1
|
Han C, He C, Ding X, Li Z, Peng T, Zhang C, Chen H, Zuo Z, Huang J, Hu W. WWC1 upregulation accelerates hyperuricemia by reduction in renal uric acid excretion through Hippo signaling pathway. J Biol Chem 2024; 300:107485. [PMID: 38906255 PMCID: PMC11301351 DOI: 10.1016/j.jbc.2024.107485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024] Open
Abstract
Hyperuricemia (HUA) is a metabolic disorder characterized by elevated serum uric acid (UA), primarily attributed to the hepatic overproduction and renal underexcretion of UA. Despite the elucidation of molecular pathways associated with this underexcretion, the etiology of HUA remains largely unknown. In our study, using by Uox knockout rats, HUA mouse, and cell line models, we discovered that the increased WWC1 levels were associated with decreased renal UA excretion. Additionally, using knockdown and overexpression approaches, we found that WWC1 inhibited UA excretion in renal tubular epithelial cells. Mechanistically, WWC1 activated the Hippo pathway, leading to phosphorylation and subsequent degradation of the downstream transcription factor YAP1, thereby impairing the ABCG2 and OAT3 expression through transcriptional regulation. Consequently, this reduction led to a decrease in UA excretion in renal tubular epithelial cells. In conclusion, our study has elucidated the role of upregulated WWC1 in renal tubular epithelial cells inhibiting the excretion of UA in the kidneys and causing HUA.
Collapse
Affiliation(s)
- Changshun Han
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chengyong He
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Ding
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zixuan Li
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Tianyun Peng
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chensong Zhang
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, Shanghai, China
| | - Zhenghong Zuo
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiyi Huang
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Weiping Hu
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
2
|
Meliambro K, Yang Y, de Cos M, Rodriguez Ballestas E, Malkin C, Haydak J, Lee JR, Salem F, Mariani LH, Gordon RE, Basgen JM, Wen HH, Fu J, Azeloglu EU, He JC, Wong JS, Campbell KN. KIBRA upregulation increases susceptibility to podocyte injury and glomerular disease progression. JCI Insight 2023; 8:e165002. [PMID: 36853804 PMCID: PMC10132156 DOI: 10.1172/jci.insight.165002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
Despite recent progress in the identification of mediators of podocyte injury, mechanisms underlying podocyte loss remain poorly understood, and cell-specific therapy is lacking. We previously reported that kidney and brain expressed protein (KIBRA), encoded by WWC1, promotes podocyte injury in vitro through activation of the Hippo signaling pathway. KIBRA expression is increased in the glomeruli of patients with focal segmental glomerulosclerosis, and KIBRA depletion in vivo is protective against acute podocyte injury. Here, we tested the consequences of transgenic podocyte-specific WWC1 expression in immortalized human podocytes and in mice, and we explored the association between glomerular WWC1 expression and glomerular disease progression. We found that KIBRA overexpression in immortalized human podocytes promoted cytoplasmic localization of Yes-associated protein (YAP), induced actin cytoskeletal reorganization, and altered focal adhesion expression and morphology. WWC1-transgenic (KIBRA-overexpressing) mice were more susceptible to acute and chronic glomerular injury, with evidence of YAP inhibition in vivo. Of clinical relevance, glomerular WWC1 expression negatively correlated with renal survival among patients with primary glomerular diseases. These findings highlight the importance of KIBRA/YAP signaling to the regulation of podocyte structural integrity and identify KIBRA-mediated injury as a potential target for podocyte-specific therapy in glomerular disease.
Collapse
Affiliation(s)
- Kristin Meliambro
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yanfeng Yang
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marina de Cos
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Caroline Malkin
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jonathan Haydak
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John R. Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Fadi Salem
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Laura H. Mariani
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ronald E. Gordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John M. Basgen
- Stereology and Morphometry Laboratory, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| | - Huei Hsun Wen
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jia Fu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Evren U. Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jenny S. Wong
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kirk N. Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Liu M, Liu S, Chen F. WWC1, a target of miR-138-5p, facilitates the progression of prostate cancer. Am J Med Sci 2022; 364:772-781. [PMID: 35970246 DOI: 10.1016/j.amjms.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND WWC1 is known to be involved in the development of cancer. Therefore, it is critical to study the molecular mechanisms and cellular roles of WWC1 in cancer therapy. METHODS In this study, we examined the effect of WWC1 on prostate cancer tumorigenesis and the role of miR-138-5p in prostate cancer. The expression levels of miR-138-5p and WWC1 in prostate cancer (Pca) tissues and cells were detected by real-time quantitative reverse transcription PCR and western blotting. Cell counting kit-8 and BrdU assays were performed to study cell proliferation and caspase-3 activity assay to detect apoptosis. Migration experiments were conducted to observe the movement ability of the cells. RESULTS The expression of WWC1 in Pca tissues or cell lines was increased, whereas miR-138-5p expression was decreased. MiR-138-5p targeted and partially neutralized the role of WWC1 in Pca cells. Moreover, reduced expression of WWC1 in Pca cell lines suppressed cell proliferation and migration and promoted apoptosis in vitro. CONCLUSIONS Collectively, these findings reveal a novel mechanism by which miR-138-5p negatively regulates WWC1 in Pca.
Collapse
Affiliation(s)
- Miao Liu
- Department of Laboratory, The Third People's Hospital of Hubei Province, Wuhan 430033, Hubei, China
| | - Shiguo Liu
- Department of Laboratory, The Third People's Hospital of Hubei Province, Wuhan 430033, Hubei, China
| | - Feng Chen
- Department of Laboratory, The Third People's Hospital of Hubei Province, Wuhan 430033, Hubei, China.
| |
Collapse
|
4
|
Levin A, Schwarz A, Hulkko J, He L, Sun Y, Barany P, Bruchfeld A, Herthelius M, Wennberg L, Ebefors K, Patrakka J, Betsholtz C, Nyström J, Mölne J, Hultenby K, Witasp A, Wernerson A. The role of dendrin in IgA nephropathy. Nephrol Dial Transplant 2022; 38:311-321. [PMID: 35767852 PMCID: PMC9923709 DOI: 10.1093/ndt/gfac208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) and its systemic variant IgA vasculitis (IgAV) damage the glomeruli, resulting in proteinuria, hematuria and kidney impairment. Dendrin is a podocyte-specific protein suggested to be involved in the pathogenesis of IgAN. Upon cell injury, dendrin translocates from the slit diaphragm to the nucleus, where it is suggested to induce apoptosis and cytoskeletal changes, resulting in proteinuria and accelerated disease progression in mice. Here we investigated gene and protein expression of dendrin in relation to clinical and histopathological findings to further elucidate its role in IgAN/IgAV. METHODS Glomerular gene expression was measured using microarray on 30 IgAN/IgAV patients, 5 patients with membranous nephropathy (MN) and 20 deceased kidney donors. Dendrin was spatially evaluated on kidney tissue sections by immunofluorescence (IF) staining (IgAN patients, n = 4; nephrectomized kidneys, n = 3) and semi-quantified by immunogold electron microscopy (IgAN/IgAV patients, n = 21; MN, n = 5; living kidney donors, n = 6). Histopathological grading was performed according to the Oxford and Banff classifications. Clinical data were collected at the time of biopsy and follow-up. RESULTS Dendrin mRNA levels were higher (P = .01) in IgAN patients compared with MN patients and controls and most prominently in patients with preserved kidney function and fewer chronic histopathological changes. Whereas IF staining did not differ between groups, immunoelectron microscopy revealed that a higher relative nuclear dendrin concentration in IgAN patients was associated with a slower annual progression rate and milder histopathological changes. CONCLUSION Dendrin messenger RNA levels and relative nuclear protein concentrations are increased and associated with a more benign phenotype and progression in IgAN/IgAV patients.
Collapse
Affiliation(s)
| | - Angelina Schwarz
- Department of Clinical Science, Intervention and Technology, Divison of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Liqun He
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ying Sun
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peter Barany
- Department of Clinical Science, Intervention and Technology, Divison of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Clinical Science, Intervention and Technology, Divison of Renal Medicine, Karolinska Institutet, Stockholm, Sweden,Department of Health, Medicine and Caring Sciences, Linköpings Universitet Hälsouniversitetet, Linkoping, Sweden
| | - Maria Herthelius
- Department of Clinical Science, Intervention, and Technology, Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| | - Lars Wennberg
- Department of Clinical Science, Intervention and Technology, Division of Transplantation Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jaakko Patrakka
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Mölne
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
5
|
Lee JM, Ko Y, Lee CH, Jeon N, Lee KH, Oh J, Kronbichler A, Saleem MA, Lim BJ, Shin JI. The Effect of Interleukin-4 and Dexamethasone on RNA-Seq-Based Transcriptomic Profiling of Human Podocytes: A Potential Role in Minimal Change Nephrotic Syndrome. J Clin Med 2021; 10:jcm10030496. [PMID: 33535372 PMCID: PMC7866993 DOI: 10.3390/jcm10030496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023] Open
Abstract
Interleukin-4 (IL-4) expression is implicated in the pathogenesis of nephrotic syndrome (NS). This study aimed to investigate the changes in the transcriptomes of human podocytes induced by IL-4 treatment and to analyze whether these changes could be affected by simultaneous steroid treatment. Three groups of human podocytes were treated with control, IL-4, and IL-4 plus dexamethasone (DEX), respectively. We performed whole-transcriptome sequencing to identify differentially expressed genes (DEGs) between the groups. We investigated relevant biological pathways using Gene Ontology (GO) enrichment analyses. We also attempted to compare and validate the DEGs with the genes listed in PodNet, a literature-based database on mouse podocyte genes. A total of 176 genes were differentially expressed among the three groups. GO analyses showed that pathways related to cytoskeleton organization and cell signaling were significantly enriched. Among them, 24 genes were listed in PodNet, and 12 of them were previously reported to be associated with IL-4-induced changes in human podocytes. Of the 12 genes, the expression levels of BMP4, RARB, and PLCE1 were reversed when podocytes were simultaneously treated with DEX. In conclusion, this study explored changes in the transcriptome profiles of human podocytes treated with IL-4. Few genes were reported in previous studies and were previously validated in experiments with human podocytes. We speculate that IL-4 may exert pathogenic effects on the transcriptome of human podocytes, and a few genes may be involved in the pathogenesis.
Collapse
Affiliation(s)
- Jiwon M. Lee
- Department of Pediatrics, Chungnam National University Hospital and College of Medicine, Daejeon 35015, Korea;
| | - Younhee Ko
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do 17035, Korea;
| | - Chul Ho Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.L.); (K.H.L.)
- Division of Clinical Genetics, Severance Children’s Hospital, Seoul 03722, Korea
| | - Nara Jeon
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.L.); (K.H.L.)
| | - Jun Oh
- Department of Pediatrics, University Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Moin A. Saleem
- Children’s and Renal Unit and Bristol Renal, University of Bristol, Bristol BS2 8BJ, UK;
| | - Beom Jin Lim
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: (B.J.L.); (J.I.S.)
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.L.); (K.H.L.)
- Division of Pediatric Nephrology, Severance Children’s Hospital, Seoul 03722, Korea
- Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (B.J.L.); (J.I.S.)
| |
Collapse
|
6
|
Yamada H, Shirata N, Makino S, Miyake T, Trejo JAO, Yamamoto-Nonaka K, Kikyo M, Empitu MA, Kadariswantiningsih IN, Kimura M, Ichimura K, Yokoi H, Mukoyama M, Hotta A, Nishimori K, Yanagita M, Asanuma K. MAGI-2 orchestrates the localization of backbone proteins in the slit diaphragm of podocytes. Kidney Int 2020; 99:382-395. [PMID: 33144214 DOI: 10.1016/j.kint.2020.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/22/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023]
Abstract
Podocytes are highly specialized cells within the glomerulus that are essential for ultrafiltration. The slit diaphragm between the foot processes of podocytes functions as a final filtration barrier to prevent serum protein leakage into urine. The slit-diaphragm consists mainly of Nephrin and Neph1, and localization of these backbone proteins is essential to maintaining the integrity of the glomerular filtration barrier. However, the mechanisms that regulate the localization of these backbone proteins have remained elusive. Here, we focused on the role of membrane-associated guanylate kinase inverted 2 (MAGI-2) in order to investigate mechanisms that orchestrate localization of slit-diaphragm backbone proteins. MAGI-2 downregulation coincided with a reduced expression of slit-diaphragm backbone proteins in human kidneys glomerular disease such as focal segmental glomerulosclerosis or IgA nephropathy. Podocyte-specific deficiency of MAGI-2 in mice abrogated localization of Nephrin and Neph1 independently of other scaffold proteins. Although a deficiency of zonula occuldens-1 downregulated the endogenous Neph1 expression, MAGI-2 recovered Neph1 expression at the cellular edge in cultured podocytes. Additionally, overexpression of MAGI-2 preserved Nephrin localization to intercellular junctions. Co-immunoprecipitation and pull-down assays also revealed the importance of the PDZ domains of MAGI-2 for the interaction between MAGI-2 and slit diaphragm backbone proteins in podocytes. Thus, localization and stabilization of Nephrin and Neph1 in intercellular junctions is regulated mainly via the PDZ domains of MAGI-2 together with other slit-diaphragm scaffold proteins. Hence, these findings may elucidate a mechanism by which the backbone proteins are maintained.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naritoshi Shirata
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharmaceutical Corporation, Saitama, Japan
| | - Shinichi Makino
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takafumi Miyake
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Kanae Yamamoto-Nonaka
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuhiro Kikyo
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharmaceutical Corporation, Saitama, Japan
| | - Maulana A Empitu
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Maiko Kimura
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Ichimura
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Akitsu Hotta
- Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Katsuhiko Nishimori
- Department of Obesity and Inflammation Research, Fukushima Medical University, Fukushima, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Chen Y, Wang Z, Li Q, Yu L, Zhu Y, Wang J, Sun S. oxLDL promotes podocyte migration by regulating CXCL16, ADAM10 and ACTN4. Mol Med Rep 2020; 22:1976-1984. [PMID: 32705248 PMCID: PMC7411416 DOI: 10.3892/mmr.2020.11292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 05/22/2020] [Indexed: 01/19/2023] Open
Abstract
Nephrotic syndrome (NS) is one of the most common causes of chronic kidney disease in the pediatric population. Hyperlipidemia is one of the main features of NS. The present study investigated the role of CXC motif chemokine ligand 16 (CXCL16) and ADAM metallopeptidase domain 10 (ADAM10) in oxidized low-density lipoprotein (oxLDL)-stimualted podocytes and the underlying mechanisms. CXCL16 and ADAM10 expression levels in oxLDL-treated podocytes were measured via reverse transcription-quantitative PCR and western blotting. Cell migration assays were conducted to assess the migration of oxLDL-treated podocytes. CXCL16 or ADAM10 overexpression and knockdown assays were conducted. The results indicated that oxLDL stimulation increased ADAM10 and CXCL16 expression levels, and enhanced podocyte migration compared with the control group. Moreover, CXCL16 and ADAM10 overexpression significantly increased podocyte migration and the expression of actinin-α4 (ACTN4) compared with the control groups. By contrast, CXCL16 and ADAM10 knockdown significantly reduced podocyte migration and the expression of ACTN4 compared with the control groups. The results suggested that oxLDL promoted podocyte migration by regulating CXCL16 and ADAM10 expression, as well as by modulating the actin cytoskeleton. Therefore, CXCL16 and ADAM10 may serve as novel therapeutic targets for primary nephrotic syndrome in children.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhiyi Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qian Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Lichun Yu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yanji Zhu
- Department of Pediatrics, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Jing Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Shuzhen Sun
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
8
|
Kwok E, Rodriguez DJ, Kremerskothen J, Nyarko A. Intrinsic disorder and amino acid specificity modulate binding of the WW2 domain in kidney and brain protein (KIBRA) to synaptopodin. J Biol Chem 2019; 294:17383-17394. [PMID: 31597702 DOI: 10.1074/jbc.ra119.009589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/07/2019] [Indexed: 01/19/2023] Open
Abstract
The second WW domain (WW2) of the kidney and brain scaffolding protein, KIBRA, has an isoleucine (Ile-81) rather than a second conserved tryptophan and is primarily unstructured. However, it adopts the canonical triple-stranded antiparallel β-sheet structure of WW domains when bound to a two-PPXY motif peptide of the synaptic protein Dendrin. Here, using a series of biophysical experiments, we demonstrate that the WW2 domain remains largely disordered when bound to a 69-residue two-PPXY motif polypeptide of the synaptic and podocyte protein synaptopodin (SYNPO). Isothermal titration calorimetry and CD experiments revealed that the interactions of the disordered WW2 domain with SYNPO are significantly weaker than SYNPO's interactions with the well-folded WW1 domain and that an I81W substitution in the WW2 domain neither enhances binding affinity nor induces substantial WW2 domain folding. In the tandem polypeptide, the two WW domains synergized, enhancing the overall binding affinity with the I81W variant tandem polypeptide 2-fold compared with the WT polypeptide. Solution NMR results showed that SYNPO binding induces small but definite chemical shift perturbations in the WW2 domain, confirming the disordered state of the WW2 domain in this complex. These analyses also disclosed that SYNPO binds the tandem WW domain polypeptide in an antiparallel manner, that is, the WW1 domain binds the second PPXY motif of SYNPO. We propose a binding model consisting of a bipartite interaction mode in which the largely disordered WW2 forms a "fuzzy" complex with SYNPO. This binding mode may be important for specific cellular functions.
Collapse
Affiliation(s)
- Ethiene Kwok
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Diego J Rodriguez
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | | | - Afua Nyarko
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
9
|
Chen Y, Zhang L, Liu S, Yao B, Zhang H, Liang S, Ma J, Liang X, Shi W. Sam68 mediates high glucose‑induced podocyte apoptosis through modulation of Bax/Bcl‑2. Mol Med Rep 2019; 20:3728-3734. [PMID: 31485651 PMCID: PMC6755155 DOI: 10.3892/mmr.2019.10601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia promotes podocyte apoptosis and contributes to the pathogenesis of diabetic nephropathy (DN). However, the mechanisms of hyperglycemia-induced podocyte apoptosis remain unknown. Recent studies have implicated Src-associated substrate during mitosis of 68 kDa (Sam68) in various cellular processes including RNA metabolism, apoptosis, signal transduction. This study sought to examine the effect of Sam68 on high glucose (HG)-induced podocytes apoptosis, and the mechanism underlying this effect. Immortalized mouse podocytes were exposed to medium containing normal glucose, or HG and Sam68 siRNA, respectively. The expression of Sam68 in podocytes was determined by fluorescence quantitative PCR (qPCR), immunofluorescence and immunoblotting. The role of Sam68 in HG-induced podocyte apoptosis was further evaluated by inhibiting Sam68 expression by Sam68 siRNA and performing flow cytometry. The mRNA and protein expression of pro-apoptosis gene Bax and anti-apoptotic gene Bcl-2 were assessed by qRCR and immunoblotting. In the present study, it was first demonstrated that Sam68 was upregulated in a time and dose-dependent manner in in vitro HG-treated podocytes. Pretreatment with Sam68 siRNA markedly decreased nuclear Sam68 expression. Moreover, the effects of HG-induced apoptosis were also abrogated by Sam68 knockdown in cultured podocytes. Furthermore, HG increased Bax and decreased Bcl-2 protein expression in cultured podocytes, and this effect was blocked by Sam68 knockdown. The results of the present study revealed that Sam68 mediated HG-induced podocyte apoptosis, probably through the Bax/Bcl-2 signaling pathway, and thus may be a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Yuyu Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Li Zhang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Shuangxin Liu
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Binfeng Yao
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Hong Zhang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Shun Liang
- Division of Nephrology, Yue Bei People's Hospital, Shaoguan, Guangdong 512025, P.R. China
| | - Jianchao Ma
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Xinling Liang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Shi
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|