1
|
Wang H, Wang T, Yan S, Tang J, Zhang Y, Wang L, Xu H, Tu C. Crosstalk of pyroptosis and cytokine in the tumor microenvironment: from mechanisms to clinical implication. Mol Cancer 2024; 23:268. [PMID: 39614288 PMCID: PMC11607834 DOI: 10.1186/s12943-024-02183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
In the realm of cancer research, the tumor microenvironment (TME) plays a crucial role in tumor initiation and progression, shaped by complex interactions between cancer cells and surrounding non-cancerous cells. Cytokines, as essential immunomodulatory agents, are secreted by various cellular constituents within the TME, including immune cells, cancer-associated fibroblasts, and cancer cells themselves. These cytokines facilitate intricate communication networks that significantly influence tumor initiation, progression, metastasis, and immune suppression. Pyroptosis contributes to TME remodeling by promoting the release of pro-inflammatory cytokines and sustaining chronic inflammation, impacting processes such as immune escape and angiogenesis. However, challenges remain due to the complex interplay among cytokines, pyroptosis, and the TME, along with the dual effects of pyroptosis on cancer progression and therapy-related complications like cytokine release syndrome. Unraveling these complexities could facilitate strategies that balance inflammatory responses while minimizing tissue damage during therapy. This review delves into the complex crosstalk between cytokines, pyroptosis, and the TME, elucidating their contribution to tumor progression and metastasis. By synthesizing emerging therapeutic targets and innovative technologies concerning TME, this review aims to provide novel insights that could enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tao Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shuxiang Yan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410011, China.
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Shenzhen Research Institute of Central South University, Guangdong, 518063, China.
- Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Xun Z, Zhou H, Shen M, Liu Y, Sun C, Du Y, Jiang Z, Yang L, Zhang Q, Lin C, Hu Q, Ye Y, Han L. Identification of Hypoxia-ALCAM high Macrophage- Exhausted T Cell Axis in Tumor Microenvironment Remodeling for Immunotherapy Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309885. [PMID: 38956900 PMCID: PMC11434037 DOI: 10.1002/advs.202309885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Indexed: 07/04/2024]
Abstract
Although hypoxia is known to be associated with immune resistance, the adaptability to hypoxia by different cell populations in the tumor microenvironment and the underlying mechanisms remain elusive. This knowledge gap has hindered the development of therapeutic strategies to overcome tumor immune resistance induced by hypoxia. Here, bulk, single-cell, and spatial transcriptomics are integrated to characterize hypoxia associated with immune escape during carcinogenesis and reveal a hypoxia-based intercellular communication hub consisting of malignant cells, ALCAMhigh macrophages, and exhausted CD8+ T cells around the tumor boundary. A hypoxic microenvironment promotes binding of HIF-1α complex is demonstrated to the ALCAM promoter therefore increasing its expression in macrophages, and the ALCAMhigh macrophages co-localize with exhausted CD8+ T cells in the tumor spatial microenvironment and promote T cell exhaustion. Preclinically, HIF-1ɑ inhibition reduces ALCAM expression in macrophages and exhausted CD8+ T cells and potentiates T cell antitumor function to enhance immunotherapy efficacy. This study reveals the systematic landscape of hypoxia at single-cell resolution and spatial architecture and highlights the effect of hypoxia on immunotherapy resistance through the ALCAMhigh macrophage-exhausted T cell axis, providing a novel immunotherapeutic strategy to overcome hypoxia-induced resistance in cancers.
Collapse
Affiliation(s)
- Zhenzhen Xun
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai Institute of ImmunologyState Key Laboratory of Systems Medicine for CancerDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Huanran Zhou
- Department of EndocrinologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Mingyi Shen
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai Institute of ImmunologyState Key Laboratory of Systems Medicine for CancerDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yao Liu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| | - Chengcao Sun
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Yanhua Du
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhou Jiang
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Liuqing Yang
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Qing Zhang
- Simmons Comprehensive Cancer CenterDepartment of PathologyUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Chunru Lin
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Qingsong Hu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| | - Youqiong Ye
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai Institute of ImmunologyState Key Laboratory of Systems Medicine for CancerDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Leng Han
- Brown Center for ImmunotherapySchool of MedicineIndiana UniversityIndianapolisIN46202USA
- Department of Biostatistics and Health Data ScienceSchool of MedicineIndiana UniversityIndianapolisIN46202USA
- Department of Biochemistry and Molecular BiologyMcGovern Medical School at The University of Texas Health Science Center at HoustonHoustonTX77030USA
| |
Collapse
|
3
|
Marchese M, Bernardi S, Ogi A, Licitra R, Silvi G, Mero S, Galatolo D, Gammaldi N, Doccini S, Ratto GM, Rapposelli S, Neuhauss SCF, Zang J, Rocchiccioli S, Michelucci E, Ceccherini E, Santorelli FM. Targeting autophagy impairment improves the phenotype of a novel CLN8 zebrafish model. Neurobiol Dis 2024; 197:106536. [PMID: 38763444 PMCID: PMC11163972 DOI: 10.1016/j.nbd.2024.106536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024] Open
Abstract
CLN8 is an endoplasmic reticulum cargo receptor and a regulator of lysosome biogenesis whose loss of function leads to neuronal ceroid lipofuscinosis. CLN8 has been linked to autophagy and lipid metabolism, but much remains to be learned, and there are no therapies acting on the molecular signatures in this disorder. The present study aims to characterize the molecular pathways involved in CLN8 disease and, by pinpointing altered ones, to identify potential therapies. To bridge the gap between cell and mammalian models, we generated a new zebrafish model of CLN8 deficiency, which recapitulates the pathological features of the disease. We observed, for the first time, that CLN8 dysfunction impairs autophagy. Using autophagy modulators, we showed that trehalose and SG2 are able to attenuate the pathological phenotype in mutant larvae, confirming autophagy impairment as a secondary event in disease progression. Overall, our successful modeling of CLN8 defects in zebrafish highlights this novel in vivo model's strong potential as an instrument for exploring the role of CLN8 dysfunction in cellular pathways, with a view to identifying small molecules to treat this rare disease.
Collapse
Affiliation(s)
- Maria Marchese
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy.
| | - Sara Bernardi
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | - Asahi Ogi
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Rosario Licitra
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Giada Silvi
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Serena Mero
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Daniele Galatolo
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Nicola Gammaldi
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Stefano Doccini
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Gian Michele Ratto
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore, Pisa, Italy
| | | | - Stephan C F Neuhauss
- University of Zurich, Department of Molecular Life Sciences, Zurich, Switzerland
| | - Jingjing Zang
- University of Zurich, Department of Molecular Life Sciences, Zurich, Switzerland
| | | | - Elena Michelucci
- Institute of Clinical Physiology, National Research Council, Pisa, Italy; Institute of Chemistry of Organometallic Compounds, National Research Council, Pisa, Italy
| | - Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Filippo M Santorelli
- Department of Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy.
| |
Collapse
|
4
|
Strippoli R, Niayesh-Mehr R, Adelipour M, Khosravi A, Cordani M, Zarrabi A, Allameh A. Contribution of Autophagy to Epithelial Mesenchymal Transition Induction during Cancer Progression. Cancers (Basel) 2024; 16:807. [PMID: 38398197 PMCID: PMC10886827 DOI: 10.3390/cancers16040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial Mesenchymal Transition (EMT) is a dedifferentiation process implicated in many physio-pathological conditions including tumor transformation. EMT is regulated by several extracellular mediators and under certain conditions it can be reversible. Autophagy is a conserved catabolic process in which intracellular components such as protein/DNA aggregates and abnormal organelles are degraded in specific lysosomes. In cancer, autophagy plays a controversial role, acting in different conditions as both a tumor suppressor and a tumor-promoting mechanism. Experimental evidence shows that deep interrelations exist between EMT and autophagy-related pathways. Although this interplay has already been analyzed in previous studies, understanding mechanisms and the translational implications of autophagy/EMT need further study. The role of autophagy in EMT is not limited to morphological changes, but activation of autophagy could be important to DNA repair/damage system, cell adhesion molecules, and cell proliferation and differentiation processes. Based on this, both autophagy and EMT and related pathways are now considered as targets for cancer therapy. In this review article, the contribution of autophagy to EMT and progression of cancer is discussed. This article also describes the multiple connections between EMT and autophagy and their implication in cancer treatment.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, I.R.C.C.S., 00149 Rome, Italy
| | - Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| | - Maryam Adelipour
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran;
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain;
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| |
Collapse
|
5
|
Wei Z, Fang Y, Shi W, Chu Z, Zhao B. Transcriptional Modulation Reveals Physiological Responses to Temperature Adaptation in Acrossocheilus fasciatus. Int J Mol Sci 2023; 24:11622. [PMID: 37511383 PMCID: PMC10380296 DOI: 10.3390/ijms241411622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
In order to explore the molecular regulatory mechanism of temperature acclimation under long-term temperature stress in Acrossocheilus fasciatus, this study used high-throughput sequencing technology to analyze 60 days of breeding under five temperature conditions (12 °C, 16 °C, 20 °C, 24 °C, 28 °C). Compared with 20 °C, 9202, 4959 differentially expressed genes (DEGs) were discovered in low-temperature groups (12 °C, 16 °C), whereas 133 and 878 DEGs were discovered in high-temperature groups (24 °C, 28 °C), respectively. The KEGG functional enrichment analysis revealed that DEGs were primarily enriched in tight junction, PI3 K-Akt signaling pathway and protein digestion and absorption in low-temperature groups, and mainly enriched in proximal tubule bicarbonate reclamation, protein digestion and absorption, and HIF-1 signaling pathway in high-temperature groups. The viability of transcriptome sequencing-based screening of DEGs for temperature adaptation in A. fasciatus was shown by the selection of eight DEGs for further validation by quantitative real-time PCR (qRT-PCR), the findings of which were consistent with the RNA-seq data. According to the findings, protein digestion and absorption were primarily regulated by temperature variations, physiological stress was a significant regulator in regulation under high-temperature stress, and the immune system was a significant regulator in regulation under low-temperature stress. The transcriptional patterns of A. fasciatus under temperature stress are revealed in this study. This knowledge is crucial for understanding how A. fasciatus adapts to temperature and can help us better comprehend the environmental difficulties that A. fasciatus adaptation faces.
Collapse
Affiliation(s)
- Zhenzhu Wei
- College of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yi Fang
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Wei Shi
- College of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhangjie Chu
- College of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bo Zhao
- College of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
6
|
Koustas E, Trifylli EM, Sarantis P, Papadopoulos N, Papanikolopoulos K, Aloizos G, Damaskos C, Garmpis N, Garmpi A, Matthaios D, Karamouzis MV. Exploiting Autophagy-Dependent Neoantigen Presentation in Tumor Microenvironment. Genes (Basel) 2023; 14:474. [PMID: 36833401 PMCID: PMC9956312 DOI: 10.3390/genes14020474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Autophagy constitutes a well-known homeostatic and catabolic process that is responsible for degradation and recycling of cellular components. It is a key regulatory mechanism for several cellular functions, whereas its dysregulation is associated with tumorigenesis, tumor-stroma interactions and resistance to cancer therapy. A growing body of evidence has proven that autophagy affects the tumor microenvironment, while it is also considered a key factor for function of several immune cells, such as APCs, T-cells, and macrophages. Moreover, it is implicated in presentation of neo-antigens of tumor cells in both MHC-I and MHC-II in dendritic cells (DCs) in functional activity of immune cells by creating T-cell memory, as well as in cross-presentation of neo-antigens for MHC-I presentation and the internalization process. Currently, autophagy has a crucial role in immunotherapy. Emergence of cancer immunotherapy has already shown some remarkable results, having changed therapeutic strategy in clinical practice for several cancer types. Despite these promising long-term responses, several patients seem to lack the ability to respond to immune checkpoint inhibitors. Thus, autophagy through neo-antigen presentation is a potential target in order to strengthen or attenuate the effects of immunotherapy against different types of cancer. This review will shed light on the recent advances and future directions of autophagy-dependent neo-antigen presentation and consequently its role in immunotherapy for malignant tumors.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Eleni-Myrto Trifylli
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Papadopoulos
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | | | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Christos Damaskos
- ‘N.S. Christeas’ Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Renal Transplantation Unit, ‘Laiko’ General Hospital, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propaedeutic Surgery, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Michalis V. Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
7
|
Al-Bari AA. Inhibition of autolysosomes by repurposing drugs as a promising therapeutic strategy for the treatment of cancers. ALL LIFE 2022; 15:568-601. [DOI: 10.1080/26895293.2022.2078894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022] Open
Affiliation(s)
- Abdul Alim Al-Bari
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
8
|
Zhu S, Liu J, Zhao J, Zhou B, Zhang Y, Wang H. HIF-1α-mediated autophagy and canonical Wnt/β-catenin signalling activation are involved in fluoride-induced osteosclerosis in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120396. [PMID: 36220573 DOI: 10.1016/j.envpol.2022.120396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Fluoride (F) exposure can cause osteosclerosis, which is characterised by a high bone mass, but its mechanism is not fully illustrated. Here, we aimed to evaluate the effects of excessive F exposure on the bone lesion by treating female Sprague-Dawley rats with different concentrations of sodium fluoride (NaF) (0, 55, 110 and 221 mg/L) for 90 days and the corresponding concentrations of fluorine ion (0, 25, 50 and 100 mg/L, respectively). Histopathological results showed that excessive F exposure caused the enlargement of trabeculae and their integration into one large piece, growth plate thickening, articular cartilage impairment and bone collagen abnormality. Meanwhile, F promoted calcium deposition and bone mineralisation, and induced abnormal osteogenesis increased. The results of micro-computed tomography also confirmed that excessive F destroyed the bone microstructure and induced a high-bone-mass phenotype, consistent with the results of pathomorphology. Mechanistically, excessive amounts of F led to angiogenesis inhibition and HIF-1α signalling enhancement. Subsequently, F induced autophagy and canonical Wnt/β-catenin signalling pathway activation. Collectively, these results manifested that F enhanced the hypoxia inducible factor-1α signalling, which in turn triggered autophagy and canonical Wnt/β-catenin signalling activation, ultimately leading to osteosclerosis in the rats.
Collapse
Affiliation(s)
- Shiquan Zhu
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Jing Liu
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Bianhua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Yuling Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Hongwei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
9
|
Bui BP, Nguyen PL, Lee K, Cho J. Hypoxia-Inducible Factor-1: A Novel Therapeutic Target for the Management of Cancer, Drug Resistance, and Cancer-Related Pain. Cancers (Basel) 2022; 14:cancers14246054. [PMID: 36551540 PMCID: PMC9775408 DOI: 10.3390/cancers14246054] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates the transcription of many genes that are responsible for the adaptation and survival of tumor cells in hypoxic environments. Over the past few decades, tremendous efforts have been made to comprehensively understand the role of HIF-1 in tumor progression. Based on the pivotal roles of HIF-1 in tumor biology, many HIF-1 inhibitors interrupting expression, stabilization, DNA binding properties, or transcriptional activity have been identified as potential therapeutic agents for various cancers, yet none of these inhibitors have yet been successfully translated into clinically available cancer treatments. In this review, we briefly introduce the regulation of the HIF-1 pathway and summarize its roles in tumor cell proliferation, angiogenesis, and metastasis. In addition, we explore the implications of HIF-1 in the development of drug resistance and cancer-related pain: the most commonly encountered obstacles during conventional anticancer therapies. Finally, the current status of HIF-1 inhibitors in clinical trials and their perspectives are highlighted, along with their modes of action. This review provides new insights into novel anticancer drug development targeting HIF-1. HIF-1 inhibitors may be promising combinational therapeutic interventions to improve the efficacy of current cancer treatments and reduce drug resistance and cancer-related pain.
Collapse
|
10
|
Troumpoukis D, Papadimitropoulou A, Charalampous C, Kogionou P, Palamaris K, Sarantis P, Serafimidis I. Targeting autophagy in pancreatic cancer: The cancer stem cell perspective. Front Oncol 2022; 12:1049436. [PMID: 36505808 PMCID: PMC9730023 DOI: 10.3389/fonc.2022.1049436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer is currently the seventh leading cause of cancer-related deaths worldwide, with the estimated death toll approaching half a million annually. Pancreatic ductal adenocarcinoma (PDAC) is the most common (>90% of cases) and most aggressive form of pancreatic cancer, with extremely poor prognosis and very low survival rates. PDAC is initiated by genetic alterations, usually in the oncogene KRAS and tumor suppressors CDKN2A, TP53 and SMAD4, which in turn affect a number of downstream signaling pathways that regulate important cellular processes. One of the processes critically altered is autophagy, the mechanism by which cells clear away and recycle impaired or dysfunctional organelles, protein aggregates and other unwanted components, in order to achieve homeostasis. Autophagy plays conflicting roles in PDAC and has been shown to act both as a positive effector, promoting the survival of pancreatic tumor-initiating cells, and as a negative effector, increasing cytotoxicity in uncontrollably expanding cells. Recent findings have highlighted the importance of cancer stem cells in PDAC initiation, progression and metastasis. Pancreatic cancer stem cells (PaCSCs) comprise a small subpopulation of the pancreatic tumor, characterized by cellular plasticity and the ability to self-renew, and autophagy has been recognised as a key process in PaCSC maintenance and function, simultaneously suggesting new strategies to achieve their selective elimination. In this review we evaluate recent literature that links autophagy with PaCSCs and PDAC, focusing our discussion on the therapeutic implications of pharmacologically targeting autophagy in PaCSCs, as a means to treat PDAC.
Collapse
Affiliation(s)
- Dimitrios Troumpoukis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Chrysanthi Charalampous
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Paraskevi Kogionou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kostas Palamaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Serafimidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece,*Correspondence: Ioannis Serafimidis,
| |
Collapse
|
11
|
Blasiak J, Kaarniranta K. Secretory autophagy: a turn key for understanding AMD pathology and developing new therapeutic targets? Expert Opin Ther Targets 2022; 26:883-895. [PMID: 36529978 DOI: 10.1080/14728222.2022.2157260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is an eye disease leading to vision loss with poorly known pathogenesis and limited therapeutic options. Degradative autophagy (DA) is impaired in AMD, but emerging evidence points to secretary autophagy (SA) as a key element in AMD pathogenesis. AREAS COVERED SA may cause the release of proteins and protein aggregates, lipofuscin, beta amyloid, faulty mitochondria, pro-inflammatory and pro-angiogenic factors from the retinal pigment epithelium (RPE) that may contribute to drusen formation and choroidal neovascularization. SA may replace DA, when formation of autolysosome is impaired, and then a harmful cargo, instead of being degraded, is extruded from the RPE contributing to drusen and/or angiogenic environment. Therefore, the interplay between DA and SA may be critical for drusen formation and choroidal neovascularization, so it can be a turn key to understand AMD pathogenesis. EXPERT OPINION Although SA fulfills some beneficial functions, it is detrimental for the retina in many cases. Therefore, inhibiting SA may be a therapeutic strategy in AMD, but it is challenged by the development of selective SA inhibitors that would not affect DA. The TRIM16, SEC22B and RAB8A proteins, specific for secretory autophagosome, may be primary candidates as therapeutic targets, but their action is not limited to autophagy and therefore requires further studies.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
12
|
Salminen A. Mutual antagonism between aryl hydrocarbon receptor and hypoxia-inducible factor-1α (AhR/HIF-1α) signaling: Impact on the aging process. Cell Signal 2022; 99:110445. [PMID: 35988806 DOI: 10.1016/j.cellsig.2022.110445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
The ambient oxygen level, many environmental toxins, and the rays of ultraviolet light (UV) provide a significant risk for the maintenance of organismal homeostasis. The aryl hydrocarbon receptors (AhR) represent a complex sensor system not only for environmental toxins and UV radiation but also for many endogenous ligands, e.g., L-tryptophan metabolites. The AhR signaling system is evolutionarily conserved and AhR homologs existed as many as 600 million years ago. The ancient atmosphere demanded the evolution of an oxygen-sensing system, i.e., hypoxia-inducible transcription factors (HIF) and their prolyl hydroxylase regulators (PHD). Given that both signaling systems have important roles in embryogenesis, it seems that they have been involved in the evolution of multicellular organisms. The evolutionary origin of the aging process is unknown although it is most likely associated with the evolution of multicellularity. Intriguingly, there is compelling evidence that while HIF-1α signaling extends the lifespan, that of AhR promotes many age-related degenerative processes, e.g., it increases oxidative stress, inhibits autophagy, promotes cellular senescence, and aggravates extracellular matrix degeneration. In contrast, HIF-1α signaling stimulates autophagy, inhibits cellular senescence, and enhances cell proliferation. Interestingly, there is a clear antagonism between the AhR and HIF-1α signaling pathways. For instance, (i) AhR and HIF-1α factors heterodimerize with the same factor, ARNT/HIF-1β, leading to their competition for DNA-binding, (ii) AhR and HIF-1α signaling exert antagonistic effects on autophagy, and (iii) co-chaperone p23 exhibits specific functions in the signaling of AhR and HIF-1α factors. One might speculate that it is the competition between the AhR and HIF-1α signaling pathways that is a driving force in the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
13
|
Modulating the Siah2-PHD3-HIF1α axis and/or autophagy potentially retard colon cancer proliferation possibly, due to the damping of colon cancer stem cells. Biomed Pharmacother 2022; 154:113562. [PMID: 35994813 DOI: 10.1016/j.biopha.2022.113562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hypoxic microenvironment of colon cancer is associated with HIF-1α upregulation. HIF-1α response elements are responsible for autophagy induction that promotes tumor proliferation. Moreover, HIF-1α induces tumor cell proliferation via maintaining cancer stem cells (CSCs) survival. Siah2 is E3 ubiquitin ligase that indirectly stabilizes HIF-1α. We hypothesized that dual inhibition of Siah2 as well as autophagy could be a promising approach that may inhibit CSCs growth. AIM OF THE WORK This study investigated the possible effect of vitamin K3 as a Siah2 inhibitor and hydroxychloroquine as an autophagy inhibitor in colon cancer management. The effect (if any) of these agents on CSCs growth will be also manipulated. METHODS Colon cancer was induced by dimethylhydrazine. MDA and GSH were selected as oxidative stress markers, Expression of HIF-1α, Caspase-3, VEGF, MMP-9, EpCAM, SCF, and CA19.9 were assayed using immunoassay. The Western blot technique was used to assess LC3Ⅰ, CD44, and CD133 whereas RT-PCR was used to investigate PHD3 and CD44 in colon tissues. Additionally, Ki-67 and Siah2 were detected immunohistochemically. RESULTS vitamin K3 and hydroxychloroquine either alone or in combination downregulated the expression of Siah2 and HIF-1α through upregulating PHD3 in colon tissues. This combination significantly downregulated MDA, Ki-67, VEGF, and MMP-9 expression and upregulated the expression of GSH and caspase-3. LC3Ⅰ was also upregulated. Interestingly, these therapeutic options were correlated with down-regulation of the cancer stem cell marker such as CD44 and EpCAM. CONCLUSION Our results suggested that suppression of both Siah2-PHD3-HIF-1α axis and autophagy retard colon cancer proliferation and dampened CSCs.
Collapse
|
14
|
Zhou S, Sun X, Jin Z, Yang H, Ye W. The role of autophagy in initiation, progression, TME modification, diagnosis, and treatment of esophageal cancers. Crit Rev Oncol Hematol 2022; 175:103702. [PMID: 35577254 DOI: 10.1016/j.critrevonc.2022.103702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022] Open
Abstract
Autophagy is a highly conserved metabolic process with a cytoprotective function. Autophagy is involved in cancer, infection, immunity, and inflammation and may be a potential therapeutic target. Increasing evidence has revealed that autophagy has primary implications for esophageal cancer, including its initiation, progression, tumor microenvironment (TME) modification, diagnosis, and treatment. Notably, autophagy displayed excellent application potential in radiotherapy combined with immunotherapy. Radiotherapy combined with immunotherapy is a new potential therapeutic strategy for cancers, including esophageal cancer. Autophagy modulators can work as adjuvant enhancers in radiotherapy or immunotherapy of cancers. This review highlights the most recent data related to the role of autophagy regulation in esophageal cancer.
Collapse
Affiliation(s)
- Suna Zhou
- Department of Radiation Oncology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China; Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, P.R. China; Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, P.R. China
| | - Xuefeng Sun
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, P.R. China; Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, P.R. China
| | - Zhicheng Jin
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, P.R. China; Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, P.R. China
| | - Haihua Yang
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, P.R. China; Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, P.R. China; Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, P.R. China
| | - Wenguang Ye
- Department of Gastroenterology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.
| |
Collapse
|
15
|
Autophagy and EMT in cancer and metastasis: Who controls whom? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166431. [PMID: 35533903 DOI: 10.1016/j.bbadis.2022.166431] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
Abstract
Metastasis consists of hallmark events, including Epithelial-Mesenchymal Transition (EMT), angiogenesis, initiation of inflammatory tumor microenvironment, and malfunctions in apoptosis. Autophagy is known to play a pivotal role in the metastatic process. Autophagy has pulled researchers towards it in recent times because of its dual role in the maintenance of cancer cells. Evidence states that cells undergoing EMT need autophagy in order to survive during migration and dissemination. Additionally, it orchestrates EMT markers in certain cancers. On the other side of the coin, autophagy plays an oncosuppressive role in impeding early metastasis. This review aims to project the interrelationship between autophagy and EMT. Targeting EMT via autophagy as a useful strategy is discussed in this review. Furthermore, for the first time, we have covered the possible reciprocating roles of EMT and autophagy and its consequences in cancer metastasis.
Collapse
|
16
|
Gayan S, Teli A, Nair A, Tomar G, Dey T. Macro- and micro-nutrient-based multiplex stress conditions modulate in vitro tumorigenesis and aggressive behavior of breast cancer spheroids. IN VITRO MODELS 2022; 1:85-101. [PMID: 39872971 PMCID: PMC11756478 DOI: 10.1007/s44164-021-00006-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 01/30/2025]
Abstract
Purpose The aggressive nature of a tumor is presumably its inherent one, but different environmental cues can manipulate it in many ways. In this context, the influence of metabolic stresses on tumor behavior needs to be analyzed to understand their far-reaching implications on tumor aggression and dormancy. This work investigates different facets of the tumor, such as tumorigenic capacity, tumor phenotype, and migration, under multiple metabolic stress conditions. Methods Non-invasive and invasive multicellular spheroids (MTS) were created and subjected to multiple stress conditions, namely glucose, amino acid, and oxygen deprivation. Altered behavior of the MTS has been evaluated in the context of in vitro tumorigenesis, spheroid formation capacity, phenotype, mRNA profile, migration, and recruitment of mesenchymal stem cells. Results The metabolic stress conditions were observed to negatively impact the in vitro tumorigenesis and spheroid formation process of invasive and non-invasive breast cancer cells. While the stress seemingly influences the growth and phenotype of spheroids, it does not alter the organization of sub-cellular entities significantly. Metabolic stress conditions impact the transcriptomic landscape of hypoxic, angiogenic, ECM deformation, glycolysis shift, and protein starvation-related gene clusters. MTSs do not adhere or migrate under stress, but they exhibit different modalities of migration when rescued. Invasive spheroids, after the rescue, exhibit increased aggressiveness. Furthermore, stressed spheroid was observed to control the migration and recruitment of mesenchymal stem cells. Conclusion Multiplex metabolic stresses could control the tumorigenesis while influencing the physiology of invasive and non-invasive breast cancer spheroids along with their migration pattern and tumor-stromal crosstalk. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-021-00006-5.
Collapse
Affiliation(s)
- Sukanya Gayan
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Abhishek Teli
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Anish Nair
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Geetanjali Tomar
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Tuli Dey
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
17
|
Morsi AA, Fouad H, Alasmari WA, Faruk EM. The biomechanistic aspects of renal cortical injury induced by diesel exhaust particles in rats and the renoprotective contribution of quercetin pretreatment: Histological and biochemical study. ENVIRONMENTAL TOXICOLOGY 2022; 37:310-321. [PMID: 34751495 DOI: 10.1002/tox.23399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/27/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Although several studies have reported a toxic effect of diesel exhaust particles (DEP) exposure on the kidney tissues, the involvement of autophagy/NF-kB signaling as encountered mechanisms and the protective effects of a natural flavonoid, quercetin on DEP remains unclear. Thirty-two albino rats were divided as control, quercetin-treated (60 mg/kg, oral), DEP-exposed (0.5 mg/kg, intra-tracheal), and quercetin/DEP-exposed groups. Specimens of the renal cortex were subjected to histo-biochemical study and immunohistochemical analysis using anti-NF-kB, and anti-LC3β antibodies followed by morphometric and statistical analyses. The expression level of autophagy genes was quantitatively evaluated using RT-PCR, as well. The DEP-exposed rats showed an elevation in the renal tissue levels of MDA and a decrease in the catalase and superoxide dismutase (p < .05). Histologically, there were cytoplasmic vacuolar changes in the lining cells of the renal tubules, glomerular atrophy, and vascular congestion. In addition, renal inflammation was evident as confirmed by the increased NF-kB immunoexpression. Moreover, the gene expression of Becn1, ATG5, and LC3β increased (p <. 0) due to DEP exposure. Conversely, quercetin pretreatment improved these renal histo-biochemical alterations (p < .05) and regulated autophagy/NF-kB pathways. Overall, the study proved the renal toxicity mediated by DEP exposure via precipitating renal inflammation, autophagy activation, and oxidative stress. Quercetin pretreatment could antagonize such machinery to protect the kidney against DEP.
Collapse
Affiliation(s)
- Ahmed A Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Hanan Fouad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Galala University, Faculty of Medicine, Suez Governorate, Egypt
| | | | - Eman Mohamed Faruk
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
- Department of Histology and Cytology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
18
|
Waibl Polania J, Lerner EC, Wilkinson DS, Hoyt-Miggelbrink A, Fecci PE. Pushing Past the Blockade: Advancements in T Cell-Based Cancer Immunotherapies. Front Immunol 2021; 12:777073. [PMID: 34868044 PMCID: PMC8636733 DOI: 10.3389/fimmu.2021.777073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
Successful cancer immunotherapies rely on a replete and functional immune compartment. Within the immune compartment, T cells are often the effector arm of immune-based strategies due to their potent cytotoxic capabilities. However, many tumors have evolved a variety of mechanisms to evade T cell-mediated killing. Thus, while many T cell-based immunotherapies, such as immune checkpoint inhibition (ICI) and chimeric antigen receptor (CAR) T cells, have achieved considerable success in some solid cancers and hematological malignancies, these therapies often fail in solid tumors due to tumor-imposed T cell dysfunctions. These dysfunctional mechanisms broadly include reduced T cell access into and identification of tumors, as well as an overall immunosuppressive tumor microenvironment that elicits T cell exhaustion. Therefore, novel, rational approaches are necessary to overcome the barriers to T cell function elicited by solid tumors. In this review, we will provide an overview of conventional immunotherapeutic strategies and the various barriers to T cell anti-tumor function encountered in solid tumors that lead to resistance. We will also explore a sampling of emerging strategies specifically aimed to bypass these tumor-imposed boundaries to T cell-based immunotherapies.
Collapse
Affiliation(s)
| | - Emily C Lerner
- Duke Medical School, Duke University Medical Center, Durham, NC, United States
| | - Daniel S Wilkinson
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | | | - Peter E Fecci
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
19
|
Xiong M, Hu W, Tan Y, Yu H, Zhang Q, Zhao C, Yi Y, Wang Y, Wu Y, Wu M. Transcription Factor E2F1 Knockout Promotes Mice White Adipose Tissue Browning Through Autophagy Inhibition. Front Physiol 2021; 12:748040. [PMID: 34819874 PMCID: PMC8606532 DOI: 10.3389/fphys.2021.748040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022] Open
Abstract
Obesity is associated with energy metabolic disturbance and is caused by long-term excessive energy storage in white adipose tissue (WAT). The WAT browning potentially reduces excessive energy accumulation, contributing an attractive target to combat obesity. As a pivotal regulator of cell growth, the transcription factor E2F1 activity dysregulation leads to metabolic complications. The regulatory effect and underlying mechanism of E2F1 knockout on WAT browning, have not been fully elucidated. To address this issue, in this study, the in vivo adipose morphology, mitochondria quantities, uncoupling protein 1 (UCP-1), autophagy-related genes in WAT of wild-type (WT) and E2F1–/– mice were detected. Furthermore, we evaluated the UCP-1, and autophagy-related gene expression in WT and E2F1–/– adipocyte in vitro. The results demonstrated that E2F1 knockout could increase mitochondria and UCP-1 expression in WAT through autophagy suppression in mice, thus promoting WAT browning. Besides, adipocytes lacking E2F1 showed upregulated UCP-1 and downregulated autophagy-related genes expression in vitro. These results verified that E2F1 knockout exerted effects on inducing mice WAT browning through autophagy inhibition in vivo and in vitro. These findings regarding the molecular mechanism of E2F1-modulated autophagy in controlling WAT plasticity, provide a novel insight into the functional network with the potential therapeutic application against obesity.
Collapse
Affiliation(s)
- Mingchen Xiong
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honghao Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yi
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichen Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Hino Y, Rahman MM, Lai YC, Husna AA, Chen HW, Hasan MN, Nakagawa T, Miura N. Hypoxic miRNAs expression are different between primary and metastatic melanoma cells. Gene 2021; 782:145552. [PMID: 33705812 DOI: 10.1016/j.gene.2021.145552] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) can rapidly respond to cellular stresses, such as hypoxia. This immediate miRNA response regulates numerous genes and influences multiple signaling pathways. Therefore, identifying hypoxia-regulated miRNAs (HRMs) is important in canine oral melanoma (COM) to investigate their clinical significance. The hypoxic and normoxic miRNA profiles of two COM cell lines were investigated by next generation sequencing. HRMs were identified by comparing miRNA expression profiles in these cell lines with that in COM tissue. The HRM profile was different between cell lines of primary and metastatic origin, except for miR-301a and miR-8884. The time course of miRNA expression determined by qRT-PCR, especially for miR-210 and miR-301a, showed that metastatic cells are more resistant to hypoxia than primary cells. Analysis of an experimentally validated human miRNA target database revealed that miR-21 and miR-301a control a complex gene regulatory network in response to hypoxia, which includes pathways of well-known oncogenes, such as VEGF, PTEN, and TGFBR2. In conclusions, we revealed the HRM of COM. Moreover, our study shows the difference in regulation and response of hypoxic miRNAs between primary and metastatic originated melanoma cells.
Collapse
Affiliation(s)
- Yasunori Hino
- Clinical Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Kagoshima 890-0065, Japan
| | - Md Mahfuzur Rahman
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Yu-Chang Lai
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Al Asmaul Husna
- Clinical Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Kagoshima 890-0065, Japan.
| | - Hui-Wen Chen
- Clinical Veterinary Science, Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Md Nazmul Hasan
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Takayuki Nakagawa
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Naoki Miura
- Clinical Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Kagoshima 890-0065, Japan; Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; Clinical Veterinary Science, Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan.
| |
Collapse
|
21
|
Al-Bari MAA, Xu P. Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways. Ann N Y Acad Sci 2020; 1467:3-20. [PMID: 31985829 DOI: 10.1111/nyas.14305] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/23/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Abstract
Macroautophagy is a lysosomal degradative pathway or recycling process that maintains cellular homeostasis. This autophagy involves a series of sequential processing events, such as initiation; elongation and nucleation of the isolation membrane; cargo recruitment and maturation of the autophagosome (AP); transport of the AP; docking and fusion of the AP with a late endosome or lysosome; and regeneration of the lysosome by the autophagic lysosomal reformation cycle. These events are critically coordinated by the action of a set of several key components, including autophagy-related proteins (Atg), and regulated by intricate networks, such as mechanistic target of rapamycin (mTOR), a master regulator of autophagy, as well as mTOR-independent signaling pathways. Among mTOR-independent pathways, the transient receptor potential (TRP) calcium ion channel TRPML (mucolipin) subfamily is emerging as an important signaling channel to modulate lysosomal biogenesis and autophagy. This review discusses the recent advances in elucidating the molecular mechanisms and regulation of the autophagy process. Understanding these mechanisms may ultimately allow scientists and clinicians to control this process in order to improve human health.
Collapse
Affiliation(s)
| | - Pingyong Xu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Packer M. Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors. J Am Soc Nephrol 2020; 31:907-919. [PMID: 32276962 DOI: 10.1681/asn.2020010010] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Growing evidence indicates that oxidative and endoplasmic reticular stress, which trigger changes in ion channels and inflammatory pathways that may undermine cellular homeostasis and survival, are critical determinants of injury in the diabetic kidney. Cells are normally able to mitigate these cellular stresses by maintaining high levels of autophagy, an intracellular lysosome-dependent degradative pathway that clears the cytoplasm of dysfunctional organelles. However, the capacity for autophagy in both podocytes and renal tubular cells is markedly impaired in type 2 diabetes, and this deficiency contributes importantly to the intensity of renal injury. The primary drivers of autophagy in states of nutrient and oxygen deprivation-sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), and hypoxia-inducible factors (HIF-1α and HIF-2α)-can exert renoprotective effects by promoting autophagic flux and by exerting direct effects on sodium transport and inflammasome activation. Type 2 diabetes is characterized by marked suppression of SIRT1 and AMPK, leading to a diminution in autophagic flux in glomerular podocytes and renal tubules and markedly increasing their susceptibility to renal injury. Importantly, because insulin acts to depress autophagic flux, these derangements in nutrient deprivation signaling are not ameliorated by antihyperglycemic drugs that enhance insulin secretion or signaling. Metformin is an established AMPK agonist that can promote autophagy, but its effects on the course of CKD have been demonstrated only in the experimental setting. In contrast, the effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors may be related primarily to enhanced SIRT1 and HIF-2α signaling; this can explain the effects of SGLT2 inhibitors to promote ketonemia and erythrocytosis and potentially underlies their actions to increase autophagy and mute inflammation in the diabetic kidney. These distinctions may contribute importantly to the consistent benefit of SGLT2 inhibitors to slow the deterioration in glomerular function and reduce the risk of ESKD in large-scale randomized clinical trials of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas .,Imperial College, London, United Kingdom
| |
Collapse
|
23
|
Chang X, Dong R. Transcriptional regulation of autophagy-lysosomal pathway in cancer. Thorac Cancer 2020; 11:216-223. [PMID: 31912667 PMCID: PMC6996975 DOI: 10.1111/1759-7714.13287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 12/15/2022] Open
Abstract
The transcriptional regulation of autophagy‐lysosomal pathway adapts to cellular stress and enables advanced cancer cells survive. This pathway plays an oncopromoting or oncosuppressing role, depending on context‐dependent stresses and treatment resistance. It remains controversial whether this pathway represents a target for drugs, although autophagy‐lysosomal inducers and inhibitors have been tested in clinical trials for cancer treatment. Therefore, identifying the transcriptional regulators of autophagy‐lysosomal pathway may lead to the development of effective cancer treatment and the improvement of the existing targeted cancer therapies. In this review, we summarize findings from several published studies on transcriptional regulation of autophagy‐lysosomal pathway in cancer biology, and evaluate its functional role as a therapeutic target.
Collapse
Affiliation(s)
- Xinzhong Chang
- The First Surgical Department of Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ruihua Dong
- Oncology department, Weifang People's Hospital, Weifang, China
| |
Collapse
|
24
|
Zhu FX, Wang XT, Zeng HQ, Yin ZH, Ye ZZ. A predicted risk score based on the expression of 16 autophagy-related genes for multiple myeloma survival. Oncol Lett 2019; 18:5310-5324. [PMID: 31612041 PMCID: PMC6781562 DOI: 10.3892/ol.2019.10881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy has an important role in the pathogenesis of plasma cell development and multiple myeloma (MM); however, the prognostic role of autophagy-related genes (ARGs) in MM remains undefined. In the present study, the expression profiles of 234 ARGs were obtained from a Gene Expression Omnibus dataset (accession GSE24080), which contains 559 samples of patients with MM analyzed with 54,675 probes. Univariate Cox regression analysis identified 55 ARGs that were significantly associated with event-free survival of MM. Furthermore, a risk score with 16 survival-associated ARGs was developed using multivariate Cox regression analysis, including ATIC, BNIP3L, CALCOCO2, DNAJB1, DNAJB9, EIF4EBP1, EVA1A, FKBP1B, FOXO1, FOXO3, GABARAP, HIF1A, NCKAP1, PRKAR1A and SUPT20H, was constructed. Using this prognostic signature, patients with MM could be separated into high- and low-risk groups with distinct clinical outcomes. The area under the curve values for the receiver operating characteristic curves were 0.740, 0.741 and 0.712 for 3, 5 and 10 years prognosis predictions, respectively. Notably, the prognostic role of this risk score could be validated with another four independent cohorts (accessions: GSE57317, GSE4581, GSE4452 and GSE4204). In conclusion, ARGs may serve vital roles in the progression of MM, and the ARGs-based prognostic model may provide novel ideas for clinical applications in MM.
Collapse
Affiliation(s)
- Fang-Xiao Zhu
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| | - Xiao-Tao Wang
- Department of Hematology, The Second Affiliated Hospital of Guilin Medical College, Guilin, Guangxi 541001, P.R. China
| | - Hui-Qiong Zeng
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| | - Zhi-Hua Yin
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| | - Zhi-Zhong Ye
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW We discuss recent discoveries in hypoxic cellular pathophysiology and explore the interplay between hypoxic malignant cells and other stromal elements. This review will provide an update on the effects of hypoxia on cancer outcomes and therapeutic resistance. RECENT FINDINGS Hypoxia has been discovered to be a key driver for tumor progression, both because of impacts on tumor cells and separately on the wider tumor microenvironment. The latter effects occur via epithelial mesenchymal transition, autophagy and metabolic switching. Through epithelial mesenchymal transition, hypoxia both drives metastasis and renders key target tissues receptive to metastasis. Autophagy is a double-edged sword which requires greater understanding to ascertain when it is a threat. Metabolic switching allows tumor cells to access hypoxic survival mechanisms even under normoxic conditions.Every element of the malignant stroma contributes to hypoxia-driven progression. Exosomal transfer of molecules from hypoxic tumor cells to target stromal cell types and the importance of microRNAs in intercellular communication have emerged as key themes.Antiangiogenic resistance can be caused by hypoxia-driven vasculogenic mimicry. Beyond this, hypoxia contributes to resistance to virtually all oncological treatment modalities. SUMMARY Recent advances have moved us closer to being able to exploit hypoxic mechanisms to overcome hypoxia-driven progression and therapy failure.
Collapse
Affiliation(s)
- Andrew Redfern
- School of Medicine, The University of Western Australia, Perth
| | - Veenoo Agarwal
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane
- Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
26
|
Minassian LM, Cotechini T, Huitema E, Graham CH. Hypoxia-Induced Resistance to Chemotherapy in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:123-139. [PMID: 31201721 DOI: 10.1007/978-3-030-12734-3_9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A major barrier to the successful management of cancer is the development of resistance to therapy. Chemotherapy resistance can either be an intrinsic property of malignant cells developed prior to therapy, or acquired following exposure to anti-cancer drugs. Given the impact of drug resistance to the overall poor survival of cancer patients, there is an urgent need to better understand the molecular pathways regulating this malignant phenotype. In this chapter we describe some of the molecular pathways that contribute to drug resistance in cancer, the role of a microenvironment deficient in oxygen (hypoxia) in malignant progression, and how hypoxia can be a significant factor in the development of drug resistance. We conclude by proposing potential therapeutic approaches that take advantage of a hypoxic microenvironment to chemosensitize therapy-resistant tumours.
Collapse
Affiliation(s)
- Lori M Minassian
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Erin Huitema
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Charles H Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
27
|
Merkley SD, Chock CJ, Yang XO, Harris J, Castillo EF. Modulating T Cell Responses via Autophagy: The Intrinsic Influence Controlling the Function of Both Antigen-Presenting Cells and T Cells. Front Immunol 2018; 9:2914. [PMID: 30619278 PMCID: PMC6302218 DOI: 10.3389/fimmu.2018.02914] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a homeostatic and inducible process affecting multiple aspects of the immune system. This intrinsic cellular process is involved in MHC-antigen (Ag) presentation, inflammatory signaling, cytokine regulation, and cellular metabolism. In the context of T cell responses, autophagy has an influential hand in dictating responses to self and non-self by controlling extrinsic factors (e.g., MHC-Ag, cytokine production) in antigen-presenting cells (APC) and intrinsic factors (e.g., cell signaling, survival, cytokine production, and metabolism) in T cells. These attributes make autophagy an attractive therapeutic target to modulate T cell responses. In this review, we examine the impact autophagy has on T cell responses by modulating multiple aspects of APC function; the importance of autophagy in the activation, differentiation and homeostasis of T cells; and discuss how the modulation of autophagy could influence T cell responses.
Collapse
Affiliation(s)
- Seth D Merkley
- Clinical and Translational Science Center, University of New Mexico Health Sciences Albuquerque, NM, United States
| | - Cameron J Chock
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Albuquerque, NM, United States
| | - Xuexian O Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Albuquerque, NM, United States.,Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Albuquerque, NM, United States
| | - James Harris
- Rheumatology Group, Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University Clayton, VIC, Australia
| | - Eliseo F Castillo
- Clinical and Translational Science Center, University of New Mexico Health Sciences Albuquerque, NM, United States.,Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Albuquerque, NM, United States.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine Albuquerque, NM, United States
| |
Collapse
|
28
|
Rane D, Patil T, More V, Patra SS, Bodhale N, Dandapat J, Sarkar A. Neutrophils: Interplay between host defense, cellular metabolism and intracellular infection. Cytokine 2018; 112:44-51. [DOI: 10.1016/j.cyto.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022]
|
29
|
Yuan Y, Li X, Li M. Overexpression of miR‑17‑5p protects against high glucose‑induced endothelial cell injury by targeting E2F1‑mediated suppression of autophagy and promotion of apoptosis. Int J Mol Med 2018; 42:1559-1568. [PMID: 29786752 DOI: 10.3892/ijmm.2018.3697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/03/2018] [Indexed: 11/05/2022] Open
Abstract
E2 promoter binding factor 1 (E2F1) has been reported to have an important regulatory role in cell survival during hyperglycemic conditions; however, the mechanisms remain to be fully elucidated. Bioinformatics analyses have suggested that microRNA (miR)‑17‑5p targets the 3'untranslated region (3'UTR) of E2F1. The aim of the present study was to characterize the protective effect of miR‑17‑5p/E2F1 on human umbilical vein endothelial cells (HUVECs) under high glucose (HG) conditions, to confirm the regulatory effect of miR‑17‑5p on E2F1/AMP‑activated protein kinase α2 (AMPKα2)‑mediated apoptosis and E2F1/mammalian target of rapamycin complex 1 (mTORC1)‑mediated autophagy. Bifluorescein experiments were performed to characterize the interaction between miR‑17‑5p and E2F1. The Cell Counting Kit‑8 assay, flow cytometry, immunofluorescence, and reverse transcription‑quantitative polymerase chain reaction and western blot analyses were used to detect cell viability, apoptosis, autophagy, and relative mRNA and protein expression, respectively. The results showed that HG induced the downregulation of miR‑17‑5p and upregulation of E2F1 during HUVEC injury. The downregulation of E2F1 inhibited HG‑induced HUVEC dysfunction by suppressing mTORC1‑mediated inhibition of autophagy and AMPKα2‑mediated promotion of apoptosis. The results suggested that inhibiting the expression of E2F1 protected against HG‑induced HUVEC injury via the activation of autophagy. The overexpression of miR‑17‑5p inhibited E2F1‑mediated HUVEC injury under HG conditions, which was reversed following transfection with an E2F1‑overexpression vector. The bifluorescein experiments showed that miR‑17‑5p targeted the 3'UTR of E2F1. Taken together, the results suggested that the expression of miR‑17‑5p inhibited HG‑induced endothelial cell injury by targeting E2F1.
Collapse
Affiliation(s)
- Yifeng Yuan
- Department of Interventional and Vascular Surgery, Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Xue Li
- Department of Interventional and Vascular Surgery, Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
30
|
FSCN‑1 increases doxorubicin resistance in hepatocellular carcinoma through promotion of epithelial-mesenchymal transition. Int J Oncol 2018; 52:1455-1464. [PMID: 29568938 PMCID: PMC5873898 DOI: 10.3892/ijo.2018.4327] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/20/2018] [Indexed: 01/25/2023] Open
Abstract
Resistance to chemotherapy drugs remains a significant problem for the treatment of many types of cancer. Fascin-1 (FSCN-1) is an actin-bundling protein involved in the invasion and metastasis of a variety of tumors. However, its involvement in drug resistance in hepatocellular carcinoma (HCC) remains unclear. The present study aimed to investigate the function of FSCN-1 in HCC resistance to doxorubicin (DOX). FSCN-1 expression was increased in DOX-resistant HCC cell lines (SNU449 and SNU387) compared with DOX-sensitive cell lines (Huh7 and Hep3B). The resistance of HCC cells to DOX was decreased following FSCN-1 knockdown with small interfering RNA. FSCN-1 knockdown also significantly altered the expression of key markers of epithelial-mesenchymal transition (EMT). Notably, vimentin expression was reduced and epithelial-cadherin expression was increased. Furthermore, when EMT was suppressed through knockdown of Twist, an essential pathway of DOX-induced EMT, the viability of HCC cells following treatment with DOX was not affected by FSCN-1 expression. Furthermore, FSCN-1 knockdown eliminated hypoxia-induced doxorubicin resistance and EMT. The results of the present study indicated that FSCN-1 expression increased DOX resistance in HCC cells via the promotion of EMT, and this phenomenon was maintained in a hypoxic environment. FSCN-1 potentially represents a novel target to overcome resistance to DOX in HCC.
Collapse
|