1
|
Uppalapati A, Wang T, Nguyen LH. Evaluation of suitable reference genes for gene expression studies in the developing mouse cortex using RT-qPCR. BMC Neurosci 2025; 26:12. [PMID: 39966711 PMCID: PMC11837712 DOI: 10.1186/s12868-025-00934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Real-time quantitative PCR (RT-qPCR) is a widely used method to investigate gene expression in neuroscience studies. Accurate relative quantification of RT-qPCR requires the selection of reference genes that are stably expressed across the experimental conditions and tissues of interest. While RT-qPCR is often performed to investigate gene expression changes during neurodevelopment, few studies have examined the expression stability of commonly used reference genes in the developing mouse cortex. RESULTS Here, we evaluated the stability of five housekeeping genes, Actb, Gapdh, B2m, Rpl13a, and Hprt, in cortical tissue from mice at embryonic day 15 to postnatal day 0 to identify optimal reference genes with stable expression during late corticogenesis. The expression stability was assessed using five computational algorithms: BestKeeper, geNorm, NormFinder, DeltaCt, and RefFinder. Our results showed that B2m, Gapdh, and Hprt, or a combination of B2m/Gapdh and B2m/Hprt, were the most stably expressed genes or gene pairs. In contrast, Actb and Rpl13a were the least stably expressed. CONCLUSION This study identifies B2m, Gapdh, and Hprt as suitable reference genes for relative quantification in RT-qPCR-based cortical development studies spanning the period of embryonic day 15 to postnatal day 0.
Collapse
Affiliation(s)
- Ananya Uppalapati
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Timothy Wang
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Lena H Nguyen
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
2
|
Bunde TT, Pedra ACK, de Oliveira NR, Dellagostin OA, Bohn TLO. A systematic review on the selection of reference genes for gene expression studies in rodents: are the classics the best choice? Mol Biol Rep 2024; 51:1017. [PMID: 39327364 DOI: 10.1007/s11033-024-09950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Rodents are commonly used as animal models in studies investigating various experimental conditions, often requiring gene expression analysis. Quantitative real-time reverse transcription PCR (RT-qPCR) is the most widely used tool to quantify target gene expression levels under different experimental conditions in various biological samples. Relative normalization with reference genes is a crucial step in RT-qPCR to obtain reliable quantification results. In this work, the main reference genes used in gene expression studies among the three rodents commonly employed in scientific research-hamster, rat, and mouse-are analyzed and described. An individual literature search for each rodent was conducted using specific search terms in three databases: PubMed, Scopus, and Web of Science. A total of 157 articles were selected (rats = 73, mice = 79, and hamsters = 5), identifying various reference genes. The most commonly used reference genes were analyzed according to each rodent, sample type, and experimental condition evaluated, revealing a great variability in the stability of each gene across different samples and conditions. Classic genes, which are expected to be stably expressed in both samples and conditions analyzed, demonstrated greater variability, corroborating existing concerns about the use of these genes. Therefore, this review provides important insights for researchers seeking to identify suitable reference genes for their validation studies in rodents.
Collapse
Affiliation(s)
- Tiffany T Bunde
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ana C K Pedra
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natasha R de Oliveira
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir A Dellagostin
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thaís L O Bohn
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Bonin S, D’Errico S, Medeot C, Moreschi C, Ciglieri SS, Peruch M, Concato M, Azzalini E, Previderè C, Fattorini P. Evaluation of a Set of miRNAs in 26 Cases of Fatal Traumatic Brain Injuries. Int J Mol Sci 2023; 24:10836. [PMID: 37446013 PMCID: PMC10341445 DOI: 10.3390/ijms241310836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
In forensic medicine, identifying novel biomarkers for use as diagnostic tools to ascertain causes of death is challenging because of sample degradation. To that aim, a cohort (n = 26) of fatal traumatic brain injuries (TBIs) were tested for three candidate miRNAs (namely, miR-124-3p, miR-138-5p, and miR144-3p). For each case, three FFPE specimens (coup area (CA), contrecoup area (CCA), and the corpus callosum (CC)) were investigated, whereas the FFPE brain tissues of 45 subjects (deceased due to acute cardiovascular events) were used as controls. Relative quantification via the ∆∆Ct method returned significantly higher expression levels of the three candidate miRNAs (p < 0.01) in the TBI cases. No difference was detected in the expression levels of any miRNA investigated in the study among the CA, CCA, and CC. Furthermore, the analyzed miRNAs were unrelated to the TBI samples' post-mortem intervals (PMIs). On the contrary, has-miR-124-3p ahashsa-miR-144-3p were significantly correlated (p < 0.01) with the agonal time in TBI deaths. Since the RNA was highly degraded in autoptic FFPE tissues, it was impossible to analyze the mRNA targets of the miRNAs investigated in the present study, highlighting the necessity of standardizing pre-analytical processes even for autopsy tissues.
Collapse
Affiliation(s)
- Serena Bonin
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (S.B.); (C.M.); (S.S.C.); (M.P.); (M.C.); (E.A.); (P.F.)
| | - Stefano D’Errico
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (S.B.); (C.M.); (S.S.C.); (M.P.); (M.C.); (E.A.); (P.F.)
| | - Caterina Medeot
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (S.B.); (C.M.); (S.S.C.); (M.P.); (M.C.); (E.A.); (P.F.)
| | - Carlo Moreschi
- DAME—Department of Medical Area, University of Udine, 33100 Udine, Italy;
| | - Solange Sorçaburu Ciglieri
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (S.B.); (C.M.); (S.S.C.); (M.P.); (M.C.); (E.A.); (P.F.)
| | - Michela Peruch
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (S.B.); (C.M.); (S.S.C.); (M.P.); (M.C.); (E.A.); (P.F.)
| | - Monica Concato
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (S.B.); (C.M.); (S.S.C.); (M.P.); (M.C.); (E.A.); (P.F.)
| | - Eros Azzalini
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (S.B.); (C.M.); (S.S.C.); (M.P.); (M.C.); (E.A.); (P.F.)
| | - Carlo Previderè
- Department of Public Health, Experimental, and Forensic Medicine, Section of Legal Medicine and Forensic Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Paolo Fattorini
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (S.B.); (C.M.); (S.S.C.); (M.P.); (M.C.); (E.A.); (P.F.)
| |
Collapse
|
4
|
Xu YW, Ou NJ, Song YX, Wang XH, Kang JQ, Yang YJ, Chen YG, Liu XQ. Seminal plasma miR-210-3p induces spermatogenic cell apoptosis by activating caspase-3 in patients with varicocele. Asian J Androl 2021; 22:513-518. [PMID: 31670279 PMCID: PMC7523610 DOI: 10.4103/aja.aja_114_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The aim of this study was to investigate the role of seminal plasma miR-210-3p in the impairment of semen quality caused by varicocele. This study included 102 patients whose semen quality was normal when they were diagnosed with varicocele. A 2-year follow-up for included patients was performed, and they were divided into Group A (semen quality became abnormal) and Group B (semen quality remained normal) according to the results of semen analysis during the follow-up. Semen parameters and seminal plasma miR-210-3p expression were investigated by semen analysis and quantitative real-time polymerase chain reaction, respectively. In vitro experiments with GC-2 cells were performed to explore the role of miR-210-3p in spermatogenic cells. The results of quantitative real-time polymerase chain reaction showed that the level of seminal plasma miR-210-3p in Group A was higher than that in Group B both after 2-year follow-up and when they were diagnosed with varicocele (both P < 0.01). Apoptosis and proliferation assays showed that miR-210-3p induces apoptosis of spermatogenic cells by promoting caspase-3 activation. In conclusion, our study indicated that seminal plasma miR-210-3p induces spermatogenic cell apoptosis by activating caspase-3 in patients with varicocele. Seminal plasma miR-210-3p may be a potential biomarker for predicting impaired semen quality caused by varicocele.
Collapse
Affiliation(s)
- Ya-Wei Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ning-Jing Ou
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu-Xuan Song
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xian-Hao Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jia-Qi Kang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yong-Jiao Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ye-Gang Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xiao-Qiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
5
|
Tang T, Guo Y, Xu X, Zhao L, Shen X, Sun L, Xie P. BoDV-1 infection induces neuroinflammation by activating the TLR4/MyD88/IRF5 signaling pathway, leading to learning and memory impairment in rats. J Med Virol 2021; 93:6163-6171. [PMID: 34260072 DOI: 10.1002/jmv.27212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 07/13/2021] [Indexed: 11/05/2022]
Abstract
Borna disease virus (BoDV-1) can infect the hippocampus and limbic lobes of newborn rodents, causing cognitive deficits and abnormal behavior. Studies have found that neuroinflammation caused by viral infection in early life can affect brain development and impair learning and memory function, revealing the important role of neuroinflammation in cognitive impairment caused by viral infection. However, there is no research to explore the pathogenic mechanism of BoDV-1 in cognition from the direction of neuroinflammation. We established a BoDV-1 infection model in rats, and tested the learning and memory impairment by Morris water maze (MWM) experiment. RNAseq was introduced to detect changes in the gene expression profile of BoDV-1 infection, focusing on inflammation factors and related signaling pathways. BoDV-1 infection impairs the learning and memory of Sprague-Dawley rats in the MWM test and increases the expression of inflammatory cytokines in the hippocampus. RNAseq analysis found 986 differentially expressed genes (DEGs), of which 845 genes were upregulated and 141 genes were downregulated, and 28 genes were found to be enriched in the toll-like receptor (TLR) pathway. The expression of TLR4, MyD88, and IRF5 in the hippocampus was significantly changed in the BoDV-1 group. Our results indicate that BoDV-1 infection stimulates TLR4/MyD88/IRF5 pathway activation, causing the release of downstream inflammatory factors, which leads to neuroinflammation in rats. Neuroinflammation may play a significant role in learning and memory impairment caused by BoDV-1 infection.
Collapse
Affiliation(s)
- Tian Tang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yujie Guo
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoyan Xu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Libo Zhao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xia Shen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Chongqing Medical University, Chongqing, China
| | - Lin Sun
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Traditional Chinese Medicine Rehabilitation, The First People's Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Lv Y, Li S, Li Z, Tao R, Shao Y, Chen Y. Quantitative analysis of noncoding RNA from paired fresh and formalin-fixed paraffin-embedded brain tissues. Int J Legal Med 2019; 134:873-884. [PMID: 31788707 DOI: 10.1007/s00414-019-02210-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are commonly used both clinically and in forensic pathology. Recently, noncoding RNA (ncRNA) has attracted interest among molecular medical researchers. However, it remains unclear whether newly identified ncRNAs, such as long noncoding RNA (lncRNA) and circular RNA (circRNA), remain stable for downstream molecular analysis in FFPE tissues. Here, we assessed the feasibility of using autoptic FFPE brain tissues from eight individuals to perform quantitative molecular analyses. Selected RNA targets (9 mRNAs and 15 ncRNAs) with different amplicon lengths were studied by RT-qPCR in paired fresh and FFPE specimens. For RNA quality assessment, RNA purity and yield were comparable between the two sample cohorts; however, the RNA integrity number decreased significantly during FFPE sampling. Amplification efficiency also displayed certain variability related with amplicon length and RNA species. We found molecular evidence that short amplicons of mRNA, lncRNA, and circRNA were amplified more efficiently than long amplicons. With the assistance of RefFinder, 5S, SNORD48, miR-103a, and miR-125b were selected as reference genes given their high stability. After normalization, we found that short amplicon markers (e.g., ACTB mRNA and MALAT1 lncRNA) exhibited high consistency of quantification in paired fresh/FFPE samples. In particular, circRNAs (XPO1, HIPK3, and TMEM56) presented relatively consistent and stable expression profiles in FFPE tissues compared with their corresponding linear transcripts. Additionally, we evaluated the influence of prolonged storage time on the amplification of gene transcripts and found that short amplicons still work effectively in archived FFPE biospecimens. In conclusion, our findings demonstrate the possibility of performing accurate quantitative analysis of ncRNAs using short amplicons and standardized RT-qPCR assays in autopsy-derived FFPE samples.
Collapse
Affiliation(s)
- Yehui Lv
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China. .,Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, 200063, China. .,School of basic medical sciences, Shanghai University of Medicine & Health Science, Shanghai, 201318, China.
| | - Shiying Li
- Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, 200063, China
| | - Zhihong Li
- School of basic medical sciences, Shanghai University of Medicine & Health Science, Shanghai, 201318, China
| | - Ruiyang Tao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China.,Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, 200063, China
| | - Yu Shao
- Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, 200063, China
| | - Yijiu Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China. .,Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, 200063, China.
| |
Collapse
|
7
|
Li C, Xu X, Zhang X, Cheng K, Guo Y, Jie J, Guo H, He Y, Zhou C, Gui S, Zhong X, Wang H, Xie P. Activation of ERK/CREB/BDNF pathway involved in abnormal behavior of neonatally Borna virus-infected rats. Neuropsychiatr Dis Treat 2018; 14:3121-3132. [PMID: 30532543 PMCID: PMC6247968 DOI: 10.2147/ndt.s176399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders are devastating illnesses worldwide; however, the potential involvement of viruses in the pathophysiological mechanisms of psychiatric diseases have not been clearly elucidated. Borna disease virus (BDV) is a neurotropic, noncytopathic RNA virus. MATERIALS AND METHODS In this study, we infected neonatal rats intracranially with BDV Hu-H1 and Strain V within 24 hours of birth. Psychological phenotypes were assessed using sucrose preference test, open field test, elevated plus maze test, and forced swim test. The protein expression of ERK/CREB/BDNF pathway was assessed by Western blotting of in vitro and in vivo samples. RESULTS Hu-H1-infected rats showed anxiety-like behavior 8 weeks postinfection while Strain V-infected rats demonstrated a certain abnormal behavior. Phosphorylated ERK1/2 was significantly upregulated in the hippocampi of Strain V- and Hu-H1-infected rats compared with control rats, indicating that Raf/MEK/ERK signaling was activated. CONCLUSION The data suggested that infection of neonatal rats with BDV Hu-H1 and Strain V caused behavioral abnormalities that shared common molecular pathways, providing preliminary evidences to investigate the underlying mechanisms of psychiatric disorders caused by BDV.
Collapse
Affiliation(s)
- Chenmeng Li
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Xiaoyan Xu
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China, .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,
| | - Xiong Zhang
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China, .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,
| | - Ke Cheng
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Yujie Guo
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Jie Jie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Hua Guo
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Yong He
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Chanjuan Zhou
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Siwen Gui
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Xiaogang Zhong
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China,
| | - Haiyang Wang
- Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China, .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China, .,Department of Neurology Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China, .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,
| |
Collapse
|