts its antiarrhythmic effect through the inhibition of inward depolarizing currents, which prevents alterations in left ventricular repolarization dispersion. This leads to synchronized repolarization and a reduction in excitation reentry. Collectively, these findings suggest that YXDJ is a promising candidate for the treatment of arrhythmias.
Collapse
MESH Headings
- Animals
- Guinea Pigs
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Arrhythmias, Cardiac/drug therapy
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Humans
- Anti-Arrhythmia Agents/pharmacology
- Anti-Arrhythmia Agents/therapeutic use
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/drug effects
- Male
- Induced Pluripotent Stem Cells/drug effects
- Calcium Channel Blockers/pharmacology
- Calcium Channel Blockers/therapeutic use
- Medicine, Chinese Traditional
- Sodium Channels/metabolism
- Action Potentials/drug effects
Collapse
Affiliation(s)
- Suhua Qiu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| | - Jinglei Sun
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| | - Shi Su
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| | - Wenting Wu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| | - Jiali Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| | - Jinlong Qi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| |
Collapse
|
2
|
Liu W, Xu S, Wang J, Li X, Liu R, Zhao L, Li Y, Shi R, Zhang J. Allicin ameliorates acute myocardial infarction in rats by modulating calcium homeostasis in cardiomyocytes through the induction of hydrogen sulfide production. Front Pharmacol 2025; 16:1557685. [PMID: 40206075 PMCID: PMC11979285 DOI: 10.3389/fphar.2025.1557685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Background Acute myocardial infarction (AMI) is a common cardiovascular disease with high morbidity and mortality rates. Allicin, the primary active component of traditional Chinese herbs garlic, has multiple cardiovascular effects. However, the protective effect of allicin on AMI is rare. This study aimed to identify the pathways through which allicin stimulates hydrogen sulfide (H2S) production to regulate calcium ion (Ca2+) homeostasis in cardiomyocytes, thereby contributing to AMI protection. Methods In this study, we established an AMI rat model by ligating the left anterior descending branch of the coronary artery to assess the therapeutic effect of allicin. We also investigated its influence on cardiomyocyte Ca2+ homeostasis. To determine the role of H2S production in the effects of allicin, we identified the H2S synthase in healthy rat myocardial tissue and serum and then applied H2S synthase inhibitors to block H2S production. Results The results indicate that allicin significantly enhanced cardiac function, raised H2S levels in myocardial tissue and serum, reduced necrosis tissue size, decreased myocardial enzyme levels, and improved myocardial pathological changes. Surprisingly, allicin also notably increased H2S synthase levels. These findings suggest that allicin shields AMI rats by stimulating H2S production, acting both as a direct H2S donor and indirectly boosting H2S synthase expression. Furthermore, allicin enhanced Ca2+ homeostasis in cardiomyocytes by improving cardiomyocyte contraction kinetics and regulating the function and expression of key proteins related to Ca2+ transport in cardiomyocytes. The effect of allicin on Ca2+ homeostasis was partially decreased but not entirely abolished when H2S production was inhibited using H2S synthase inhibitors PAG and AOAA. This suggests that while the impact of allicin is strongly associated with H2S, additional independent mechanisms are also involved. Conclusion Our study presents novel evidence demonstrating that allicin modulates Ca2+ homeostasis in cardiomyocytes by stimulating H2S production, thereby conferring protection against AMI. Furthermore, the protective effects of allicin are partly mediated by, but not solely reliant on, the generation of H2S. These findings not only provide mechanistic insights into the anti-AMI effects of allicin but also underscore its therapeutic promise.
Collapse
Affiliation(s)
- Weiyu Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medic, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaojun Xu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medic, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Wang
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medic, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinxia Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Ruiting Liu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Garlic Medicinal Research, Urumqi, China
| | - Le Zhao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medic, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yikui Li
- Health Prevention Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rongmei Shi
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Garlic Medicinal Research, Urumqi, China
| | - Jinyan Zhang
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medic, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Huang H, Liu Y, Shuai W, Jiang C, Zhang M, Qu X, Zheng W, Yang H, Liu F, Yu B, Chen M, Mu B, Yao C, Tang Y, Huang C, Ouyang F, Jia Z. Atrial tachyarrhythmia prevention by Shensong Yangxin after catheter ablation for persistent atrial fibrillation: the SS-AFRF trial. Eur Heart J 2024; 45:4305-4314. [PMID: 39178138 PMCID: PMC11491151 DOI: 10.1093/eurheartj/ehae532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/09/2024] [Accepted: 08/04/2024] [Indexed: 08/25/2024] Open
Abstract
BACKGROUND AND AIMS Despite advances in technology and techniques, the recurrence rate of persistent atrial fibrillation (AF) following catheter ablation remains high. The Shensong Yangxin (SSYX) capsule, a renowned traditional Chinese medicine formula, is used in the treatment of cardiac arrhythmias. This trial aimed to investigate whether the SSYX can improve clinical outcomes in patients who have undergone catheter ablation for persistent AF. METHODS A multi-centre, randomized, double-blind, placebo-controlled clinical trial was conducted at 66 centres in China among 920 patients with persistent AF undergoing first ablation. Participants were randomized to oral SSYX, 1.6 g (.4 g/granule) thrice daily (n = 460), or matched placebo (n = 460) for 12 months. The primary endpoint was recurrent atrial tachyarrhythmias lasting for ≥30 s following a blanking period of 3 months. Secondary endpoints included time to first documented atrial tachyarrhythmias, AF burden, cardioversion, stroke/systemic embolism, changes in echocardiographic parameters, and quality-of-life (QoL) score. Analyses were performed according to the intention-to-treat principle. RESULTS A total of 920 patients underwent randomization (460 assigned to SSYX group and 460 assigned to placebo group). During the follow-up of 12 months, patients assigned to SSYX had a higher event-free rate from recurrent atrial tachyarrhythmias when compared with the placebo group (12-month Kaplan-Meier event-free rate estimates, 85.5% and 77.7%, respectively; hazard ratio, .6; 95% confidence interval .4-.8; P = .001). Patients assigned to receive SSYX had a better QoL score at 12 months compared to those randomized to placebo. There was no significant difference in the incidence of serious adverse events between the two groups. CONCLUSIONS Treatment with SSYX following radiofrequency catheter ablation for persistent AF reduced the incidence of recurrent atrial tachyarrhythmias and led to clinically significant improvements in QoL during a 12-month follow-up in a Chinese population.
Collapse
Affiliation(s)
- He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan 430060, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan 430060, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan 430060, China
| | - Chenyang Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Menghe Zhang
- Department of Cardiology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiufen Qu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenqing Zheng
- Department of Cardiology, Weihai Central Hospital, Weihai, China
| | - Hao Yang
- Department of Cardiology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Fan Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Yu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Manhua Chen
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Mu
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chen Yao
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan 430060, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan 430060, China
| | - Feifan Ouyang
- Hongkong Asia Medical Group/University Medical Center Hamburg-Eppendorf, University Heart and Vessel Center Hamburg, Martinistraße 52, Hamburg 20246, Germany
| | - Zhenhua Jia
- Department of Cardiology, Hebei Yiling Hospital, 385 Xinshibei Road, Shijiazhuang 050091, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, 238 Tianshan Street, Shijiazhuang 050035, China
| |
Collapse
|
4
|
Zhou YX, Wang WP, Ke J, Ou HP, Chen LY, Hou AG, Li P, Ma YS, Bin Jin W. Nuciferine analogs block voltage-gated sodium, calcium and potassium channels to regulate the action potential and treat arrhythmia. Biomed Pharmacother 2024; 179:117422. [PMID: 39276399 DOI: 10.1016/j.biopha.2024.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
Dysfunction of the Nav1.5, Cav1.2, and Kv channels could interfere with the AP and result in arrhythmias and even heart failure. We herein present a novel library of nuciferine analogs that target ion channels for the treatment of arrhythmias. Patch clamp measurements of ventricular myocytes revealed that 6a dramatically blocked both the INa and ICa without altering the currentvoltage relationship (including the activation potential and peak potential), accelerated the inactivation of Nav and Cav channels and delayed the resurrection of these channels after inactivation. Additionally, 6a significantly decreased the APA and RMP without affecting the APD30 or APD50. The IC50 values of 6a against Nav1.5 and Cav1.2 were 4.98 μM and 4.62 μM, respectively. Furthermore, 6a (10 μM) blocked IKs, IK1, and Ito with values of 17.01 %±2.54 %, 9.09 %±2.78 %, and 11.15 %±3.52 %, respectively. Surprisingly, 6a weakly inhibited hERG channels, suggesting a low risk of proarrhythmia. The cytotoxicity evaluation of 6a with the H9c2 cell line indicated that this compound was noncytotoxic. In vivo studies suggested that these novel nuciferine analogs could shorten the time of arrhythmia continuum induced by BaCl2 and normalize the HR, QRS, QT and QTc interval and the R wave amplitude. Moreover, 6a dose-dependently affected aconitine-induced arrhythmias and notably improved the cumulative dosage of aconitine required to evoke VP, VT, VF and CA in rats with aconitine-induced arrhythmia. In conclusion, nuciferine analogs could be promising ion channel blockers that could be further developed into antiarrhythmic agents.
Collapse
Affiliation(s)
- Ying Xun Zhou
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen Ping Wang
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jin Ke
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Hui Ping Ou
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lin Yun Chen
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - An Guo Hou
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Peng Li
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, Guangdong, China; State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yun Shu Ma
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Wen Bin Jin
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China; State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
5
|
Cheang I, Chen Z, Zhu X, Wang T, Chang L, Gao R, Jia Z, Li X. Translational Research and Clinical Application of Traditional Chinese Medicine in Cardiovascular Diseases. JACC. ASIA 2024; 4:711-720. [PMID: 39553906 PMCID: PMC11561486 DOI: 10.1016/j.jacasi.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 11/19/2024]
Abstract
Luobing theory is based on the principles of traditional Chinese medicine (TCM) and focuses on the regulation of blood circulation. The translation of Luobing theory into clinical practice has shown promising results in the treatment of cardiovascular diseases (CVDs). Studies have reported the benefits of using Luobing theory in the treatment of metabolic syndrome, atherosclerosis, arrhythmia, and heart failure. This review article provides an overview of the evidence-based application of TCM Luobing theory in the treatment of CVDs. It also highlights the challenges and opportunities of translating TCM into clinical practice and provides valuable insights for future CVD research.
Collapse
Affiliation(s)
- Iokfai Cheang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ziqi Chen
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xu Zhu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Tongxin Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang New Drug Technology Innovation Center of Compound Traditional Chinese Medicine, Shijiazhuang, China
| | - Liping Chang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang New Drug Technology Innovation Center of Compound Traditional Chinese Medicine, Shijiazhuang, China
| | - Rongrong Gao
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Zhenhua Jia
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang New Drug Technology Innovation Center of Compound Traditional Chinese Medicine, Shijiazhuang, China
| | - Xinli Li
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
6
|
Lu X, Wang T, Hou B, Han N, Li H, Wang X, Xin J, He Y, Zhang D, Jia Z, Wei C. Shensong yangxin, a multi-functional traditional Chinese medicine for arrhythmia: A review of components, pharmacological mechanisms, and clinical applications. Heliyon 2024; 10:e35560. [PMID: 39224243 PMCID: PMC11367280 DOI: 10.1016/j.heliyon.2024.e35560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
As a common cardiovascular disease (CVD), Arrhythmia refers to any abnormality in the origin, frequency, rhythm, conduction velocity, timing, pathway, sequence, or other aspect of cardiac impulses, and it is one of the common cardiovascular diseases in clinical practice. At present, various ion channel blockers are used for treatment of arrhythmia that include Na+ ion channel blockers, K+ ion channel blockers and Ca2+ ion channel blockers. While these drugs offer benefits, they have led to a gradual increase in drug-related adverse reactions across various systems. As a result, the quest for safe and effective antiarrhythmic drugs is pressing. Recent years have seen some advancements in the treatment of ventricular arrhythmias using traditional Chinese medicine(TCM). The theory of Luobing in TCM has proposed a new drug intervention strategy of "fast and slow treatment, integrated regulation" leading to a shift in mindset from "antiarrhythmic" to "rhythm-regulating". Guided by this theory, the development of Shen Song Yang Xin Capsules (SSYX) has involved various Chinese medicinal ingredients that comprehensively regulate the myocardial electrophysiological mechanism, exerting antiarrhythmic effects on multiple ion channels and non-ion channels. Similarly, in clinical studies, evidence-based research has confirmed that SSYX combined with conventional antiarrhythmic drugs can more effectively reduce the occurrence of arrhythmias. Therefore, this article provides a comprehensive review of the composition and mechanisms of action, pharmacological components, network pharmacology analysis, and clinical applications of SSYX guided by the theory of Luobing, aiming to offer valuable insights for improved clinical management of arrhythmias and related research.
Collapse
Affiliation(s)
- Xuan Lu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School of Hebei Medical University, 050017, China
| | - Tongxing Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
| | - Bin Hou
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
| | - Ningxin Han
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School of Hebei Medical University, 050017, China
| | - Hongrong Li
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
| | - Xiaoqi Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
| | - Jingjing Xin
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School of Hebei Medical University, 050017, China
| | - Yanling He
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
| | - Dan Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
| | - Zhenhua Jia
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang, 050035, China
| | - Cong Wei
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
- Hebei Provincial Key Laboratory of Luobing, Shijiazhuang, 050035, China
| |
Collapse
|
7
|
Zhou T, Gong P, Xu M, Yan L, Zhang Y. Efficacy of Shensong Yangxin capsule combined with dronedarone in paroxysmal atrial fibrillation after ablation. Medicine (Baltimore) 2024; 103:e37918. [PMID: 38669399 PMCID: PMC11049715 DOI: 10.1097/md.0000000000037918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE To investigate whether postoperative administration of Shensong Yangxin capsules (SSYX) and dronedarone for atrial fibrillation (AF) can reduce the recurrence of paroxysmal AF after radiofrequency ablation, thus providing a more optimal choice of antiarrhythmic medication during the blank period. METHODS We included 120 patients with paroxysmal AF who underwent radiofrequency ablation at our hospital between July 2020 and July 2022. They underwent routine circumferential pulmonary vein ablation and, subsequently, left and right atrial pressure monitoring to assess sinoatrial node recovery time under burst 400/300 ms stimulation. Postoperatively, the patients were randomly divided into 2 groups (60 patients each). The control group was administered dronedarone orally for 3 months and the study group was treated with SSYX combined with dronedarone. This study aimed to compare differences in clinical efficacy of the treatment between the 2 groups. RESULTS The left and right atrial pressures in both groups were higher than those in the preoperative period (P < .05), with no statistically significant differences between the 2 groups (P > .05). Sinoatrial node recovery time under burst 400/300 ms stimulation showed no statistical difference between the 2 groups (P > .05). At 3 months and 1 year postoperatively, the AFEQT scale scores for both groups were lower than those before treatment (P < .05), with the study group scoring lower than the control group at 3 months (P < .05). However, no statistically significant difference was observed between the 2 groups at 1 year postoperatively (P > .05). At 3 months postoperatively, the sinus rhythm maintenance rate and heart rate were higher in the intervention group than in the control group (P < .05); however, these differences between the 2 groups were not statistically significant at 1 year postoperatively (P > .05). CONCLUSION SUBSECTIONS The combination of SSYX and dronedarone could effectively reduce the early recurrence of paroxysmal AF after radiofrequency ablation, increase heart rate, and improve the quality of life.
Collapse
Affiliation(s)
- Tao Zhou
- Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Ping Gong
- Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Ming Xu
- Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Leikun Yan
- Sichuan Mianyang 404 Hospital, Mianyang, China
| | | |
Collapse
|
8
|
Fu Z, Zhang Y, Jin T, Wang Z, Zhao C, Zhao M. A comprehensive quality evaluation strategy of Shensong Yangxin capsules based on qualitative, fingerprint and quantitative analyses. Biomed Chromatogr 2024; 38:e5832. [PMID: 38317273 DOI: 10.1002/bmc.5832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Shensong Yangxin capsule (SSYXC), an effective Chinese patent medicine, has been recorded in the Chinese Pharmacopeia, mainly for the treatment of coronary heart disease and ventricular premature beat. To further complete the quality evaluation of SSYXC, a comprehensive analysis strategy was established. Firstly, the components of SSYXC were qualitatively analysed using ultra-high- performance liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry. A total of 134 compounds were identified or tentatively characterized. Additionally, the fingerprint of SSYXC was established by HPLC, and the similarity of 10 batches of SSYXC was elucidated by similarity analysis. The result indicated that the consistency of chemical composition is good. Finally, to enhance the quality control of SSYXC, according to the results of the fingerprint analysis, the contents of the seven active components was determined, comprising morroniside, loganin, paeoniflorin, salvianolic acid B, palmatine hydrochloride, berberine hydrochloride and tanshinone IIA. In conclusion, the established method, comprising identification of components, fingerprint analysis and quantification of multicomponents, can be sensitively and comprehensively applied to the quality evaluation of SSYXC, which can provide chemical ingredients bases for quality control and the pharmacodynamic mechanism of SSYXC, which could serve as a benchmark for controlling the quality of other Chinese patent medicines.
Collapse
Affiliation(s)
- Zixuan Fu
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Tong Jin
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Zheyong Wang
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang, Liaoning Province, China
| |
Collapse
|
9
|
Cao L, Ni H, Gong X, Zang Z, Chang H. Chinese Herbal Medicines for Coronary Heart Disease: Clinical Evidence, Pharmacological Mechanisms, and the Interaction with Gut Microbiota. Drugs 2024; 84:179-202. [PMID: 38265546 DOI: 10.1007/s40265-024-01994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Coronary heart disease (CHD) is a common type of cardiovascular disease (CVD) that has been on the rise in terms of both incidence and mortality worldwide, presenting a significant threat to human health. An increasing body of studies has shown that traditional Chinese medicine (TCM), particularly Chinese herbal medicines (CHMs), can serve as an effective adjunctive therapy to enhance the efficacy of Western drugs in treating CHD due to their multiple targets and multiple pathways. In this article, we critically review data available on the potential therapeutic strategies of CHMs in the intervention of CHD from three perspectives: clinical evidence, pharmacological mechanisms, and the interaction with gut microbiota. We identified 20 CHMs used in clinical practice and it has been found that the total clinical effective rate of CHD patients improved on average by 17.78% with the intervention of these CHMs. Subsequently, six signaling pathways commonly used in treating CHD have been identified through an overview of potential pharmacological mechanisms of these 20 CHMs and the eight representative individual herbs selected from them. CHMs could also act on gut microbiota to intervene in CHD by modulating the composition of gut microbiota, reducing trimethylamine-N-oxide (TMAO) levels, increasing short-chain fatty acids (SCFAs), and maintaining appropriate bile acids (BAs). Thus, the therapeutic potential of CHMs for CHD is worthy of further study in view of the outcomes found in existing studies.
Collapse
Affiliation(s)
- Linhai Cao
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Hongxia Ni
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Xiaoxiao Gong
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Ziyan Zang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China
| | - Hui Chang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, China.
| |
Collapse
|
10
|
Zhang S, Jia Y, Ma G, Yang Y, Cao Z, Luo A, Zhang Z, Li S, Wen J, Liu H, Ma J. Bupleurum exerts antiarrhythmic effects by inhibiting L-type calcium channels in mouse ventricular myocytes. Biochem Biophys Res Commun 2024; 691:149322. [PMID: 38039833 DOI: 10.1016/j.bbrc.2023.149322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Bupleurum (Bup), is a traditional effective medicine to treat colds and fevers in clinics. Multiple studies have demonstrated that Bup exhibites various biological activities, including cardioprotective effects, anti-inflammatory, anticancer, antipyretic, antimicrobial, and antiviral effects, etc. Currently, the effects of Bup on cardiac electrophysiology have not been reported yet. METHODS Electrocardiogram recordings were used to investigate the effects of Bup on aconitine-induced arrhythmias. Patch-clamp techniques were used to explore the effects of Bup on APs and ion currents. RESULTS Bup reduced the incidence of ventricular fibrillation (VF) and delayed the onset time of ventricular tachycardia (VT) in mice. Additionally, Bup (40 mg/mL) suppressed DADs induced by high-Ca2+ and shortened action potential duration at 50 % completion of repolarization (APD50) and action potential duration at 90 % completion of repolarization (APD90) to 60.89 % ± 8.40 % and 68.94 % ± 3.24 % of the control, respectively. Moreover, Bup inhibited L-type calcium currents (ICa.L) in a dose-dependent manner, with an IC50 value of 25.36 mg/mL. Furthermore, Bup affected the gated kinetics of L-type calcium channels by slowing down steady-state activation, accelerating the steady-state inactivation, and delaying the inactivation-recovery process. However, Bup had no effects on the Transient sodium current (INa.T), ATX II-increased late sodium current (INa.L), transient outward current (Ito), delayed rectifier potassium current (IK), or inward rectifier potassium current (IK1). CONCLUSION Bup is an antiarrhythmic agent that may exert its antiarrhythmic effects by inhibiting L-type calcium channels.
Collapse
Affiliation(s)
- Shuanglin Zhang
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yuzhong Jia
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Guolan Ma
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yanyan Yang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhenzhen Cao
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Antao Luo
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Zefu Zhang
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shihan Li
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jie Wen
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Hanfeng Liu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jihua Ma
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China; Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| |
Collapse
|
11
|
Yang H, Liu YR, Song ZX, Tang ZS, Jia AL, Wang MG, Duan JA. Study on the underlying mechanism of Poria in intervention of arrhythmia zebrafish by integrating metabolomics and network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155143. [PMID: 37890443 DOI: 10.1016/j.phymed.2023.155143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/24/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Poria is an herb with both medicinal and dietary application. It has been used in various traditional Chinese patent medicines and medicinal decoctions for the treatment of arrhythmia. However, the specific mechanisms involved in the antiarrhythmic effects of Poria have, until now, remained unknown. PURPOSE This present study sought to explore the potential compounds and mechanisms by which Poria ameliorates BaCl2-induced arrhythmia. METHOD We initiated by using network pharmacology to predict probable components, targets, and associated signaling pathways before optimizing the extraction process of Poria. We then applied Poria extract to a zebrafish model of BaCl2-induced arrhythmia. We combined network pharmacology and untargeted metabolomic analysis to predict the likely signaling and metabolic pathways governed by Poria. Finally, we verified putative mRNA and metabolite targets of Poria involved in the intervention of arrhythmia by PCR, molecular docking, enzymatic inhibition and targeted metabolomics. RESULTS We found that triterpenoids may be the main components of Poria responsible for its effects on arrhythmia, and that the optimal extraction process for its water extract is 9 volumes of water with the 7.5 h first extraction period, and the second extraction period of 1.5 h. Through experimentation, we have found that the water extract of Poria can interfere with BaCl2 induced arrhythmia in zebrafish by significantly increasing the heart rate, reducing the SV-BA distance, and pericardial area, and the degree of cardiomyocyte apoptosis in zebrafish. In addition, PCR validation revealed that Poria can regulate the calcium signaling pathway by upregulating the gene expression levels of ADRB1, HTR7, CALMB1, and PPP3CA. Meanwhile, through molecular docking and enzyme activity inhibition, it was found that the compounds in Poria can bind to ADRB1, HTR7, CALMB1, and PPP3CA, respectively. Targeted metabolism confirmed that Poria can downregulate the synthesis of cAMP in the calcium signaling pathway, as well as the synthesis of valine and isoleucine in valine, leucine, and isoleucine biosynthesis. CONCLUSION Overall, our study indicates that Poria exerts its antiarrhythmic effect through regulating the calcium signaling pathway and valine, leucine, and isoleucine biosynthesis. Our findings not only establish a mechanistic framework for elucidating the antiarrhythmic effects of Chinese patent medicine containing Poria, but also provide a medicinal basis for the study of its dual use as medicine and food.
Collapse
Affiliation(s)
- Hui Yang
- Changchun University of Chinese Medicine, Changchun 130117, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xian yang 712046, PR China
| | - Yan-Ru Liu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xian yang 712046, PR China
| | - Zhong-Xing Song
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xian yang 712046, PR China
| | - Zhi-Shu Tang
- Changchun University of Chinese Medicine, Changchun 130117, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xian yang 712046, PR China; China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Ai-Ling Jia
- Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Ming-Geng Wang
- Shandong Buchang Pharmaceutical Co., Ltd, Shandong 274000, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| |
Collapse
|
12
|
Yang W, Wang W, Cai S, Li P, Zhang D, Ning J, Ke J, Hou A, Chen L, Ma Y, Jin W. Synthesis and In Vivo Antiarrhythmic Activity Evaluation of Novel Scutellarein Analogues as Voltage-Gated Nav1.5 and Cav1.2 Channels Blockers. Molecules 2023; 28:7417. [PMID: 37959836 PMCID: PMC10650756 DOI: 10.3390/molecules28217417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Malignant cardiac arrhythmias with high morbidity and mortality have posed a significant threat to our human health. Scutellarein, a metabolite of Scutellarin which is isolated from Scutellaria altissima L., presents excellent therapeutic effects on cardiovascular diseases and could further be metabolized into methylated forms. A series of 22 new scutellarein derivatives with hydroxyl-substitution based on the scutellarin metabolite in vivo was designed, synthesized via the conjugation of the scutellarein scaffold with pharmacophores of FDA-approved antiarrhythmic medications and evaluated for their antiarrhythmic activity through the analyzation of the rat number of arrhythmia recovery, corresponding to the recovery time and maintenance time in the rat model of barium chloride-induced arrhythmia, as well as the cumulative dosage of aconitine required to induce VP, VT, VF and CA in the rat model of aconitine-induced arrhythmia. All designed compounds could shorten the time of the arrhythmia continuum induced by barium chloride, indicating that 4'-hydroxy substituents of scutellarein had rapid-onset antiarrhythmic effects. In addition, nearly all of the compounds could normalize the HR, RR, QRS, QT and QTc interval, as well as the P/T waves' amplitude. The most promising compound 10e showed the best antiarrhythmic activity with long-term efficacy and extremely low cytotoxicity, better than the positive control scutellarein. This result was also approved by the computational docking simulation. Most importantly, patch clamp measurements on Nav1.5 and Cav1.2 channels indicated that compound 10e was able to reduce the INa and ICa in a concentration-dependent manner and left-shifted the inactivation curve of Nav1.5. Taken together, all compounds were considered to be antiarrhythmic. Compound 10e even showed no proarrhythmic effect and could be classified as Ib Vaughan Williams antiarrhythmic agents. What is more, compound 10e did not block the hERG potassium channel which highly associated with cardiotoxicity.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, Yunnan University of Chinese Medicine, Kunming 650500, China (D.Z.)
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Wenping Wang
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, Yunnan University of Chinese Medicine, Kunming 650500, China (D.Z.)
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Song Cai
- Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Peng Li
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518000, China
| | - Die Zhang
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, Yunnan University of Chinese Medicine, Kunming 650500, China (D.Z.)
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Jinhua Ning
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, Yunnan University of Chinese Medicine, Kunming 650500, China (D.Z.)
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Jin Ke
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, Yunnan University of Chinese Medicine, Kunming 650500, China (D.Z.)
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Anguo Hou
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, Yunnan University of Chinese Medicine, Kunming 650500, China (D.Z.)
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Linyun Chen
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, Yunnan University of Chinese Medicine, Kunming 650500, China (D.Z.)
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yunshu Ma
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, Yunnan University of Chinese Medicine, Kunming 650500, China (D.Z.)
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Wenbin Jin
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, Yunnan University of Chinese Medicine, Kunming 650500, China (D.Z.)
- Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
- State Key Laboratory of Chemical Biology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Drug Discovery and Department of Applied Biology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
13
|
Pharmacological mechanism of natural drugs and their active ingredients in the treatment of arrhythmia via calcium channel regulation. Biomed Pharmacother 2023; 160:114413. [PMID: 36805187 DOI: 10.1016/j.biopha.2023.114413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Arrhythmia is characterized by abnormal heartbeat rhythms and frequencies caused by heart pacing and conduction dysfunction. Arrhythmia is the leading cause of death in patients with cardiovascular disease, with high morbidity and mortality rates, posing a serious risk to human health. Natural drugs and their active ingredients, such as matrine(MAT), tetrandrine(TET), dehydroevodiamine, tanshinone IIA, and ginsenosides, have been widely used for the treatment of atrial fibrillation, ventricular ectopic beats, sick sinus syndrome, and other arrhythmia-like diseases owing to their unique advantages. This review summarizes the mechanism of action of natural drugs and their active ingredients in the treatment of arrhythmia via the regulation of Ca2+, such as alkaloids, quinones, saponins, terpenoids, flavonoids, polyphenols, and lignan compounds, to provide ideas for the innovative development of natural drugs with potential antiarrhythmic efficacy.
Collapse
|
14
|
Soltani D, Azizi B, Rahimi R, Talasaz AH, Rezaeizadeh H, Vasheghani-Farahani A. Mechanism-based targeting of cardiac arrhythmias by phytochemicals and medicinal herbs: A comprehensive review of preclinical and clinical evidence. Front Cardiovasc Med 2022; 9:990063. [PMID: 36247473 PMCID: PMC9559844 DOI: 10.3389/fcvm.2022.990063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac arrhythmias, characterized by an irregular heartbeat, are associated with high mortality and morbidity. Because of the narrow therapeutic window of antiarrhythmic drugs (AADs), the management of arrhythmia is still challenging. Therefore, searching for new safe, and effective therapeutic options is unavoidable. In this study, the antiarrhythmic effects of medicinal plants and their active constituents were systematically reviewed to introduce some possible candidates for mechanism-based targeting of cardiac arrhythmias. PubMed, Embase, and Cochrane library were searched from inception to June 2021 to find the plant extracts, phytochemicals, and multi-component herbal preparations with antiarrhythmic activities. From 7337 identified results, 57 original studies consisting of 49 preclinical and eight clinical studies were finally included. Three plant extracts, eight multi-component herbal preparations, and 26 phytochemicals were found to have antiarrhythmic effects mostly mediated by affecting K+ channels, followed by modulating Ca2+ channels, upstream target pathways, Na v channels, gap junction channels, and autonomic receptors. The most investigated medicinal plants were Rhodiola crenulata and Vitis vinifera. Resveratrol, Oxymatrine, and Curcumin were the most studied phytochemicals found to have multiple mechanisms of antiarrhythmic action. This review emphasized the importance of research on the cardioprotective effect of medicinal plants and their bioactive compounds to guide the future development of new AADs. The most prevalent limitation of the studies was their unqualified methodology. Thus, future well-designed experimental and clinical studies are necessary to provide more reliable evidence.
Collapse
Affiliation(s)
- Danesh Soltani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bayan Azizi
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Azita H. Talasaz
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Hossein Rezaeizadeh
- Department of Persian Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Vasheghani-Farahani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Huang P, Li Z, Chen L, Zeng J, Zhao S, Tang Y, Huang B, Guan H, Chen Y, Feng Y, Lei S, Wu Q, Zhang H, Huang X, Zeng L, Liu Y, Zeng Z, Chen B. The comparative effects of oral Chinese patent medicines combined with western medicine in stable angina: A systematic review and network meta-analysis of 179 trials. Front Pharmacol 2022; 13:918689. [PMID: 36059992 PMCID: PMC9428755 DOI: 10.3389/fphar.2022.918689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Stable angina is a common condition with high morbidity and mortality rates. It has been reported that combining oral Chinese patent medicines (OCPMs) and Western medicine (WM) could potentially achieve a better effect than WM alone. However, the optimal OCPMs for stable angina remain controversial and merit further empirical research. Methods: PubMed, Embase, Web of Science, Cochrane Library, Ovid-Medline, Clinical Trials.gov, China National Knowledge Infrastructure, Wanfang Database, Weipu Journal Database, and Chinese Biomedical Literature Database were all searched from inception to 13 March 2022. We employed Version 2 of the Cochrane risk-of-bias tool (ROB2) to assess the overall quality of the selected studies. We also used R 4.1.2 and STATA 14.0 software applications to perform network meta-analysis, followed by sensitivity and subgroup analysis. Results: A total of 179 randomized controlled trials with 16,789 patients were included. The selected trials were all assessed as some concerns. OCPMs combined with WM had a better treatment effect than WM alone. In terms of the effective clinical rate, a significant increase was detected for Qishen Yiqi dripping pill (QSYQ)+WM as compared with Shensong Yangxin capsule (SSYX)+WM, Shexiang Baoxin pill (SXBX)+WM, Tongxinluo capsule (TXL)+WM, Xuefu Zhuyu capsule (XFZY)+WM, Qiliqiangxin capsule (QLQX)+WM, Naoxintong capsule (NXT)+WM, Fufang Danshen dripping pill (FFDS)+WM, and Danlou tablet (DL)+WM. QSYQ + WM had the highest-ranking probability (98.12%). Regarding the effective rate in ECG, QSYQ + WM was superior to SXBX + WM, TXL + WM, DL + WM, FFDS + WM, and NXT + WM. QSYQ + WM ranked first (94.21%). In terms of weekly frequency of angina, QLQX + WM obtained a better effect than FFDS + WM, Kuanxiong aerosol (KXQW)+WM, NXT + WM, QLQX + WM, SSYX + WM, SXBX + WM, and TXL + WM. QLQX + WM ranked first (100.00%). Regarding the duration of an angina attack, KXQW + WM was superior to SSYX + WM; KXQW + WM ranked first (95.71%). Adverting to weekly nitroglycerin usage, TXL + WM had the highest-ranking probability (82.12%). Referring to cardiovascular event rate, DL + WM had the highest effect (73.94%). Additionally, SSYX + WM had the lowest rate of adverse drug reactions (1.14%). Conclusion: OCPMs combined with WM had a higher efficacy. QSYQ + WM, QLQX + WM, KXQW + WM, TXL + WM, DL + WM, SSYX + WM, and SXBX + WM merit further investigation. SXBX + WM is presumably the optimal treatment prescription for both clinically effective and cardiovascular event rates. Further high-quality empirical research is needed to confirm the current results. Systematic Review Registration: URL = https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=316534, CRD 42022316534
Collapse
Affiliation(s)
- Peiying Huang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhishang Li
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Li Chen
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jing Zeng
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Shuai Zhao
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yong Tang
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bixuan Huang
- Department of Nursing, Hubei University of Arts and Science, Xiangyang, China
| | - Hansu Guan
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Chen
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yuchao Feng
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Sisi Lei
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qihua Wu
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haobo Zhang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Huang
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Linsheng Zeng
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yuxiang Liu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Zhongyi Zeng
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Bojun Chen
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
- *Correspondence: Bojun Chen,
| |
Collapse
|
16
|
Cheang I, Liao S, Zhu Q, Ni G, Wei C, Jia Z, Wu Y, Li X. Integrating Evidence of the Traditional Chinese Medicine Collateral Disease Theory in Prevention and Treatment of Cardiovascular Continuum. Front Pharmacol 2022; 13:867521. [PMID: 35370696 PMCID: PMC8964948 DOI: 10.3389/fphar.2022.867521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease has become a major public health problem. The concept of “cardiovascular continuum” refers to the continuous process from the risk factors that lead to arteriosclerosis, vulnerable plaque rupture, myocardial infarction, arrhythmia, heart failure, and death. These characteristics of etiology and progressive development coincide with the idea of “preventing disease” in traditional Chinese medicine (TCM), which corresponds to the process of systemic intervention. With the update of the understanding via translational medicine, this article reviews the current evidence of the TCM collateral disease theory set prescriptions in both mechanical and clinical aspects, which could lead to the development of new therapeutic strategies for prevention and treatment.
Collapse
Affiliation(s)
- Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Gehui Ni
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Cong Wei
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China.,Hebei Yiling Hospital, Key Disciplines of State Administration of TCM for Collateral Disease, Shijiazhuang, China
| | - Zhenhua Jia
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China.,Hebei Yiling Hospital, Key Disciplines of State Administration of TCM for Collateral Disease, Shijiazhuang, China
| | - Yiling Wu
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China.,Hebei Yiling Hospital, Key Disciplines of State Administration of TCM for Collateral Disease, Shijiazhuang, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Yang HJ, Kong B, Shuai W, Zhang JJ, Huang H. Shensong Yangxin Protects Against Metabolic Syndrome-Induced Ventricular Arrhythmias by Inhibiting Electrical Remodeling. Front Pharmacol 2020; 11:993. [PMID: 32733242 PMCID: PMC7363804 DOI: 10.3389/fphar.2020.00993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
Shensong Yangxin (SSYX) is a traditional Chinese medicine, which has been proven to improve the clinical symptoms of arrhythmia. However, the role of SSYX in metabolic syndrome (MetS)-induced electrical remodeling remains to be fully elucidated. Here, we sought to clarify whether SSYX can alter the electrophysiological remodeling of cardiac myocytes from MetS rats by regulating transient outward potassium current (Ito) and calcium current (ICa-L). Male Wistar rats were subjected to 16 weeks of high-carbohydrate, high-fat to produce a MetS model group. SSYX (0.4 g/kg) was administrated by daily gavage 8 weeks following high-carbohydrate, high-fat for 8 weeks. In vivo electrophysiological study was performed to evaluated ventricular arrhythmias (VA) vulnerability and electrophysiological properties. The potential electrical mechanisms were estimated by whole-cell patch-clamp and molecular analysis. The H9C2 cells were used to verify the protective role of SSYX in vitro. After 16-week high-carbohydrate, high-fat feeding, MetS model rats showed increased body weight (BW), blood pressure (BP), blood sugar (BS), heart rate (HR) and heart weights to tibia length (HW/TL) ratio. Furthermore, MetS rats depicted increased VA inducibility, shortened effective refractory period (ERP) and prolonged action potential duration (APD). Lower ICa-L and Ito current densities were observed in MetS rats than CTL rats. Additionally, MetS rats exhibited significantly increased cardiac fibrosis, decreased Cx43 expression and protein levels of Cav1.2, Kv4.2, Kv4.3 than CTL group. As expected, these MetS-induced effects above were reversed when SSYX was administrated. Mechanistically, SSYX administrated significantly down-regulated the TLR4/MyD88/CaMKII signaling pathway both in vivo and in vitro. Collectively, our data indicated that the electrical remodeling induced by MetS contributed to the increased VA susceptibility. SSYX protects against MetS-induced VA by inhibiting electrical remodeling through TLR4/MyD88/CaMKII signaling pathway.
Collapse
Affiliation(s)
- Hong-Jie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
18
|
Acute Efficacy of a Traditional Chinese Medicine for Treatment of Frequent Premature Ventricular Contractions in Patients with Concomitant Sinus Bradycardia: Results from a Double-Blind, Placebo-Controlled, Multicentre, Randomized Clinical Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3917282. [PMID: 30949218 PMCID: PMC6425419 DOI: 10.1155/2019/3917282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 02/15/2019] [Indexed: 11/18/2022]
Abstract
Pharmacological antiarrhythmic therapy such as beta-blockers in patients with frequent premature ventricular contractions (PVCs) and concomitant bradycardia is challenging. A traditional Chinese medicine, Shensong Yangxin (SSYX), has been effective in treatment of frequent PVCs and sinus bradycardia (SB) in separate patient cohorts. This double-blind, placebo-controlled, multicentre, randomized clinical trial investigates the acute efficacy of SSYX in reducing PVCs burden in patients with concomitant SB. Patients with symptomatic, frequent PVCs, and SB, defined as mean heart rate (MHR) of 45 to 59 beats per min (bpm), were recruited at 33 medical centres in mainland China and randomly assigned by computer to either SSYX or matching placebo for eight weeks. Patients, investigators, and trial personnel were masked to treatment allocation. Primary endpoints were changes in PVCs burden and MHR as assessed by 24-hour Holter monitoring relative to baseline. Secondary efficacy endpoints were subjective symptom score, ECG, and biochemical parameters. Analysis was based on intention-to-treat principles. 333 patients were randomized, of which 166 received SSYX and 167 placebo. Baseline characteristics did not differ. SSYX reduced PVCs burden by 68.2% (p < 0.001) and increased MHR by 10.9% (p < 0.001) compared to 32.2% and 4.7%, respectively, in the placebo group. SSYX group experienced greater symptomatic improvement (p < 0.001). No differences in reported adverse events were seen (20 versus 23). SSYX is an effective antiarrhythmic therapy for symptomatic, frequent PVCs uniquely suited patients with concomitant SB. Clinical trial number was NCT01750775.
Collapse
|
19
|
Zhang K, Shi L, Tang HJ, Yang L, Yang XC. Effect of Shen Song Yang Xin Capsule on Myocardial Electrophysiology of Acute Atrial Fibrillation in Canine Model. Chin Med J (Engl) 2018; 130:2513-2514. [PMID: 29052577 PMCID: PMC5684631 DOI: 10.4103/0366-6999.216404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Kai Zhang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang 550000, China
| | - Liang Shi
- Department of Cardiology, Beijing Chaoyang Hospital Affiliated to Capital University of Medical Science, Beijing 100020, China
| | - Hai-Jiao Tang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang 550000, China
| | - Long Yang
- Department of Cardiology, Guizhou Province People's Hospital, Guizhou, Guiyang 550000, China
| | - Xin-Chun Yang
- Department of Cardiology, Beijing Chaoyang Hospital Affiliated to Capital University of Medical Science, Beijing 100020, China
| |
Collapse
|
20
|
Increased Piezo1 channel activity in interstitial Cajal-like cells induces bladder hyperactivity by functionally interacting with NCX1 in rats with cyclophosphamide-induced cystitis. Exp Mol Med 2018; 50:1-16. [PMID: 29735991 PMCID: PMC5938236 DOI: 10.1038/s12276-018-0088-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/31/2018] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
The Piezo1 channel is a mechanotransduction mediator, and Piezo1 abnormalities have been linked to several clinical disorders. However, the role of the Piezo1 channel in cystitis-associated bladder dysfunction has not been documented. The current study aimed to discover the functional role of this channel in regulating bladder activity during cyclophosphamide (CYP)-induced cystitis. One hundred four female rats were randomly assigned to the control, CYP-4h, CYP-48h and CYP-8d groups. CYP successfully induced acute or chronic cystitis in these rats. CYP treatment for 48h or 8d significantly increased Piezo1 channel expression in bladder interstitial Cajal-like cells (ICC-LCs), and the increase in CYP-8d rats was more prominent. In addition, 2.5 μM Grammostola spatulata mechanotoxin 4 (GsMTx4) significantly attenuated bladder hyperactivity in CYP-8d rats by inhibiting the Piezo1 channel in bladder ICC-LCs. Furthermore, by using GsMTx4 and siRNA targeting the Piezo1 channel, we demonstrated that hypotonic stress-induced Piezo1 channel activation significantly triggered Ca2+ and Na+ influx into bladder ICC-LCs during CYP-induced chronic cystitis. In addition, the Piezo1 channel functionally interacted with the relatively activated reverse mode of Na+/Ca2+ exchanger 1 (NCX1) in bladder ICC-LCs from CYP-8d rats. In conclusion, we suggest that the functional role of the Piezo1 channel in CYP-induced chronic cystitis is based on its synergistic effects with NCX1, which can significantly enhance [Ca2+]i and result in Ca2+ overload in bladder ICC-LCs, indicating that the Piezo1 channel and NCX1 are potential novel therapeutic targets for chronic cystitis-associated bladder hyperactivity. A protein that controls the passage of ions through cell membranes is implicated in interstitial cystitis/painful bladder syndrome (IC/PBS). This condition causes chronic pelvic pain and increased urinary frequency and urgency. Current treatment options are unsatisfactory. Researchers led by Longkun Li at the Third Military Medical University in Chongqing, China, and Mingjia Tan at the University of Michigan, Ann Arbor, USA, studied the role of this membrane channel protein, called Piezo1. Increased activity of Piezo1 was linked to bladder hyperactivity in rats with drug-induced cystitis. The research also identified a synergistic interaction between Piezo1 and a second membrane channel protein. A drug that inhibits Piezo1 activity reduced bladder hyperactivity in the rats. Drugs targeting these two proteins might help to treat the chronic cystitis of patients with IC/PBS.
Collapse
|