1
|
Zou Y, Li Z, Lin Y, Zheng Y, Liu Z, Li Y, Huang L, Chen Z, Zhu L. Shanyao regulates the PI3K/AKT/P21 pathway to promote oogonial stem cell proliferation and stemness restoration to alleviate premature ovarian insufficiency. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119168. [PMID: 39615771 DOI: 10.1016/j.jep.2024.119168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shanyao (SY, yam, Rhizoma Dioscoreae, the dried rhizome of Dioscorea oppositifolia L.) was recorded in the Chinese pharmacopoeia and was often used in the treatment of premature ovarian insufficiency (POI). AIM OF STUDY To evaluate the efficacy of shanyao in cyclophosphamide (CTX)-induced POI and explore its potential mechanism of action. MATERIAL AND METHODS We employed network pharmacology, Liquid Chromatograph Mass Spectrometer (LC-MS), and molecular docking methods to identify active compounds and core targets, and predict the mechanism of shanyao for treating POI. The mechanism was subsequently validated through a series of experiments. Female Sprague-Dawley (SD) rats were randomly divided into five groups: control (CON), model, estradiol valerate (EV), low-dose shanyao, and high-dose shanyao. An experimental rat model of POI was established using cyclophosphamide and treated with either shanyao or EV for a duration of two months. We assessed the efficacy of shanyao in vivo through methods such as weighing, Enzyme-linked Immunosorbent Assay (ELISA), and Hematoxylin and Eosin (H&E) staining. Oogonial stem cells (OSCs) were isolated, after modeling, treated them with a serum containing either shanyao or EV. Using methods such as CCK8 assay, immunofluorescence staining, flow cytometry (FCM) analysis, and Western blot analysis to verify the mechanism of shanyao in treating POI. RESULTS In this study, we found that after treatment with shanyao, the general condition of POI rats was improved, body weight and the ratio of ovarian weight to body weight were increased, FSH, E2 and AMH levels were improved, primary follicles and preantral follicles were significantly increased, atretic follicles were decreased. However, the number of antral follicles and fresh corpus luteum was no statistical difference. We identified 10 active compounds of shanyao that act on 220 target genes, 176 of which are associated with POI. Denudatin B and Kadsurenone were finally identified as core components. Through topological analysis, 18 key targets were selected, and ultimately PI3K, CCND1, and CDK4 were identified as core targets. Molecular docking results showed that core components had good binding energy with core targets. The results of GO and KEGG enrichment analysis mainly focus on cell cycle regulation and PI3K/AKT signaling pathway. A series of molecular biology experiments confirmed that after shanyao treatment, the phosphorylation level of PI3K and AKT in POI rats were increased, P21 was inhibited, PI3K/AKT/P21 signaling pathway was activated, and the expression levels of CCND1 and CDK4 were increased. At the same time, the expression of Oct4, fragilis and Mvh of ovarian stem cells was up-regulated. CONCLUSION The active compounds of shanyao can regulate the PI3K/AKT/P21 signaling pathway, promote the proliferation of oogonial stem cells, stemness restoration, and delay ovarian aging. This study provides valuable insights into shanyao treatment for POI.
Collapse
Affiliation(s)
- Yuxin Zou
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Zuang Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuewei Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yunling Zheng
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ziyan Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yucheng Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Liuqian Huang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Zhuoting Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ling Zhu
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Hillege LE, Stevens MAM, Kristen PAJ, de Vos-Geelen J, Penders J, Redinbo MR, Smidt ML. The role of gut microbial β-glucuronidases in carcinogenesis and cancer treatment: a scoping review. J Cancer Res Clin Oncol 2024; 150:495. [PMID: 39537966 PMCID: PMC11561038 DOI: 10.1007/s00432-024-06028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION The human gut microbiota influence critical functions including the metabolism of nutrients, xenobiotics, and drugs. Gut microbial β-glucuronidases (GUS) enzymes facilitate the removal of glucuronic acid from various compounds, potentially affecting anti-cancer drug efficacy and reactivating carcinogens. This review aims to comprehensively analyze and summarize studies on the role of gut microbial GUS in cancer and its interaction with anti-cancer treatments. Its goal is to collate and present insights that are directly relevant to patient care and treatment strategies in oncology. METHODS This scoping review followed PRISMA-ScR guidelines and focused on primary research exploring the role of GUS within the gut microbiota related to cancer etiology and anti-cancer treatment. Comprehensive literature searches were conducted in PubMed, Embase, and Web of Science. RESULTS GUS activity was only investigated in colorectal cancer (CRC), revealing increased fecal GUS activity, variations in the gut microbial composition, and GUS-contributing bacterial taxa in CRC patients versus controls. Irinotecan affects gastrointestinal (GI) health by increasing GUS expression and shifting gut microbial composition, particularly by enhancing the presence of GUS-producing bacteria, correlating with irinotecan-induced GI toxicities. GUS inhibitors (GUSi) can mitigate irinotecan's adverse effects, protecting the intestinal barrier and reducing diarrhea. CONCLUSION To our knowledge, this is the first review to comprehensively analyze and summarize studies on the critical role of gut microbial GUS in cancer and anti-cancer treatment, particularly irinotecan. It underscores the potential of GUSi to reduce side effects and enhance treatment efficacy, highlighting the urgent need for further research to integrate GUS targeting into future anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Lars E Hillege
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands.
- Department of Surgery, FHML, Maastricht University Medical Center+, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| | - Milou A M Stevens
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
- Department of Surgery, FHML, Maastricht University Medical Center+, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Paulien A J Kristen
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
- Department of Surgery, FHML, Maastricht University Medical Center+, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Judith de Vos-Geelen
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
- Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - John Penders
- NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Matthew R Redinbo
- Departments of Chemistry, Biochemistry & Biophysics, and Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Marjolein L Smidt
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
- Department of Surgery, FHML, Maastricht University Medical Center+, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
3
|
Dinh DT, Bahari GP, Xu Q, Wei CH, Chen DR, Hsieh WC, Lin PH. Investigation of the abasic sites induced by hydrogen peroxide and methyl methanesulfonate in calf thymus DNA and BEAS-2B cells. Toxicol Lett 2024; 401:101-107. [PMID: 39326644 DOI: 10.1016/j.toxlet.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
The primary goals of this study were to investigate the formation of abasic sites (AP sites) induced by methyl methanesulfonate (MMS) and hydrogen peroxide (H2O2), and to characterize specific types of these pro-mutagenic DNA lesions in calf thymus DNA (CT-DNA), and BEAS-2B human lung normal cell line. Furthermore, these profiles were compared with those observed in leukocytes derived from healthy controls (HC), breast cancer patients (BCP) before treatment, and 5-year survivors. Results indicated that both H2O2 and MMS induced the concentration- and time-dependent formation of AP sites in CT-DNA. To characterize the specific types of AP sites induced by H2O2 or MMS, we performed AP site cleavage assay using putrescine, T7 exonuclease (T7 Exo), and exonuclease III (Exo III). Results showed that the AP sites induced by H2O2 in CT-DNA were predominantly 5'-and 3'-nicked AP sites and no intact AP sites were detected. By contrast, the majority of AP sites generated by MMS in CT-DNA are not excisable and are classified as residual and intact AP sites. Similar approaches were performed in human BEAS-2B cells and comparable observations were confirmed in the cell-based model. Further investigation indicated that the profile of the AP sites observed in Taiwanese HC is identical to that of BEAS-2B cells treated with H2O2 whereas the pattern of AP sites detected in BCP is similar to that of CT-DNA exposed to H2O2, suggesting that these AP sites were produced primarily through reactive oxygen species (ROS) generation. More than 70 % of the AP sites in leukocytes derived from BCP were 5'-nicked and residual AP sites. Furthermore, the characteristics of the AP sites detected in 5-year survivors are comparable with the ones in HC by using putrescine cleavage assay. Overall, we speculate that deficiency in the DNA repair cascade may play a role in mediating the formation of specific types of AP sites detected in BCP.
Collapse
Affiliation(s)
- Dat Thanh Dinh
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan; Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Gilang Putra Bahari
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Qi Xu
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Cheng-Hao Wei
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Dar-Ren Chen
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Wei-Chung Hsieh
- Department of Laboratory Medicine, Da-Chien General Hospital, Miaoli 360, Taiwan
| | - Po-Hsiung Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan; Research Center of Environmental Education and Sustainable Technology, Nantou 540, Taiwan.
| |
Collapse
|
4
|
Cheng Z, Xu H, Wang X, Teng T, Li B, Cao Z, Li Z, Zhang J, Xuan J, Zhang F, Chen Y, Li Y, Wang W. A causal relationship between bone mineral density and breast cancer risk: a mendelian randomization study based on east Asian population. BMC Cancer 2024; 24:1148. [PMID: 39277718 PMCID: PMC11401392 DOI: 10.1186/s12885-024-12908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Breast cancer (BC) poses significant burdens on women globally. While past research suggests a potential link between bone mineral density (BMD) and BC risk, findings remain inconsistent. Our study aims to elucidate the causal relationship between BMD and BC in East Asians using bidirectional Mendelian randomization (MR). METHODS Genetic association data for bone mineral density T-scores (BMD-T) and Z-scores (BMD-Z) (Sample size = 92,615) and BC from two different sources (Sample size1 = 98,283; Sample size2 = 79,550) were collected from publicly available genome-wide association studies (GWAS). Single-nucleotide polymorphisms (SNPs) associated with BMD-T and BMD-Z as phenotype-related instrumental variables (IVs) were used, with BC as the outcome. As the primary means of causal inference, the inverse variance weighted (IVW) approach was employed. Heterogeneity analysis was conducted using Cochran's Q test, while MR-Egger regression analysis was implemented to assess the pleiotropic effects of the IVs. Sensitivity analyses were performed using methods such as MR-Egger, weighted median, and weighted mode to analyze the robustness and reliability of the results. The MR-PRESSO method and the RadialMR were used to detect and remove outliers. The PhenoScanner V2 website was utilized to exclude confounding factors shared between BMD and BC. Besides, the Bonferroni correction was also used to adjust the significance threshold. Then, the meta-analysis method was applied to combine the MR analysis results from the two BC sources. Finally, a reverse MR analysis was conducted. RESULTS The results of the IVW method were consolidated through meta-analysis, revealing a positive correlation between genetically predicted BMD-T ([Formula: see text], [Formula: see text], [Formula: see text]) and BMD-Z ([Formula: see text],[Formula: see text], [Formula: see text]) with increased BC risk. The Cochran's [Formula: see text] test and MR-Egger regression suggested that neither of these causal relationships was affected by heterogeneity or horizontal pleiotropy. The sensitivity analyses supported the IVW results, indicating the robustness of the findings. Reverse MR analysis showed no causal relationship between BC and BMD. CONCLUSION Our MR study results provide evidence for the causal relationship between BMD and BC risk in East Asian populations, suggesting that BMD screening is of great significance in detecting and preventing BC.
Collapse
Affiliation(s)
- Ziyang Cheng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Teng
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Li
- Department of Radiology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhong Cao
- Department of Orthopedics, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhichao Li
- Department of Orthopedics, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayi Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin Xuan
- Department of Cardiology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengyi Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaxin Chen
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujie Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Wenbo Wang
- Department of Orthopedics, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
5
|
Deng X, Yang H, Tian L, Ling J, Ruan H, Ge A, Liu L, Fan H. Bibliometric analysis of global research trends between gut microbiota and breast cancer: from 2013 to 2023. Front Microbiol 2024; 15:1393422. [PMID: 39144230 PMCID: PMC11322113 DOI: 10.3389/fmicb.2024.1393422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Background Breast cancer is the most prevalent cancer globally and is associated with significant mortality. Recent research has provided crucial insights into the role of gut microbiota in the onset and progression of breast cancer, confirming its impact on the disease's management. Despite numerous studies exploring this relationship, there is a lack of comprehensive bibliometric analyses to outline the field's current state and emerging trends. This study aims to fill that gap by analyzing key research directions and identifying emerging hotspots. Method Publications from 2013 to 2023 were retrieved from the Web of Science Core Collection database. The VOSviewer, R language and SCImago Graphica software were utilized to analyze and visualize the volume of publications, countries/regions, institutions, authors, and keywords in this field. Results A total of 515 publications were included in this study. The journal Cancers was identified as the most prolific, contributing 21 papers. The United States and China were the leading contributors to this field. The University of Alabama at Birmingham was the most productive institution. Peter Bai published the most papers, while James J. Goedert was the most cited author. Analysis of highly cited literature and keyword clustering confirmed a close relationship between gut microbiota and breast cancer. Keywords such as "metabolomics" and "probiotics" have been prominently highlighted in the keyword analysis, indicating future research hotspots in exploring the interaction between metabolites in the breast cancer microenvironment and gut microbiota. Additionally, these keywords suggest significant interest in the therapeutic potential of probiotics for breast cancer treatment. Conclusion Research on the relationship between gut microbiota and breast cancer is expanding. Attention should be focused on understanding the mechanisms of their interaction, particularly the metabolite-microbiota-breast cancer crosstalk. These insights have the potential to advance prevention, diagnosis, and treatment strategies for breast cancer. This bibliometric study provides a comprehensive assessment of the current state and future trends of research in this field, offering valuable perspectives for future studies on gut microbiota and breast cancer.
Collapse
Affiliation(s)
- Xianguang Deng
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua Yang
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lingjia Tian
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jie Ling
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hui Ruan
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Anqi Ge
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hongqiao Fan
- Department of Cosmetic and Plastic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Pongen YL, Thirumurugan D, Ramasubburayan R, Prakash S. Harnessing actinobacteria potential for cancer prevention and treatment. Microb Pathog 2023; 183:106324. [PMID: 37633504 DOI: 10.1016/j.micpath.2023.106324] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Actinobacteria are gram-positive bacteria with high G:C ratio in their genetic makeup. They have been noted and studied for their capacity to produce bioactive substances with a range of uses in human health, and they also exhibit a unique property of adapting to extreme environments quite well. Actinobacteria may play an essential role in cancer prevention and treatment due to their synthesis of anticancer compounds, as indicated by recent studies. The aim of this review is to give a summary of what is currently known about the connection between actinobacteria and different types of cancer. This paper delineates the diverse array of actinobacterial bioactive compounds possessing anticancer properties, elucidates their mechanisms of action and explores potential applications in cancer treatment. Furthermore, this review highlights how the microbiome influences the onset and progression of cancer, as well as the discussing the potential benefits that actinobacteria may bring in terms of controlling the microbiome and contributing to the regulation of the tumour microenvironment to cure or prevent cancer.
Collapse
Affiliation(s)
- Yimtar L Pongen
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India
| | - Durairaj Thirumurugan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai - 600 077, Tamil Nadu, India
| | - Santhiyagu Prakash
- Marine Biotechnology Laboratory, Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, (OMR Campus), Tamilnadu Dr. J. Jayalalithaa Fisheries University, Vaniyanchavadi, Chennai - 603 103, Tamil Nadu, India.
| |
Collapse
|
7
|
Sadeghi O, Eshaghian N, Benisi-Kohansal S, Azadbakht L, Esmaillzadeh A. A case-control study on the association between adherence to a Mediterranean-style diet and breast cancer. Front Nutr 2023; 10:1140014. [PMID: 37533568 PMCID: PMC10393472 DOI: 10.3389/fnut.2023.1140014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Background Previous studies on the association between diet and breast cancer are mostly from Western populations, and data from Middle East countries are scarce, where the prevalence of breast cancer is high; therefore, it ranks first among other cancers. This population-based case-control study aimed to investigate the relationship between a Mediterranean-style diet and breast cancer among Iranian women. Methods In the current study, 350 new cases of breast cancer and 700 age- and socioeconomic status-matched controls were enrolled. We evaluated the dietary intakes of participants by using a 106-item Willett-format semi-quantitative dish-based food frequency questionnaire (SQ-FFQ). We calculated the Mediterranean diet score according to the dietary intakes of participants. In addition, using pre-tested questionnaires, we collected information on potential confounding variables. Results In this study, we found a significant inverse association between the Mediterranean diet and breast cancer so that after controlling for potential confounders, individuals in the highest tertile of the Mediterranean diet score compared with those in the lowest tertile were 57% less likely to have breast cancer [odds ratio (OR): 0.43, 95% confidence interval (CI): 0.28-0.67]. Such an inverse association was also observed for postmenopausal women. Similarly, after controlling for potential confounding variables, high adherence to the Mediterranean dietary pattern was associated with lower odds of breast cancer (OR: 0.37, 95% CI: 0.23-0.60). However, this relationship was not significant among premenopausal women. Conclusion We found that adherence to Mediterranean dietary pattern was associated with reduced odds of breast cancer. Studies with prospective design are needed to further examine this association.
Collapse
Affiliation(s)
- Omid Sadeghi
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloofar Eshaghian
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sanaz Benisi-Kohansal
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Yan C, Jin Y. Silencing of long noncoding RNA MIAT inhibits the viability and proliferation of breast cancer cells by promoting miR-378a-5p expression. Open Med (Wars) 2023; 18:20230676. [PMID: 37025425 PMCID: PMC10071813 DOI: 10.1515/med-2023-0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 04/05/2023] Open
Abstract
Myocardial infarction–associated transcript (MIAT) is a long noncoding RNA that plays a critical role in a variety of diseases. Accordingly, this study probed into the possible interaction mechanism between MIAT and miR-378a-5p in breast cancer. Concretely, MIAT and miR-378a-5p expressions in breast cancer tissues and cells were measured. After transfection with siMIAT and miR-378a-5p inhibitor, the viability and proliferation of breast cancer cells were examined by cell counting kit-8 and colony formation assays. The expressions of apoptosis-related proteins were detected. According to the results, MIAT was highly expressed in breast cancer tissues and cells. MIAT silencing could decrease Bcl-2 expression, viability, and proliferation of breast cancer cells and increase the expressions of cleaved caspase-3 and Bax. MIAT and miR-378a-5p could directly bind to each other, and MIAT silencing promoted the expression of miR-378a-5p. miR-378a-5p expression was low in breast cancer tissues. The miR-378a-5p inhibitor enhanced the viability and proliferation of breast cancer cells and partially reversed the effects of MIAT silencing on the breast cancer cells. In conclusion, MIAT silencing inhibits the viability and proliferation of breast cancer cells by promoting miR-378a-5p, indicating the potential of MIAT as a new target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Chao Yan
- Medical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huai’an 223003, Jiangsu, China
| | - Yue Jin
- Medical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, No. 62, Huaihai South Road, Qingjiangpu District, Huai’an 223003, Jiangsu, China
| |
Collapse
|
9
|
Sawicka E, Kulbacka J, Drąg-Zalesińska M, Woźniak A, Piwowar A. Effect of Interaction between Chromium(VI) with 17β-Estradiol and Its Metabolites on Breast Cancer Cell Lines MCF-7/WT and MDA-MB-175-VII: Preliminary Study. Molecules 2023; 28:molecules28062752. [PMID: 36985725 PMCID: PMC10052759 DOI: 10.3390/molecules28062752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
The number of factors initiating and stimulating the progression of breast cancer are constantly increasing. Estrogens are a risk factor for breast adenocarcinoma, the toxicity of which increases as a result of metabolism and interaction with other factors. Due to the presence of environmental exposure to estrogens and metalloestrogens, we investigated how interactions between estrogens and toxic chromium(VI)[Cr(VI)] affect breast cancer lines and investigated whether estrogens play a protective role. The aim of the study was to investigate the effect of 17β-estradiol and its metabolites: 2-methoxyestradiol (2-MeOE2), 4-hydroxyestradiol (4-OHE2), and 16α-hydroxyestrone (16α-OHE1) in exposure to Cr(VI) on cell viability and DNA cell damage. Two estrogen-dependent breast cancer cell lines, MCF 7/WT and MDA-MB-175-VII, were examined. In addition, the expression of Cu-Zn superoxide dismutase (SOD1) was determined immunocytochemically to elucidate the mechanism of oxidative stress. The effects of single substances and their mixtures were tested in the model of simultaneous and 7-day estrogen pre-incubation. As a result, the viability of MCF-7 and MDA-MB-175-VII cells is lowered most by Cr(VI) and least by 17β-E2. In the combined action of estrogens and metalloestrogens, we observed a protective effect mainly of 17β-E2 against Cr(VI)-induced cytotoxicity. The highest expression of SOD1 was found in MCF-7/WT cells exposed to 17β-E2. Moreover, high apoptosis was caused by both Cr(VI) itself and its interaction with 4-OHE2 and 2-MeOE2. The direction and dynamics of changes in viability are consistent for both lines.
Collapse
Affiliation(s)
- Ewa Sawicka
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-784-04-53; Fax: +48-71-784-04-52
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Małgorzata Drąg-Zalesińska
- Division of Histology and Embrylogy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chałubińskiego 6a, 50-368 Wroclaw, Poland
| | - Arkadiusz Woźniak
- Students’ Scientific Society at the Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
10
|
Martiniakova M, Kovacova V, Mondockova V, Zemanova N, Babikova M, Biro R, Ciernikova S, Omelka R. Honey: A Promising Therapeutic Supplement for the Prevention and Management of Osteoporosis and Breast Cancer. Antioxidants (Basel) 2023; 12:567. [PMID: 36978815 PMCID: PMC10045300 DOI: 10.3390/antiox12030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Osteoporosis and breast cancer are serious diseases that have become a significant socioeconomic burden. There are biochemical associations between the two disorders in terms of the amended function of estrogen, receptor activator of nuclear factor kappa beta ligand, oxidative stress, inflammation, and lipid accumulation. Honey as a functional food with high antioxidant and anti-inflammatory properties can contribute to the prevention of various diseases. Its health benefits are mainly related to the content of polyphenols. This review aims to summarize the current knowledge from in vitro, animal, and human studies on the use of honey as a potential therapeutic agent for osteoporosis and breast cancer. Preclinical studies have revealed a beneficial impact of honey on both bone health (microstructure, strength, oxidative stress) and breast tissue health (breast cancer cell proliferation and apoptosis, tumor growth rate, and volume). The limited number of clinical trials, especially in osteoporosis, indicates the need for further research to evaluate the potential benefits of honey in the treatment. Clinical studies related to breast cancer have revealed that honey is effective in increasing blood cell counts, interleukin-3 levels, and quality of life. In summary, honey may serve as a prospective therapeutic supplement for bone and breast tissue health.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| |
Collapse
|
11
|
Segovia-Mendoza M, Mirzaei E, Prado-Garcia H, Miranda LD, Figueroa A, Lemini C. The Interplay of GPER1 with 17β-Aminoestrogens in the Regulation of the Proliferation of Cervical and Breast Cancer Cells: A Pharmacological Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12361. [PMID: 36231664 PMCID: PMC9566056 DOI: 10.3390/ijerph191912361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The G-protein-coupled receptor for estrogen (GPER1) is a transmembrane receptor involved in the progression and development of various neoplasms whose ligand is estradiol (E2). 17β-aminoestrogens (17β-AEs) compounds, analogs to E2, are possible candidates for use in hormone replacement therapy (HRT), but our knowledge of their pharmacological profile is limited. Thus, we explored the molecular recognition of GPER1 with different synthetic 17β-AEs: prolame, butolame, and pentolame. We compared the structure and ligand recognition sites previously reported for a specific agonist (G1), antagonists (G15 and G36), and the natural ligand (E2). Then, the biological effects of 17β-AEs were analyzed through cell viability and cell-cycle assays in two types of female cancer. In addition, the effect of 17β-AEs on the phosphorylation of the oncoprotein c-fos was evaluated, because this molecule is modulated by GPER1. Molecular docking analysis showed that 17β-AEs interacted with GPER1, suggesting that prolame joins GPER1 in a hydrophobic cavity, similarly to G1, G15, and E2. Prolame induced cell proliferation in breast (MCF-7) and cervical cancer (SIHA) cells; meanwhile, butolame and pentolame did not affect cell proliferation. Neither 17β-AEs nor E2 changed the activation of c-fos in MCF-7 cells. Meanwhile, in SIHA cells, E2 and 17β-AEs reduced c-fos phosphorylation. Thus, our data suggest that butolame and pentolame, but not prolame, could be used for HRT without presenting a potential risk of inducing breast- or cervical-cancer-cell proliferation. The novelty of this work lies in its study of compound analogs to E2 that may represent important therapeutic strategies for women in menopause, with non-significant effects on the cell viability of cancer cells. The research focused on the interactions of GPER1, a molecule recently associated with promoting and maintaining various neoplasms.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Elahe Mirzaei
- Instituto Nacional de Medicina Genómica, Col. Arenal Tepepan, Ciudad de México 14610, Mexico
| | - Heriberto Prado-Garcia
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Calzada de Tlalpan 4502, Col. Sección XVI, Ciudad de México 14080, Mexico
| | - Luis D. Miranda
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S.N., Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Alejandra Figueroa
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Cristina Lemini
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
12
|
Huang K, Wu B, Hou Z, Ahmad A, Ahmed M, Khan AA, Tian F, Cheng F, Chu W, Deng K. Psoralen downregulates osteoarthritis chondrocyte inflammation via an estrogen-like effect and attenuates osteoarthritis. Aging (Albany NY) 2022; 14:6716-6726. [PMID: 36036756 PMCID: PMC9467404 DOI: 10.18632/aging.204245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
Estrogen and its receptor play a positive role in the development of osteoarthritis (OA). Psoralen is a plant-derived estrogen analog. This study aimed to verify whether psoralen inhibits OA through an estrogen-like effect. First, human primary chondrocytes in the late stage of OA were extracted to complete collagen type II immunofluorescence staining and cell proliferation experiments. Subsequently, estrogen, psoralen and estrogen receptor antagonists were co-cultured with OA chondrocytes, and RT-PCR was performed to detect the gene expression. A rabbit OA model was subsequently made by anterior cruciate ligament transection (ACLT). They were set as Sham group, OA group and Psoralen group, respectively. The articular cartilage samples were taken after 5 weeks of treatment, and the effect was observed by gross observation, histological staining, micro-CT scanning of subchondral bone. The results of cellular experiments displayed that the cultured cells were positive for collagen II fluorescence staining and 12 μg/mL psoralen was selected as the optimal concentration. In addition, psoralen had effects similar to estrogen, promoting the expression of estrogen tar-get genes CTSD, PGR and TFF1 and decreasing the expression of the inflammation-related gene TNF- α, IL-1β and IL-6. The effect of psoralen was blocked after the use of an estrogen receptor antagonist. Further animal experiments indicated that the psoralen group showed less destruction of cartilage tissue and decreased OASRI scores compared with the OA group. A subchondral bone CT scan demonstrated that psoralen significantly increased subchondral bone mineral density (BMD), trabecular thickness and trabecular number and decreased trabecular separation. In summary, psoralen inhibits the inflammatory production of chondrocytes, which is related to estrogen-like effect, and can be used to attenuate the progression of OA.
Collapse
Affiliation(s)
- Kui Huang
- Departments of Orthopedics, The First Hospital of Yangtze University, Jingzhou, China
| | - Bo Wu
- Departments of Orthopedics, The First Hospital of Yangtze University, Jingzhou, China
| | - Zhuhu Hou
- Departments of Orthopedics, The Jiangling County People’s Hospital, Jingzhou, China
| | - Akhlaq Ahmad
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Mushtaq Ahmed
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Ayesha Ali Khan
- Department of Biochemistry and Molecular Biology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Feng Tian
- Departments of Orthopedics, The First Hospital of Yangtze University, Jingzhou, China
| | - Fan Cheng
- Departments of Orthopedics, The First Hospital of Yangtze University, Jingzhou, China
| | - Wei Chu
- Departments of Orthopedics, The First Hospital of Yangtze University, Jingzhou, China
| | - Ke Deng
- Departments of Orthopedics, The First Hospital of Yangtze University, Jingzhou, China
| |
Collapse
|
13
|
Role of the Mediator Complex and MicroRNAs in Breast Cancer Etiology. Genes (Basel) 2022; 13:genes13020234. [PMID: 35205279 PMCID: PMC8871970 DOI: 10.3390/genes13020234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022] Open
Abstract
Transcriptional coactivators play a key role in RNA polymerase II transcription and gene regulation. One of the most important transcriptional coactivators is the Mediator (MED) complex, which is an evolutionary conserved large multiprotein complex. MED transduces the signal between DNA-bound transcriptional activators (gene-specific transcription factors) to the RNA polymerase II transcription machinery to activate transcription. It is known that MED plays an essential role in ER-mediated gene expression mainly through the MED1 subunit, since estrogen receptor (ER) can interact with MED1 by specific protein–protein interactions; therefore, MED1 plays a fundamental role in ER-positive breast cancer (BC) etiology. Additionally, other MED subunits also play a role in BC etiology. On the other hand, microRNAs (miRNAs) are a family of small non-coding RNAs, which can regulate gene expression at the post-transcriptional level by binding in a sequence-specific fashion at the 3′ UTR of the messenger RNA. The miRNAs are also important factors that influence oncogenic signaling in BC by acting as both tumor suppressors and oncogenes. Moreover, miRNAs are involved in endocrine therapy resistance of BC, specifically to tamoxifen, a drug that is used to target ER signaling. In metazoans, very little is known about the transcriptional regulation of miRNA by the MED complex and less about the transcriptional regulation of miRNAs involved in BC initiation and progression. Recently, it has been shown that MED1 is able to regulate the transcription of the ER-dependent miR-191/425 cluster promoting BC cell proliferation and migration. In this review, we will discuss the role of MED1 transcriptional coactivator in the etiology of BC and in endocrine therapy-resistance of BC and also the contribution of other MED subunits to BC development, progression and metastasis. Lastly, we identified miRNAs that potentially can regulate the expression of MED subunits.
Collapse
|
14
|
Simu S, Marcovici I, Dobrescu A, Malita D, Dehelean CA, Coricovac D, Olaru F, Draghici GA, Navolan D. Insights into the Behavior of Triple-Negative MDA-MB-231 Breast Carcinoma Cells Following the Treatment with 17β-Ethinylestradiol and Levonorgestrel. Molecules 2021; 26:2776. [PMID: 34066763 PMCID: PMC8125870 DOI: 10.3390/molecules26092776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/30/2022] Open
Abstract
Oral contraceptives (OCs) are widely used due to their efficiency in preventing unplanned pregnancies and treating several human illnesses. Despite their medical value, the toxicity of OCs remains a public concern. Previous studies indicate the carcinogenic potential of synthetic sex hormones and their link to the development and progression of hormone-dependent malignancies such as breast cancer. However, little is known about their influence on the evolution of triple-negative breast carcinoma (TNBC), a malignancy defined by the absence of estrogen, progesterone, and HER2 receptors. This study reveals that the active ingredients of modern OCs, 17β-Ethinylestradiol, Levonorgestrel, and their combination induce differential effects in MDA-MB-231 TNBC cells. The most relevant behavioral changes occurred after the 24 h treatment with 17β-Ethinylestradiol, summarized as follows: (i) decreased cell viability (64.32% at 10 µM); (ii) cell roundness and loss of confluence; (iii) apoptotic aspect of cell nuclei (fragmentation, membrane blebbing); and (iv) inhibited cell migration, suggesting a potential anticancer effect. Conversely, Levonorgestrel was generally associated with a proliferative activity. The association of the two OCs exerted similar effects as 17β-Ethinylestradiol but was less effective. Further studies are necessary to elucidate the hormones' cytotoxic mechanism of action on TNBC cells.
Collapse
Affiliation(s)
- Sebastian Simu
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (S.S.); (I.M.); (C.A.D.); (D.C.); (G.A.D.)
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Iasmina Marcovici
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (S.S.); (I.M.); (C.A.D.); (D.C.); (G.A.D.)
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Amadeus Dobrescu
- Faculty of Medicine, 2nd Department of Surgery, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Daniel Malita
- Faculty of Medicine, Department of Radiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (S.S.); (I.M.); (C.A.D.); (D.C.); (G.A.D.)
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Dorina Coricovac
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (S.S.); (I.M.); (C.A.D.); (D.C.); (G.A.D.)
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Flavius Olaru
- Faculty of Medicine, Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (F.O.); (D.N.)
| | - George Andrei Draghici
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (S.S.); (I.M.); (C.A.D.); (D.C.); (G.A.D.)
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Dan Navolan
- Faculty of Medicine, Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (F.O.); (D.N.)
| |
Collapse
|
15
|
Almeida M, Soares M, Fonseca-Moutinho J, Ramalhinho AC, Breitenfeld L. Influence of Estrogenic Metabolic Pathway Genes Polymorphisms on Postmenopausal Breast Cancer Risk. Pharmaceuticals (Basel) 2021; 14:ph14020094. [PMID: 33513690 PMCID: PMC7910923 DOI: 10.3390/ph14020094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022] Open
Abstract
Estrogen metabolism plays an important role in tumor initiation and development. Lifetime exposure to high estrogens levels and deregulation of enzymes involved in estrogen biosynthetic and metabolic pathway are considered risk factors for breast cancer. The present study aimed to evaluate the impact of mutations acquisition during the lifetime in low penetrance genes that codify enzymes responsible for estrogen detoxification. Genotype analysis of GSTM1 and GSTT1 null polymorphisms, CYP1B1 Val432Leu and MTHFR C677T polymorphisms was performed in 157 samples of women with hormone-dependent breast cancer and correlated with the age at diagnosis. The majority of patients with GSTT1 null genotype and with both GSTM1 and GSTT1 null genotypes were 50 years old or more at the diagnosis (p-value = 0.021 and 0.018, respectively). Older women with GSTM1 null genotype were also carriers of the CYP1B1Val allele (p-value = 0.012). As well, GSTT1 null and CYP1B1Val genotypes were correlated with diagnosis at later ages (p-value = 0.022). Similar results were found associating MTHFR C677T and GSTT1 null polymorphism (p-value = 0.034). Our results suggest that estrogen metabolic pathway polymorphisms constitute a factor to be considered simultaneously with models for breast cancer risk assessment.
Collapse
Affiliation(s)
- Micaela Almeida
- Health Sciences Research Centre (CICS), Faculty of Health Sciences, University of Beira Interior (UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.A.); (M.S.); (J.F.-M.); (A.C.R.)
| | - Mafalda Soares
- Health Sciences Research Centre (CICS), Faculty of Health Sciences, University of Beira Interior (UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.A.); (M.S.); (J.F.-M.); (A.C.R.)
| | - José Fonseca-Moutinho
- Health Sciences Research Centre (CICS), Faculty of Health Sciences, University of Beira Interior (UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.A.); (M.S.); (J.F.-M.); (A.C.R.)
- Academic Hospital of Cova da Beira (CHUCB), Quinta do Alvito, 6200-251 Covilhã, Portugal
| | - Ana Cristina Ramalhinho
- Health Sciences Research Centre (CICS), Faculty of Health Sciences, University of Beira Interior (UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.A.); (M.S.); (J.F.-M.); (A.C.R.)
- Academic Hospital of Cova da Beira (CHUCB), Quinta do Alvito, 6200-251 Covilhã, Portugal
| | - Luiza Breitenfeld
- Health Sciences Research Centre (CICS), Faculty of Health Sciences, University of Beira Interior (UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.A.); (M.S.); (J.F.-M.); (A.C.R.)
- Correspondence: ; Tel.: +351-2753-290-51
| |
Collapse
|
16
|
Eraldemir FC, Korak T. Paraoxonases, oxidative stress, and breast cancer. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Ortega MA, Fraile-Martínez O, García-Montero C, Pekarek L, Guijarro LG, Castellanos AJ, Sanchez-Trujillo L, García-Honduvilla N, Álvarez-Mon M, Buján J, Zapico Á, Lahera G, Álvarez-Mon MA. Physical Activity as an Imperative Support in Breast Cancer Management. Cancers (Basel) 2020; 13:E55. [PMID: 33379177 PMCID: PMC7796347 DOI: 10.3390/cancers13010055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy and the second cause of cancer-related death among women. It is estimated that 9 in 10 cases of BC are due to non-genetic factors, and approximately 25% to 30% of total breast cancer cases should be preventable only by lifestyle interventions. In this context, physical activity represents an excellent and accessible approach not only for the prevention, but also for being a potential support in the management of breast cancer. The present review will collect the current knowledge of physical activity in the background of breast cancer, exploring its systemic and molecular effects, considering important variables in the training of these women and the evidence regarding the benefits of exercise on breast cancer survival and prognosis. We will also summarize the various effects of physical activity as a co-adjuvant therapy in women receiving different treatments to deal with its adverse effects. Finally, we will reveal the impact of physical activity in the enhancement of quality of life of these patients, to conclude the central role that exercise must occupy in breast cancer management, in an adequate context of a healthy lifestyle.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Oscar Fraile-Martínez
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
| | - Cielo García-Montero
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
| | - Leonel Pekarek
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
| | - Luis G. Guijarro
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Alejandro J. Castellanos
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
| | - Lara Sanchez-Trujillo
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
| | - Natalio García-Honduvilla
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Julia Buján
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
| | - Álvaro Zapico
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
- Obstetrics and Gynecology Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Guillermo Lahera
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Miguel A. Álvarez-Mon
- Unit of Histology and Pathology, Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (L.P.); (A.J.C.); (L.S.-T.); (N.G.-H.); (M.Á.-M.); (J.B.); (G.L.); (M.A.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Medical Psychology, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| |
Collapse
|
18
|
Le Guennec D, Rossary A. The interrelationship between physical activity and metabolic regulation of breast cancer progression in obesity via cytokine control. Cytokine Growth Factor Rev 2020; 52:76-87. [DOI: 10.1016/j.cytogfr.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
|
19
|
Chou CH, Chen SU, Chen CD, Shun CT, Wen WF, Tu YA, Yang JH. Mitochondrial Dysfunction Induced by High Estradiol Concentrations in Endometrial Epithelial Cells. J Clin Endocrinol Metab 2020; 105:5568229. [PMID: 31512726 DOI: 10.1210/clinem/dgz015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/04/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT A supraphysiological estradiol (E2) concentration after ovarian stimulation is known to result in lower embryo implantation rates in in vitro fertilization. Endometrial epithelial cell (EEC) apoptosis occurs after the stimulation with high E2 concentrations, and mitochondria play important roles in cell apoptosis. OBJECTIVE To investigate the mitochondrial function in EECs after the stimulation with high E2 concentrations. MATERIALS AND METHODS Human EECs were purified and cultured with different E2 concentrations (10-10, 10-9, 10-8, 10-7 M) in vitro, in which 10-7 M is supraphysiologically high. Eight-week-old female mouse endometrium was obtained 5.5 days after the injection of 1.25 IU or 20 IU equine chorionic gonadotropin, roughly during the embryo implantation window, to examine the in vivo effects of high E2 concentrations on mouse EECs. RESULTS In vivo and in vitro experiments demonstrated decreased mitochondrial DNA contents and ATP formation after EECs were stimulated with supraphysiologically high E2 concentrations than those stimulated with a physiologic E2 concentration. Less prominent immunofluorescence mitochondrial staining, fewer mitochondria numbers under electron microscopy, lower 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide aggregate/monomer ratio, and greater reactive oxygen species (ROS) production were found after EECs were stimulated with supraphysiologically high E2 concentrations. The high E2-induced ROS production was reduced when EECs were pretreated with N-acetyl-cysteine in vitro, but remained unchanged after the pretreatment with coenzyme Q10. CONCLUSION High E2 concentrations increase extramitochondrial ROS production in EECs and subsequently result in mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chin-Der Chen
- Department of Obstetrics and Gynecology, Fu Jen Catholic University Hospital, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Wen-Fen Wen
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Yi-An Tu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jehn-Hsiahn Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
20
|
Obesity, DNA Damage, and Development of Obesity-Related Diseases. Int J Mol Sci 2019; 20:ijms20051146. [PMID: 30845725 PMCID: PMC6429223 DOI: 10.3390/ijms20051146] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity has been recognized to increase the risk of such diseases as cardiovascular diseases, diabetes, and cancer. It indicates that obesity can impact genome stability. Oxidative stress and inflammation, commonly occurring in obesity, can induce DNA damage and inhibit DNA repair mechanisms. Accumulation of DNA damage can lead to an enhanced mutation rate and can alter gene expression resulting in disturbances in cell metabolism. Obesity-associated DNA damage can promote cancer growth by favoring cancer cell proliferation and migration, and resistance to apoptosis. Estimation of the DNA damage and/or disturbances in DNA repair could be potentially useful in the risk assessment and prevention of obesity-associated metabolic disorders as well as cancers. DNA damage in people with obesity appears to be reversible and both weight loss and improvement of dietary habits and diet composition can affect genome stability.
Collapse
|
21
|
Brozek W, Nagel G, Ulmer H, Concin H. Bone Mineral Density and Breast Cancer Incidence and Mortality in Postmenopausal Women: A Long-Term Follow-Up Study. J Womens Health (Larchmt) 2018; 28:628-635. [PMID: 30562125 DOI: 10.1089/jwh.2018.7310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: To examine whether bone mineral density (BMD) is predictive of breast cancer risk and mortality in a population of early postmenopausal women participating in a medical prevention program in western Austria. Patients and Methods: Between May 1991 and February 1999, lumbar spine BMD was measured by dual-energy X-ray absorptiometry (N = 1163, mean age 56.9 ± 5.7 years) or quantitative computed tomography (N = 2283, mean age 56.8 ± 5.4 years) in 3446 women aged ≥50 years. Data on medication and lifestyle factors were collected by questionnaire. Participants were prospectively followed up for breast cancer incidence, and breast cancer patients were followed up for mortality. To calculate risk of breast cancer and mortality, Cox proportional hazards models were applied. Results: During median follow-up of 20.7 years, 185 invasive breast cancer cases and 22 deaths due to breast cancer occurred. Risk of breast cancer in the highest versus the lowest BMD quartile was nonsignificantly reduced, in particular when follow-up was restricted to 10 years (hazard ratio 0.53, 95% confidence interval 0.25-1.12). There was no risk reduction when follow-up began 10 years after BMD measurement. There was no association between BMD and all-cause or breast cancer-specific mortality among breast cancer patients, but a trend toward reduced mortality risk in the highest BMD quartile. Conclusions: We hypothesize that BMD is not reflective of estrogen exposure and not predictive of breast cancer risk, at least in young postmenopausal women. Confounders such as vitamin D might underlie low breast cancer risk at high BMD, thus mirroring better health status.
Collapse
Affiliation(s)
- Wolfgang Brozek
- 1 Agency for Preventive and Social Medicine, Bregenz, Austria
| | - Gabriele Nagel
- 1 Agency for Preventive and Social Medicine, Bregenz, Austria
- 2 Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Hanno Ulmer
- 1 Agency for Preventive and Social Medicine, Bregenz, Austria
- 3 Department of Medical Statistics, Informatics and Health Economics, Innsbruck Medical University, Innsbruck, Austria
| | - Hans Concin
- 1 Agency for Preventive and Social Medicine, Bregenz, Austria
| |
Collapse
|
22
|
Park SA. Catechol Estrogen 4-Hydroxyestradiol is an Ultimate Carcinogen in Breast Cancer. ACTA ACUST UNITED AC 2018. [DOI: 10.15616/bsl.2018.24.3.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sin-Aye Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|