1
|
Chen J, Li H, Zhuo J, Lin Z, Hu Z, He C, Wu X, Jin Y, Lin Z, Su R, Sun Y, Wang R, Sun J, Wei X, Zheng S, Lu D, Xu X. Impact of immunosuppressants on tumor pulmonary metastasis: new insight into transplantation for hepatocellular carcinoma. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0267. [PMID: 39718153 PMCID: PMC11667780 DOI: 10.20892/j.issn.2095-3941.2024.0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Pulmonary metastasis is a life-threatening complication for patients with hepatocellular carcinoma (HCC) undergoing liver transplantation (LT). In addition to the common mechanisms underlying tumor metastasis, another inevitable factor is that the application of immunosuppressive agents, including calcineurin inhibitors (CNIs) and rapamycin inhibitors (mTORis), after transplantation could influence tumor recurrence and metastasis. In recent years, several studies have reported that mTORis, unlike CNIs, have the capacity to modulate the tumorigenic landscape post-liver transplantation by targeting metastasis-initiating cells and reshaping the pulmonary microenvironment. Therefore, we focused on the effects of immunosuppressive agents on the lung metastatic microenvironment and how mTORis impact tumor growth in distant organs. This revelation has provided profound insights into transplant oncology, leading to a renewed understanding of the use of immunosuppressants after LT for HCC.
Collapse
Affiliation(s)
- Jinyan Chen
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou 310006, China
| | - Zuyuan Lin
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chiyu He
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiang Wu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiru Jin
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhanyi Lin
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiyang Sun
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310063, China
| | - Rongsen Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Jiancai Sun
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou 310006, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou 310022, China
| | - Di Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310014, China
| | - Xiao Xu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310014, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| |
Collapse
|
2
|
Zhang J, Cheng F, Rong G, Tang Z, Gui B. IDN5706 Inhibits Synovial Inflammation via Inducing M2 Polarization of Synovial Macrophages in Osteoarthritis Rats. Pharmacology 2024; 109:156-168. [PMID: 38565085 DOI: 10.1159/000538452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION IDN5706 is a tetrahydro derivative of hyperforin. In this study, we aimed to explore the effect of IDN5706 on synovial macrophages in osteoarthritis (OA) rats and the underlying mechanisms. METHODS OA rats were employed for the in vivo experiments, and RAW264.7 cells were employed for the in vitro experiments. Histopathological changes in synovium were examined using hematoxylin-eosin staining. Cell apoptosis in synovium was assessed by TUNEL staining. Macrophage polarization was determined by immunohistochemical analysis and flow cytometry. The mRNA expression and protein level of genes were detected by qRT-PCR and Western blot. The efferocytosis of macrophages was assessed by flow cytometry. RESULTS IDN5706 reversed the increased CD86-positive cells (M1 macrophages) and decreased CD206-positive cells (M2 macrophages), both in synovium and synovial fluid of OA rats. The in vitro experiments further confirmed the promotion effect of IDN5706 on M2 macrophages, accompanied by the elevated Arg-1 and reduced iNOS. Also, the upregulated p-mTOR in synovium and synovial fluid of OA rats were reversed by IDN5706, and the decreased M1 macrophages and increased M2 macrophages induced by IDN5706 were reversed by the mTOR activator. IDN5706 enhanced the efferocytosis of IL-4-treated RAW264.7 cells, and the animal experiments further revealed the involvement of efferocytosis in the improvement of OA by IDN5706. CONCLUSIONS IDN5706 enhanced the efferocytosis of synovial macrophages by inducing M2 polarization via inhibiting p-mTOR, thus suppressing synovial inflammation and OA development, providing a theoretical basis for IDN5706 as a clinical drug for inflammatory diseases.
Collapse
Affiliation(s)
- Jinling Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fangyue Cheng
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Genxiang Rong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhi Tang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Binjie Gui
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Shi B, Hao Y, Li W, Dong H, Xu M, Gao P. TIPE2 May Target the Nrf2/HO-1 Pathway to Inhibit M1 Macrophage-Related Neutrophilic Inflammation in Asthma. Front Immunol 2022; 13:883885. [PMID: 35572500 PMCID: PMC9095941 DOI: 10.3389/fimmu.2022.883885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose Although recent studies have highlighted the link of TIPE2 and asthma airway inflammation, its roles and molecular mechanisms in different asthma inflammatory phenotypes remain largely unknown. We evaluated sputum TIPE2 expression level and its correlation with different asthma phenotypes. Additionally, we explored the roles and mechanism of TIPE2 in M1 polarization of macrophages. Methods A total of 102 asthma patients who underwent sputum induction were enrolled to evaluate the expression level of TIPE2 and its association with different asthma phenotypes. To explore the roles and mechanism of TIPE2 in M1 polarization of macrophages, THP-1 monocytes stimulated with phorbol-12-myristate-13-acetate, were used as a model of undifferentiated (M0) macrophages, and M0 macrophages were treated with lipopolysaccharide to induce M1 macrophages. Results The sputum TIPE2 level was significantly lower in patients with neutrophilic asthma (NA) and higher in patients with eosinophilic asthma (EA) compared with patients with paucigranulocytic asthma. The levels of IL-1β, TNF-α and IL-6 were highest in NA compared with other groups. TIPE2 levels in sputum negatively correlated with IL-1β and TNF-α levels but positively correlated with IL-4, IL-5, IL-13, and IL-10 levels (P < 0.05). In vitro, TIPE2 enhanced Nrf2/HO-1 pathway activation in macrophages and inhibited LPS-induced M1 macrophage differentiation and related cytokine release. Further analysis showed that the Nrf2 inhibitor ML385 weakened TIPE2-induced activation of the Nrf2/HO-1 pathway, as well as TIPE2-induced suppression in M1 polarization of macrophage and inflammatory cytokines secretion. Conclusions TIPE2 expression level was highly down-regulated in NA and was negatively correlated with inflammatory factors (IL-1β and TNF-α). Aberrant expression of TIPE2 may target the Nrf2/HO-1 pathway to inhibit M1 macrophage–related neutrophilic inflammation in asthma.
Collapse
Affiliation(s)
- Bingqing Shi
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Mengting Xu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Tumor Necrosis Factor-α-Induced Protein 8-Like 2 Ameliorates Cardiac Hypertrophy by Targeting TLR4 in Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9469143. [PMID: 35528518 PMCID: PMC9072033 DOI: 10.1155/2022/9469143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022]
Abstract
Background Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2), a novel immunoregulatory protein, has been reported to regulate inflammation and apoptosis. The role of TIPE2 in cardiovascular disease, especially cardiac hypertrophy, has not been elucidated. Thus, the aim of the present study was to explore the role of TIPE2 in cardiac hypertrophy. Methods Mice were subjected to aortic banding (AB) to induce an adverse hypertrophic model. To overexpress TIPE2, mice were injected with a lentiviral vector expressing TIPE2. Echocardiographic and hemodynamic analyses were used to evaluate cardiac function. Neonatal rat cardiomyocytes (NRCMs) and mouse peritoneal macrophages (MPMs) were isolated and stimulated with angiotensin II. NRCMs and MPM were also cocultured and stimulated with angiotensin II. Cells were transfected with Lenti-TIPE2 to overexpress TIPE2. Results TIPE2 expression levels were downregulated in hypertrophic mouse hearts and in macrophages in heart tissue. TIPE2 overexpression attenuated pressure overload-induced cardiac hypertrophy, fibrosis, and cardiac dysfunction. Moreover, we found that TIPE2 overexpression in neonatal cardiomyocytes did not relieve the angiotensin II-induced hypertrophic response in vitro. Furthermore, TIPE2 overexpression downregulated TLR4 and NF-κB signaling in macrophages but not in cardiomyocytes, which led to diminished inflammation in macrophages and consequently reduced the activation of hypertrophic Akt signaling in cardiomyocytes. TLR4 inhibition by TAK-242 did not enhance the antihypertrophic effect of TIPE2 overexpression. Conclusions The present study indicated that TIPE2 represses macrophage activation by targeting TLR4, subsequently inhibiting cardiac hypertrophy.
Collapse
|
5
|
Piffer AC, Santos FMD, Thomé MP, Diehl C, Garcia AWA, Kinskovski UP, Schneider RDO, Gerber A, Feltes BC, Schrank A, Vasconcelos ATR, Lenz G, Kmetzsch L, Vainstein MH, Staats CC. Transcriptomic analysis reveals that mTOR pathway can be modulated in macrophage cells by the presence of cryptococcal cells. Genet Mol Biol 2021; 44:e20200390. [PMID: 34352067 PMCID: PMC8341293 DOI: 10.1590/1678-4685-gmb-2020-0390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/05/2021] [Indexed: 11/21/2022] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the etiological agents of cryptococcosis, a high mortality disease. The development of such disease depends on the interaction of fungal cells with macrophages, in which they can reside and replicate. In order to dissect the molecular mechanisms by which cryptococcal cells modulate the activity of macrophages, a genome-scale comparative analysis of transcriptional changes in macrophages exposed to Cryptococcus spp. was conducted. Altered expression of nearly 40 genes was detected in macrophages exposed to cryptococcal cells. The major processes were associated with the mTOR pathway, whose associated genes exhibited decreased expression in macrophages incubated with cryptococcal cells. Phosphorylation of p70S6K and GSK-3β was also decreased in macrophages incubated with fungal cells. In this way, Cryptococci presence could drive the modulation of mTOR pathway in macrophages possibly to increase the survival of the pathogen.
Collapse
Affiliation(s)
- Alícia C Piffer
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Francine M Dos Santos
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Marcos P Thomé
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Camila Diehl
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Ane Wichine Acosta Garcia
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Uriel Perin Kinskovski
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Rafael de Oliveira Schneider
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Alexandra Gerber
- Laboratório Nacional de Computação Científica, Petrópolis, RJ, Brazil
| | - Bruno César Feltes
- Universidade Federal do Rio Grande do Sul, Instituto de Informática, Porto Alegre, RS, Brazil
| | - Augusto Schrank
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | | | - Guido Lenz
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Lívia Kmetzsch
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Marilene H Vainstein
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Charley C Staats
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Liu S, Wang J, Li W, Shi H, Zhou C, Tang G, Zhang J, Yang Z. Dendritic cells transduced with TIPE-2 recombinant adenovirus induces T cells suppression. JOURNAL OF INFLAMMATION-LONDON 2021; 18:9. [PMID: 33568165 PMCID: PMC7877089 DOI: 10.1186/s12950-021-00274-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 01/29/2021] [Indexed: 11/10/2022]
Abstract
INTRODUCTION TIPE-2 has been identified as a negative regulator of both innate and adaptive immunity and is involved in several inflammatory diseases. However, the role of immune suppression of dendritic cells (DCs) transduced with TIPE-2 has not been well studied. METHODS In this study, DCs were transduced with TIPE-2 recombinant adenovirus, and then were cocultured with allogeneic CD4+ or CD8 + T cells. The proliferation, cytokine production and activation marker levels of CD4+ or CD8 + T cell were detected. RESULTS The data demonstrated that T cell proliferation, cytokine production and activation marker levels were attenuated after treated with TIPE-2 transduced DCs. CONCLUSIONS These results suggested that TIPE-2 transduced DCs are capable of inducing allogeneic CD4+ or CD8 + T cell immune suppression, which provide a promising way for the therapeutical strategies of transplantation or autoimmune diseases.
Collapse
Affiliation(s)
- Shudong Liu
- Department of Neurology and Chongqing Key Laboratory of Cerebrovascular Disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Jie Wang
- Department of Neurology, Chongqing traditional Chinese medicine hospital, Chongqing, 400021, China
| | - Wenyan Li
- Department of Neurology and Chongqing Key Laboratory of Cerebrovascular Disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Hui Shi
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Changlong Zhou
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Ge Tang
- Department of Neurology and Chongqing Key Laboratory of Cerebrovascular Disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Jiangwei Zhang
- Department of Neurology and Chongqing Key Laboratory of Cerebrovascular Disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Zhao Yang
- Department of Neurology and Chongqing Key Laboratory of Cerebrovascular Disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
| |
Collapse
|
7
|
Gu Z, Cui X, Sun P, Wang X. Regulatory Roles of Tumor Necrosis Factor-α-Induced Protein 8 Like-Protein 2 in Inflammation, Immunity and Cancers: A Review. Cancer Manag Res 2020; 12:12735-12746. [PMID: 33364825 PMCID: PMC7751774 DOI: 10.2147/cmar.s283877] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α)-induced protein 8 (TNFAIP8/TIPE) family, including TNFAIP8 (TIPE), TNFAIP8 like-protein 1 (TNFAIP8L1/TIPE1), TNFAIP8 like-protein 2 (TNFAIP8L2/TIPE2), and TNFAIP8 like-protein 3 (TNFAIP8L3/TIPE3), plays a vital role in regulating inflammatory responses, immune homeostasis, and cancer development. Over the last decade, studies have shown that TIPE2 protein is differentially expressed in diverse cells and tissues. The dysregulation of TIPE2 protein can lead to dysregulation of inflammatory responses and immune homeostasis, and change the basic characteristics of cancers. In consideration of the immeasurable values of TIPE2 in diagnosis, treatment, and prognosis of various human diseases, this review will focus on the expression pattern, structure, and regulatory roles of TIPE2 in inflammation, immunity, and cancers.
Collapse
Affiliation(s)
- Zhengzhong Gu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Xiaohan Cui
- Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| |
Collapse
|
8
|
Shi B, Hao Y, Li W, Dong H, Xu M, Gao P. The enigmatic role of TIPE2 in asthma. Am J Physiol Lung Cell Mol Physiol 2020; 319:L163-L172. [PMID: 32493031 DOI: 10.1152/ajplung.00069.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Unlike other members of the tumor necrosis factor (TNF)-α-induced protein 8 (TNFAIP8/TIPE) family that play a carcinogenic role and regulate apoptosis, TNFAIP8-like 2 (TIPE2) can not only maintain immune homeostasis but also regulate inflammation. TIPE2 mainly restrains the activation of T cell receptor (TCR) and Toll-like receptors (TLR), regulating its downstream signaling pathways, thereby regulating inflammation. Interestingly, TIPE2 is abnormally expressed in many inflammatory diseases and may promote or inhibit inflammation in different diseases. This review summarizes the molecular target and cellular function of TIPE2 in immune cells and inflammatory diseases and the underlying mechanism by which TIPE2 regulates inflammation. The function and mechanism of TIPE2 in asthma is also explained in detail. TIPE2 is abnormally expressed in asthma and participates in the pathogenesis of different phenotypes of asthma through regulating multiple inflammatory cells' activity and function. Considering the indispensable role of TIPE2 in asthma, TIPE2 may be an effective therapeutic target in asthma. However, the available data are insufficient to provide a full understanding of the complex role of TIPE2 in human asthma. Further study is still necessary to explore the possible mechanism and functions of TIPE2 in different asthma phenotypes.
Collapse
Affiliation(s)
- Bingqing Shi
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Mengting Xu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Transcriptome meta-analysis reveals differences of immune profile between eutopic endometrium from stage I-II and III-IV endometriosis independently of hormonal milieu. Sci Rep 2020; 10:313. [PMID: 31941945 PMCID: PMC6962450 DOI: 10.1038/s41598-019-57207-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Eutopic endometrium appears to be crucial for endometriosis development. Despite of the evident importance, data regarding the cellular microenvironment remain unclear. Our objective was to explore the tissue microenvironment heterogeneity, transcripts, and pathways that are enriched in all phases of the menstrual cycle by analysing publicly deposited data derived from whole transcriptome microarrays of eutopic endometria of women with and without endometriosis. A meta-analysis of the transcriptome microarrays was performed using raw data available from a public database. Eligibility criteria included eutopic endometrium samples from women with endometriosis and healthy controls without any pathological condition reported the presence of an adequately reported normal menstrual phase, and samples containing both glandular and stromal components. Raw data were processed using a robust multiarray average method to provide background correction, normalisation, and summarisation. The batch effect was estimated by principal variant component analysis and removed using an empirical Bayes method. Cellular tissue heterogeneity was inferred using the xCell package. Differentially expressed genes were identified based on a 5% adjusted p value and a 2.0-fold change. Pathways were identified by functional enrichment based on the Molecular Signatures Database, a p value of < 5%, and an FDR q value of ≤ 25%. Genes that were more frequently found in pathways were identified using leading edge analysis. In a manner independent of cycle phase, the subpopulations of activated dendritic cells, CD4 T effector memory phenotype cells, eosinophils, macrophages M1, and natural killer T cells (NKT) were all higher in stage I-II endometriosis compared to those in healthy controls. The subpopulations of M2 macrophages and natural killer T cells were elevated in eutopic endometriums from women with stage III-IV endometriosis, and smooth muscle cells were always more prevalent in healthy eutopic endometriums. Among the differently expressed genes, FOS, FOSB, JUNB, and EGR1 were the most frequently mapped within the interaction networks, and this was independent of stage and cycle phase. The enriched pathways were directly related to immune surveillance, stem cell self-renewal, and epithelial mesenchymal transition. PI3K AKT mTOR, TGF signalling, and interferon alpha/gamma responses were enriched exclusively in stage III-IV endometriosis. The cellular microenvironments and immune cell profiles were different between eutopic endometriums from women with stage I-II and stage III-IV endometriosis, and these differences were independent of the hormonal milieu. Specifically, a pro-inflammatory profile was predominant in stage I-II endometriosis, and M1-M2 polarization into eutopic endometrium may be crucial for the progression of the disease. The higher prevalence of NKT cells in eutopic endometriums from women with endometriosis that was independent of cycle phase or staging suggested a sustained stress and/or damage to these eutopic endometriums. Based on this, the results of this meta-analysis are important for identifying challenges and opportunities for future research.
Collapse
|