1
|
Faiella M, Botti G, Dalpiaz A, Gnudi L, Goyenvalle A, Pavan B, Perrone D, Bovolenta M, Marchesi E. In Vitro Studies to Evaluate the Intestinal Permeation of an Ursodeoxycholic Acid-Conjugated Oligonucleotide for Duchenne Muscular Dystrophy Treatment. Pharmaceutics 2024; 16:1023. [PMID: 39204368 PMCID: PMC11360444 DOI: 10.3390/pharmaceutics16081023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Delivery represents a major hurdle to the clinical advancement of oligonucleotide therapeutics for the treatment of disorders such as Duchenne muscular dystrophy (DMD). In this preliminary study, we explored the ability of 2'-O-methyl-phosphorothioate antisense oligonucleotides (ASOs) conjugated with lipophilic ursodeoxycholic acid (UDCA) to permeate across intestinal barriers in vitro by a co-culture system of non-contacting IEC-6 cells and DMD myotubes, either alone or encapsulated in exosomes. UDCA was used to enhance the lipophilicity and membrane permeability of ASOs, potentially improving oral bioavailability. Exosomes were employed due to their biocompatibility and ability to deliver therapeutic cargo across biological barriers. Exon skipping was evaluated in the DMD myotubes to reveal the targeting efficiency. Exosomes extracted from milk and wild-type myotubes loaded with 5'-UDC-3'Cy3-ASO and seeded directly on DMD myotubes appear able to fuse to myotubes and induce exon skipping, up to ~20%. Permeation studies using the co-culture system were performed with 5'-UDC-3'Cy3-ASO 51 alone or loaded in milk-derived exosomes. In this setting, only gymnotic delivery induced significant levels of exon skipping (almost 30%) implying a possible role of the intestinal cells in enhancing delivery of ASOs. These results warrant further investigations to elucidate the delivery of ASOs by gymnosis or exosomes.
Collapse
Affiliation(s)
- Marika Faiella
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.B.)
| | - Giada Botti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.B.); (A.D.); (E.M.)
- Center for Translational Neurophysiology of Speech and Communication (CTNSC@UniFe), Italian Institute of Technology (IIT), 44121 Ferrara, Italy
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.B.); (A.D.); (E.M.)
| | - Lorenzo Gnudi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Aurélie Goyenvalle
- University Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France;
| | - Barbara Pavan
- Center for Translational Neurophysiology of Speech and Communication (CTNSC@UniFe), Italian Institute of Technology (IIT), 44121 Ferrara, Italy
- Department of Neuroscience and Rehabilitation—Section of Physiology, University of Ferrara, 44121 Ferrara, Italy
| | - Daniela Perrone
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Matteo Bovolenta
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.F.); (M.B.)
| | - Elena Marchesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.B.); (A.D.); (E.M.)
| |
Collapse
|
2
|
Liu H, Liang J, Zhong Y, Xiao G, Efferth T, Georgiev MI, Vargas-De-La-Cruz C, Bajpai VK, Caprioli G, Liu J, Lin J, Wu H, Peng L, Li Y, Ma L, Xiao J, Wang Q. Dendrobium officinale Polysaccharide Alleviates Intestinal Inflammation by Promoting Small Extracellular Vesicle Packaging of miR-433-3p. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13510-13523. [PMID: 34739249 DOI: 10.1021/acs.jafc.1c05134] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dendrobium officinale polysaccharide (DOP) attenuates inflammatory bowel disease (IBD), but its role in regulating cross-talk between intestinal epithelial cells (IEC) and macrophages against IBD is unclear. This study aimed to investigate DOP protective effects on the intestinal inflammatory response through regulation by miRNA in small extracellular vesicles (sEVs). Our results show that DOP interfered with the secretion of small extracellular vesicles (DIEs) by IEC, which reduced the levels of inflammatory mediators. Increased miR-433-3p expression in DIEs was identified as an important protector against intestinal inflammation. DOP regulated the loading of miR-433-3p by hnRNPA2B1 into the intestinal sEV to increase the abundance of miR-433-3p. DIEs delivered miR-433-3p to lipopolysaccharide-induced macrophages and targeted the MAPK8 gene, leading to inhibition of the MAPK signaling pathway and reduced production of inflammatory cytokines. One protective mechanism of DOP is mediated by intestinal sEV containing miR-433-3p, which is a potential therapeutic agent for the prevention of inflammatory factor accumulation from excessive intestinal macrophage activity and for restoring homeostasis in the intestinal microenvironment.
Collapse
Affiliation(s)
- Huifan Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou City, Guangdong 510642, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Jiaxi Liang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou City, Guangdong 510642, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yuming Zhong
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou City, Guangdong 510642, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Milen I Georgiev
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464 Bucharest, Romania
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Boulevard, 4000 Plovdiv, Bulgaria
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Enseñanza e Investigación en Bacteriología Alimentaria (CLEIBA), Universidad Nacional Mayor de San Marcos, Lima 15001, Perú
- Research Group Biotechnology and Omics in Life Sciences, Universidad Nacional Mayor de San Marcos, Lima 15001, Perú
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032 Camerino, MC, Italy
| | - Jianliang Liu
- Modern Agriculture Research Center, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Jintian Lin
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Hui Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yongjun Li
- Guangdong Jiangmen Chinese Medical College, Jiangmen City 529000, Guangdong China
| | - Lukai Ma
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou City, Guangdong 510642, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Qin Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou City, Guangdong 510642, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| |
Collapse
|
3
|
Chen XD, Zhao J, Yang X, Zhou BW, Yan Z, Liu WF, Li C, Liu KX. Gut-Derived Exosomes Mediate Memory Impairment After Intestinal Ischemia/Reperfusion via Activating Microglia. Mol Neurobiol 2021; 58:4828-4841. [PMID: 34189701 DOI: 10.1007/s12035-021-02444-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/05/2021] [Indexed: 12/30/2022]
Abstract
Intestinal ischemia/reperfusion is a grave condition with high morbidity and mortality in perioperative and critical care settings and causes multiple organ injuries beyond the intestine, including brain injury. Exosomes act as intercellular communication carriers by the transmission of their cargo to recipient cells. Here, we investigate whether exosomes derived from the intestine contribute to brain injury after intestinal ischemia/reperfusion via interacting with microglia in the brain. Intestinal ischemia/reperfusion was established in male C57/BL mice by clamping the superior mesenteric artery for 30 min followed by reperfusion. The sham surgery including laparotomy and isolation of the superior mesenteric artery without occlusion was performed as control. Male C57 mouse was intracerebral ventricular injected with intestinal exosomes from mice of intestinal ischemia/reperfusion or sham surgery. Primary microglia were cocultured with intestinal exosomes; HT-22 cells were treated with intestinal exosomes or microglia conditioned media. Intestinal ischemia/reperfusion-induced microglial activation, neuronal loss, synaptic stability decline, and cognitive deficit. Intracerebral ventricular injection of intestinal exosomes from intestinal ischemia/reperfusion mice causes microglial activation, neuronal loss, synaptic stability decline, and cognitive impairment. Microglia can incorporate intestinal exosomes both in vivo and in vitro. Microglia activated by intestinal exosomes increases neuron apoptotic rate and decreases synaptic stability. This study indicates that intestinal exosomes mediate memory impairment after intestinal ischemia/reperfusion via activating microglia. Inhibiting exosome secretion or suppressing microglial activation can be a therapeutic target to prevent memorial impairment after intestinal ischemia/reperfusion.
Collapse
Affiliation(s)
- Xiao-Dong Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo-Wei Zhou
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengzheng Yan
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei-Feng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cai Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Abstract
This review attempts to unveil the possible mechanisms underlying how gut lymph affects lung and further gives rise to acute respiratory distress syndrome, as well as potential interventional targets under the condition of ischemia-reperfusion injury. We searched electronic databases including PubMed, MEDLINE, Cochrane Central Register of Controlled Trials, Google Scholar, Web of Science, and Embase to identify relevant literatures published up to December 2019. We enrolled the literatures including the Mesh Terms of “gut lymph or intestinal lymph and acute lung injury or acute respiratory distress syndrome.” Gut is considered to be the origin of systemic inflammation and the engine of multiple organ distress syndrome in the field of critical care medicine, whereas gut lymph plays a pivotal role in initiation of ischemia-reperfusion injury-induced acute respiratory distress syndrome. In fact, in the having been established pathologic model of sepsis leading to multiple organ dysfunction named by Gut Lymph theory, a variety of literatures showed the position and role of changes in gut lymph components in the initiation of systemic inflammatory response, which allows us to screen out potential intervention targets to pave the way for future clinic and basic research.
Collapse
|
5
|
Ge P, Luo Y, Okoye CS, Chen H, Liu J, Zhang G, Xu C, Chen H. Intestinal barrier damage, systemic inflammatory response syndrome, and acute lung injury: A troublesome trio for acute pancreatitis. Biomed Pharmacother 2020; 132:110770. [PMID: 33011613 DOI: 10.1016/j.biopha.2020.110770] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023] Open
Abstract
Severe acute pancreatitis (SAP), a serious inflammatory disease of the pancreas, can easily lead to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndromes (MODS). Acute lung injury (ALI) is one of the most serious complications of SAP. However, the specific pathogenesis of SAP-associated ALI is not fully understood. Crosstalk and multi-mechanisms involving pancreatic necrosis, bacteremia, intestinal barrier failure, activation of inflammatory cascades and diffuse alveolar damage is the main reason for the unclear pathological mechanism of SAP-associated ALI. According to previous research on SAP-associated ALI in our laboratory and theories put forward by other scholars, we propose that the complex pattern of SAP-associated ALI is based on the "pancreas-intestine-inflammation/endotoxin-lung (P-I-I/E-L) pathway". In this review, we mainly concentrated on the specific details of the "P-I-I/E-L pathway" and the potential treatments or preventive measures for SAP-associated ALI.
Collapse
Affiliation(s)
- Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Chukwuemeka Samuel Okoye
- Orthopedic Research Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, PR China
| | - Haiyang Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Jiayue Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China.
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China.
| |
Collapse
|
6
|
Hong J, Blenkiron C, Tsai P, Premkumar R, Nachkebia S, Tun SM, Petzer A, Windsor JA, Hickey AJ, Phillips AR. Extracellular RNA Profile in Mesenteric Lymph from Exemplar Rat Models of Acute and Critical Illness. Lymphat Res Biol 2019; 17:512-517. [PMID: 30864890 DOI: 10.1089/lrb.2018.0044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: Mesenteric lymph (ML) has been implicated in the development of multiple organ dysfunction syndrome in critical illness. Extracellular RNAs play a role in cell-to-cell communication during physiological and disease processes but they are rarely studied in ML. We aimed at examining the RNA profiles of peripheral plasma, ML, and ML's extracellular vesicle (ML-EV) and triglyceride-rich lipoprotein (ML-TRL) fractions, obtained from rodent models of critical illness. Methods and Results: We collected ML for 5 hours from rodent models of critical illness [Acute Pancreatitis, Cecal Ligation and Incision (CLI), Gut Ischemia-Reperfusion (IR)] and matching Sham control rats. ML-EV and ML-TRL fractions were also isolated. RNA sequencing was performed on the RNA extracted from ML, ML-EV, ML-TRL, and plasma by using the Ion Torrent Personal Genome Machine platform. RNA sequences were searched using the Basic Local Alignment Search Tool against rat genome and RefSeq, microRNA (miRNA), genomic tRNA, functional RNA, and Genbank nucleotide databases, and the read counts were analyzed. Each sample type had a distinct RNA profile. ML contained more RNA per volume and a larger proportion of tRNA fragments than plasma. ML-EVs were enriched with miRNA, whereas ML-TRLs contained low absolute amounts of RNA. The RNA size profiles for CLI and Gut IR were different from Sham. ML carried intestinal RNAs and in a CLI model it was significantly enriched with bacterial RNA sequences. Conclusions: We found the distinct but diverse RNA profiles of ML and its compartments, and their different profiles in critical illness. Intestinal-derived small RNAs in ML may have a direct role in critical illness and utility as potential biomarkers.
Collapse
Affiliation(s)
- Jiwon Hong
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Center, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Peter Tsai
- Department of Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Rakesh Premkumar
- Surgical and Translational Research Center, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Shorena Nachkebia
- Surgical and Translational Research Center, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Soe M Tun
- Surgical and Translational Research Center, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Amorita Petzer
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - John A Windsor
- Surgical and Translational Research Center, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony J Hickey
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Anthony R Phillips
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Center, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Kojima M, Gimenes-Junior JA, Chan TW, Eliceiri BP, Baird A, Costantini TW, Coimbra R. Exosomes in postshock mesenteric lymph are key mediators of acute lung injury triggering the macrophage activation via Toll-like receptor 4. FASEB J 2017; 32:97-110. [PMID: 28855278 DOI: 10.1096/fj.201700488r] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022]
Abstract
Acute lung injury (ALI) is a common cause of morbidity in patients after severe injury due to dysregulated inflammation, which is believed to be driven by gut-derived inflammatory mediators carried via mesenteric lymph (ML). We have previously demonstrated that nano-sized extracellular vesicles, called exosomes, secreted into ML after trauma/hemorrhagic shock (T/HS) have the potential to activate immune cells in vitro Here, we assess the function of ML exosomes in the development of T/HS-induced ALI and the role of TLR4 in the ML exosome-mediated inflammatory response. ML exosomes isolated from rats subjected to T/HS stimulated NF-κB activation and caused proinflammatory cytokine production in alveolar macrophages. In vivo experiments revealed that intravenous injection of exosomes harvested after T/HS, but not before shock, caused recruitment of inflammatory cells in the lung, increased vascular permeability, and induced histologic ALI in naive mice. The exosome-depleted supernatant of ML had no effect on in vitro and in vivo inflammatory responses. We also demonstrated that both pharmacologic inhibition and genetic knockout of TLR4 completely abolished ML exosome-induced cytokine production in macrophages. Thus, our findings define the critical role of exosomes secreted into ML as a critical mediator of T/HS-induced ALI through macrophage TLR4 activation.-Kojima, M., Gimenes-Junior, J. A., Chan, T. W., Eliceiri, B. P., Baird, A., Costantini, T. W., Coimbra, R. Exosomes in postshock mesenteric lymph are key mediators of acute lung injury triggering the macrophage activation via Toll-like receptor 4.
Collapse
Affiliation(s)
- Mitsuaki Kojima
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego Health Sciences, San Diego, California, USA
| | - Joao A Gimenes-Junior
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego Health Sciences, San Diego, California, USA
| | - Theresa W Chan
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego Health Sciences, San Diego, California, USA
| | - Brian P Eliceiri
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego Health Sciences, San Diego, California, USA
| | - Andrew Baird
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego Health Sciences, San Diego, California, USA
| | - Todd W Costantini
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego Health Sciences, San Diego, California, USA
| | - Raul Coimbra
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego Health Sciences, San Diego, California, USA
| |
Collapse
|