1
|
Fei G, Dandan S, Haiyan W, Shuai Z, Xiaopin S, Yu H, Yi Y, Rong C, Jin H, Xiaoming S, Lei Y. Exogenous neuritin restores auditory following cochlear spiral ganglion neuron denervation of gerbils. Neurosci Res 2024; 200:8-19. [PMID: 37926219 DOI: 10.1016/j.neures.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Spiral ganglion neurons (SGNs) transmit sound signals received by hair cells to the auditory center to produce hearing. The quantity and function are important for maintaining normal hearing function. Limited by the regenerative capacity, SGNs are unable to regenerate spontaneously after injury. Various neurotrophic factors play an important role in the regeneration process. Neuritin is a neurite growth factor that plays an important role in neural plasticity and nerve injury repair. In this study, we used bioinformatics analysis to show that neuritin was negatively correlated with cochlear damage. Then, we aimed to establish a cochlear spiral ganglion-specific sensorineural deafness model in gerbils using ouabain and determine the effects of exogenous neuritin protein in protecting damaged cochlear SGNs and repairing damaged auditory nerve function. The provides a new research strategy and scientific basis for the prevention and treatment of sensorineural deafness caused by the loss of SGNs. We were discovered that neuritin is expressed throughout the development of the gerbil cochlea, primarily in the SGNs and Corti regions. The expression of neuritin was negatively correlated with the sensorineural deafness induced by ouabain. In vitro and in vivo revealed that neuritin significantly maintained the number and arrangement of SGNs and nerve fibers in the damaged cochlea and effectively protected the high-frequency listening function of gerbils.
Collapse
Affiliation(s)
- Gui Fei
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| | - Song Dandan
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China; Department of Preventive Medicine, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Wang Haiyan
- Department of Preventive Medicine, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Zhang Shuai
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China
| | - Sun Xiaopin
- Department of Preventive Medicine, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Hong Yu
- Department of Preventive Medicine, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Yang Yi
- Department of Preventive Medicine, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Chen Rong
- Department of Preventive Medicine, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Huang Jin
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| | - Song Xiaoming
- Department of Preventive Medicine, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China.
| | - Yang Lei
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| |
Collapse
|
2
|
Safrole oxide induced 5-HT neuron-like cell differentiation of bone marrow mesenchymal stem cells by elevating G9a. In Vitro Cell Dev Biol Anim 2022; 58:513-520. [PMID: 35913528 DOI: 10.1007/s11626-021-00594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/17/2021] [Indexed: 11/05/2022]
Abstract
In our previous study, we found that safrole oxide (SFO) could induce bone marrow mesenchymal stem cell differentiation into neuron-like cells. However, which kind of neuron cells was induced by SFO was unknown. Here, we found that SFO could induce BMSC differentiation into 5-hydroxytryptamine (5-HT) neuron-like cells. Microarray analysis of BMSCs treated with SFO for 6 h revealed a total of 35 genes changed more than twice. We selected G9a, a histone methyltransferase for further study. The upregulation of G9a was confirmed by RT-PCR and Western blot analysis. Small interfering RNA knockdown of G9a blocked SFO-induced BMSC differentiation. These results demonstrated that G9a was the pivotal factor in SFO-medicated 5-HT neuronal differentiation of BMSCs. Our findings provide a new clue for further investigating the gene control of BMSC differentiation into 5-HT neuron-like cells and provide a putative strategy for depression diseases therapies.
Collapse
|
3
|
Huang W, Hong Y, He W, Jiang L, Deng W, Peng B, Tang F, Shen C, Lan Q, Huang H, Zhong H, Lv J, Zeng S, Li M, OuYang Y, Liang J, Mo Z, Chen Q, Cui L, Zhang M, Xu F, Zhou Z. Cavin-1 promotes M2 macrophages/microglia polarization via SOCS3. Inflamm Res 2022; 71:397-407. [PMID: 35275225 DOI: 10.1007/s00011-022-01550-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Our study aimed to investigate the function of Cavin-1 and SOCS3 in macrophages/microglia M2 polarization and further explored the relevant mechanism. METHODS Expression levels of Cavin-1 and SOCS3 in macrophages/microglia were measured by western blotting and RT-PCR, respectively. Then, Cavin-1 or SOCS3 was gene silenced by a siRNA approach, and gene silencing efficiency was determined by western blotting. Next, co-immunoprecipitation (Co-IP) was employed to further analyze the interaction between Cavin-1 and SOCS3. Finally, the activation of STAT6/PPAR-γ signaling was evaluated using western blotting, and the M2 macrophages/microglia polarization was validated by measuring the mRNA expression of M2 markers by RT-PCR. RESULTS In the polarization process of macrophages/microglia to M2 phenotype, both Cavin-1 and SOCS3 increased synchronously at protein and mRNA level, reached the peak at the 6 h, and then decreased. After Cavin-1 or SOCS3 silencing, the expression of Cavin-1 and SOCS3 declined. These results suggested that Cavin-1 and SOCS3 were positively correlated in macrophages/microglia, and this conjecture was verified by Co-IP. Besides, Cavin-1 silencing not only suppressed the activation of STAT6/PPAR-γ pathway, but also suppressed the release of anti-inflammatory factors. Finally, we found that SOCS3 overexpression reversed the inhibitory effect of Cavin-1 silencing on the release of anti-inflammatory factors in M2 macrophages/microglia. CONCLUSIONS Cavin-1 and SOCS3 are actively involved in the process of M2 macrophages/microglia polarization. As a SOCS3 interacting protein, Cavin-1 can promote M2 macrophages/microglia polarization via SOCS3.
Collapse
Affiliation(s)
- Wei Huang
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yiyi Hong
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Wenjing He
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Li Jiang
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Wen Deng
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Biyan Peng
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Fen Tang
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Chaolan Shen
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Qianqian Lan
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Hui Huang
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Haibin Zhong
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Jian Lv
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Siming Zeng
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Min Li
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yiqiang OuYang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Jinning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Zhongxiang Mo
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Qi Chen
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Ling Cui
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Mingyuan Zhang
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Fan Xu
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| | - Zhou Zhou
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Research Center of Ophthalmology, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
4
|
Yang L, Wang X, Sun J, Liu C, Li G, Zhu J, Huang J. Neuritin promotes angiogenesis through inhibition of DLL4/Notch signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:663-672. [PMID: 33787845 DOI: 10.1093/abbs/gmab039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/28/2022] Open
Abstract
Neuritin is a member of the neurotrophic factor family, which plays an important role in the promotion and development of the nervous system. Neuritin is also involved in angiogenesis. Neuritin was recently found to be a negative regulatory factor of the Notch 1 signaling pathway. Notch signaling pathway is known as a regulatory pathway of angiogenesis. Thus, neuritin may play a role in angiogenesis through the Notch signaling pathway. In the present study, we investigated the expressions of neuritin and Notch signaling pathway factors in the pulmonary vascular tissue. The results showed that neuritin expression was increased in the paraneoplastic vascular tissue and decreased in the lung cancer vascular tissue. The neuritin expression was increased with the increase of vascular tissue density, and a negative correlation between neuritin expression and delta-like ligand 4 (DLL4) was identified in vascular tissues of lung cancer. Overexpression of neuritin in human umbilical vein endothelial cells (HUVECs) inhibited the expressions of Notch signaling pathway-associated factors, including DLL4, NICD, and Hes-1, and promoted the migration and tubular formation of HUVECs. In conclusion, our results indicated that neuritin is involved in angiogenesis and may play a role in angiogenesis through the Notch signaling pathway. This study provides a theoretical basis for clinical anti-angiogenesis therapy.
Collapse
Affiliation(s)
- Li Yang
- Department of Biochemistry and Molecular Biology, Department of Basic Medical Sciences, School of Medicine, Shihezi University, Shihezi 832000, China
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuhui Wang
- Department of Clinical Laboratory, People’s Hospital of Changji Hui Autonomous Prefecture, Changji 831118, China
| | - Jiawei Sun
- Department of Biochemistry and Molecular Biology, Department of Basic Medical Sciences, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Chunyan Liu
- Department of Biochemistry and Molecular Biology, Department of Basic Medical Sciences, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Guoxiang Li
- Department of Biochemistry and Molecular Biology, Department of Basic Medical Sciences, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Jingling Zhu
- Department of Biochemistry and Molecular Biology, Department of Basic Medical Sciences, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Jin Huang
- Department of Biochemistry and Molecular Biology, Department of Basic Medical Sciences, School of Medicine, Shihezi University, Shihezi 832000, China
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Neuritin-overexpressing transgenic mice demonstrate enhanced neuroregeneration capacity and improved spatial learning and memory recovery after ischemia-reperfusion injury. Aging (Albany NY) 2020; 13:2681-2699. [PMID: 33323541 PMCID: PMC7880330 DOI: 10.18632/aging.202318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/01/2020] [Indexed: 02/01/2023]
Abstract
Acute ischemia-reperfusion (IR)-induced brain injury is further exacerbated by a series of slower secondary pathogenic events, including delayed apoptosis due to neurotrophic factor deficiency. Neuritin, a neurotrophic factor regulating nervous system development and plasticity, is a potential therapeutic target for treatment of IR injury. In this study, Neuritin-overexpressing transgenic (Tg) mice were produced by pronuclear injection and offspring with high overexpression used to generate a line with stable inheritance for testing the neuroprotective capacity of Neuritin against transient global ischemia (TGI). Compared to wild-type mice, transgenic mice demonstrated reduced degradation of the DNA repair factor poly [ADP-ribose] polymerase 1 (PARP 1) in the hippocampus, indicating decreased hippocampal apoptosis rate, and a greater number of surviving hippocampal neurons during the first week post-TGI. In addition, Tg mice showed increased expression of the regeneration markers NF-200, synaptophysin, and GAP-43, and improved recovery of spatial learning and memory. Our findings exhibited that the window of opportunity of neural recovery in Neuritin transgenic mice group had a tendency to move ahead after TGI, which indicated that Neuritin can be used as a potential new therapeutic strategy for improving the outcome of cerebral ischemia injury.
Collapse
|
6
|
Choudhary P, Gupta A, Singh S. Therapeutic Advancement in Neuronal Transdifferentiation of Mesenchymal Stromal Cells for Neurological Disorders. J Mol Neurosci 2020; 71:889-901. [PMID: 33047251 DOI: 10.1007/s12031-020-01714-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders have become the leading cause of chronic pain and death. Treatments available are not sufficient to help the patients as they only alleviate the symptoms and not the cause. In this regard, stem cells therapy has emerged as an upcoming option for the replacement of dead and damaged neurons. Stem cells, in general, are characterized as cells exhibiting potency properties, i.e., on being subjected to specific conditions they transform into cells of another lineage. Of all the types, mesenchymal stem cells (MSCs) are known for their pluripotent nature without the obstacle of ethical concern surrounding the procurement of other cell types. Although fibroblasts are quite similar to MSCs morphologically, certain markers like CD73, CD 90 are specific to MSCs, making both the cell types distinguishable from each other. This is implemented while procuring MSCs from a plethora of sources like umbilical cord blood, adipose tissue, bone marrow, etc. Among these, bone marrow MSCs are the most widely used type for neural regeneration. Neural regeneration is achieved via transdifferentiation. Several studies have either transplanted the stem cells into rodent models or have carried out transdifferentiation in vitro. The process involves a combination of growth factors, pre-treatment factors, and neuronal differentiation inducing mediums. The results obtained are characterized by neuron-like morphology, expression of markers, along with electrophysical activity in some. Recent attempts involve exploring biomaterials that may mimic the native ECM and therefore can be directly introduced at the site of interest. The review gives a brief description of MSCs, their sources and markers, and the different attempts that have been made towards achieving the goal of differentiating MSCs into neurons.
Collapse
Affiliation(s)
- Princy Choudhary
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Ayushi Gupta
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Sangeeta Singh
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India.
| |
Collapse
|
7
|
Abdelwahab S, Elsebay SAG, Fouli Gaber M, Abdel-Hafez SMN. Comparative study between bone marrow mesenchymal stem cell and their conditioned medium in the treatment of rat model of Parkinsonism. J Cell Physiol 2020; 236:440-457. [PMID: 32557610 DOI: 10.1002/jcp.29872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/30/2020] [Indexed: 12/17/2022]
Abstract
Parkinsonism is one of the most common aging neurodegenerative disorders. This study aims to compare the therapeutic effect of stem cell versus its conditioned medium in the Parkinsonism model. Parkinsonism was induced by daily subcutaneous injection of 0.5 mg/kg of rotenone dissolved in dimethyl sulfoxide for 28 days. Fifty rats were divided randomly into five groups: control, dimethyl sulfoxide, Parkinsonism, stem cell-treated, and conditioned medium-treated groups. Midbrain specimens were obtained for histological, immunohistochemical, and biochemical studies. Lewy bodies were observed in the Parkinsonism group in the dopaminergic neuron and neuropil as well. Almost all of the pathological changes were clearly ameliorated in both stem cell- and conditioned medium-treated groups as confirmed by biochemical, histological, and immunohistochemical (anti-nestin, anti-glial fibrillary acidic protein, and anti-α synuclein) studies. However, the conditioned medium showed more superior therapeutic effect establishing nearly the normal histological architecture of substantia nigra. These results may pave the future for using stem cell-conditioned medium as a more convenient and effective adjuvant therapy in Parkinsonism and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Soha Abdelwahab
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Sara Abdel Gawad Elsebay
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manar Fouli Gaber
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
| | | |
Collapse
|
8
|
Zhang S, Huang Y, Zhu J, Shan L, Gao J, Zhang Y, Yu N, Yang L, Huang J. Expression of hNeuritin protein in a baculovirus expression system and the analysis of its activity. Gene 2018; 647:129-135. [PMID: 29320757 DOI: 10.1016/j.gene.2018.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 12/11/2022]
Abstract
Neuritin plays an important role in the development and regeneration of the nervous system, and shows good prospects in the treatment and protection of the nervous system. To characterize neuritin function, we constructed a baculovirus expression system of neuritin, and identified the biological activity of the neuritin protein. The results and showed that the expression product could promote the neurite growth of dorsal root ganglion in chicken embryos. The neuritin open reading frame was amplified and cloned into the plasmid pFastBac™HTA. The pFastBac™HTA-neuritin was confirmed to be correct by PCR and DNA sequencing, and then transformed into Escherichia coli DH10Bac. The high purity recombinant Bacmid-neuritin (shuttle vectors) was obtained from DH10Bac through screening and identification. Recombinant virus, including the neuritin gene (virus-neuritin), was produced by transfection of SF9 cells using the bacmid-neuritin, and then amplified repeatedly to express the neuritin fusion protein. Finally, we identified the fusion protein with SDS-PAGE and western blotting, and optimized the best expression time of the neuritin fusion protein. We also analyzed the activity of the expressed protein by dorsal root ganglion from chicken embryos.
Collapse
Affiliation(s)
- Shuai Zhang
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Yanhong Huang
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Jingling Zhu
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Liya Shan
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Jianfeng Gao
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Yunhua Zhang
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Na Yu
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Lei Yang
- Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Jin Huang
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China.
| |
Collapse
|