1
|
Wang J, Jia C, Gao Q, Zhang J, Gu X. iASPP regulates neurite development by interacting with Spectrin proteins. Front Mol Neurosci 2023; 16:1154770. [PMID: 37284462 PMCID: PMC10240065 DOI: 10.3389/fnmol.2023.1154770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Since its discovery in 1999, a substantial body of research has shown that iASPP is highly expressed in various kinds of tumors, interacts with p53, and promotes cancer cell survival by antagonizing the apoptotic activity of p53. However, its role in neurodevelopment is still unknown. Methods We studied the role of iASPP in neuronal differentiation through different neuronal differentiation cellular models, combined with immunohistochemistry, RNA interference and gene overexpression, and studied the molecular mechanism involved in the regulation of neuronal development by iASPP through coimmunoprecipitation coupled with mass spectrometry (CoIP-MS) and coimmunoprecipitation (CoIP). Results In this study, we found that the expression of iASPP gradually decreased during neuronal development. iASPP silencing promotes neuronal differentiation, while its overexpression inhibited neurite differentiation in a variety of neuronal differentiation cellular models. iASPP associated with the cytoskeleton-related protein Sptan1 and dephosphorylated the serine residues in the last spectrin repeat domain of Sptan1 by recruiting PP1. The non-phosphorylated and phosphomimetic mutant form of Sptbn1 inhibited and promoted neuronal cell development respectively. Conclusion Overall, we demonstrate that iASPP suppressed neurite development by inhibiting phosphorylation of Sptbn1.
Collapse
Affiliation(s)
- Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunhong Jia
- Department of Neonatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiong Gao
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiwen Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Tomesz A, Szabo L, Molnar R, Deutsch A, Darago R, Raposa BL, Ghodratollah N, Varjas T, Nemeth B, Orsos Z, Pozsgai E, Szentpeteri JL, Budan F, Kiss I. Changes in miR-124-1, miR-212, miR-132, miR-134, and miR-155 Expression Patterns after 7,12-Dimethylbenz(a)anthracene Treatment in CBA/Ca Mice. Cells 2022; 11:cells11061020. [PMID: 35326471 PMCID: PMC8947631 DOI: 10.3390/cells11061020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Specific gene and miRNA expression patterns are potential early biomarkers of harmful environmental carcinogen exposures. The aim of our research was to develop an assay panel by using several miRNAs for the rapid screening of potential carcinogens. The expression changes of miR-124-1, miR-212, miR-132, miR-134, and miR-155 were examined in the spleen, liver, and kidneys of CBA/Ca mice, following the 20 mg/bwkg intraperitoneal 7,12-dimethylbenz(a)anthracene (DMBA) treatment. After 24 h RNA was isolated, the miRNA expressions were analyzed by a real-time polymerase chain reaction and compared to a non-treated control. DMBA induced significant changes in the expression of miR-134, miR-132, and miR-124-1 in all examined organs in female mice. Thus, miR-134, miR-132, and miR-124-1 were found to be suitable biomarkers for the rapid screening of potential chemical carcinogens and presumably to monitor the protective effects of chemopreventive agents.
Collapse
Affiliation(s)
- Andras Tomesz
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
- Correspondence: (A.T.); (J.L.S.); (F.B.); Tel.: +36-207-772-812 (J.L.S. & F.B.)
| | - Laszlo Szabo
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Richard Molnar
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Arpad Deutsch
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
| | - Richard Darago
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
| | - Bence L. Raposa
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
| | - Nowrasteh Ghodratollah
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Balazs Nemeth
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Zsuzsanna Orsos
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Eva Pozsgai
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Jozsef L. Szentpeteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (A.T.); (J.L.S.); (F.B.); Tel.: +36-207-772-812 (J.L.S. & F.B.)
| | - Ferenc Budan
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (A.T.); (J.L.S.); (F.B.); Tel.: +36-207-772-812 (J.L.S. & F.B.)
| | - Istvan Kiss
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| |
Collapse
|
3
|
Serpe C, Monaco L, Relucenti M, Iovino L, Familiari P, Scavizzi F, Raspa M, Familiari G, Civiero L, D’Agnano I, Limatola C, Catalano M. Microglia-Derived Small Extracellular Vesicles Reduce Glioma Growth by Modifying Tumor Cell Metabolism and Enhancing Glutamate Clearance through miR-124. Cells 2021; 10:2066. [PMID: 34440835 PMCID: PMC8393731 DOI: 10.3390/cells10082066] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Brain homeostasis needs continuous exchange of intercellular information among neurons, glial cells, and immune cells, namely microglial cells. Extracellular vesicles (EVs) are active players of this process. All the cells of the body, including the brain, release at least two subtypes of EVs, the medium/large EVs (m/lEVs) and small EVs (sEVs). sEVs released by microglia play an important role in brain patrolling in physio-pathological processes. One of the most common and malignant forms of brain cancer is glioblastoma. Altered intercellular communications constitute a base for the onset and the development of the disease. In this work, we used microglia-derived sEVs to assay their effects in vitro on murine glioma cells and in vivo in a glioma model on C57BL6/N mice. Our findings indicated that sEVs carry messages to cancer cells that modify glioma cell metabolism, reducing lactate, nitric oxide (NO), and glutamate (Glu) release. sEVs affect Glu homeostasis, increasing the expression of Glu transporter Glt-1 on astrocytes. We demonstrated that these effects are mediated by miR-124 contained in microglia-released sEVs. The in vivo benefit of microglia-derived sEVs results in a significantly reduced tumor mass and an increased survival of glioma-bearing mice, depending on miR-124.
Collapse
Affiliation(s)
- Carmela Serpe
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (C.S.); (L.M.)
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (C.S.); (L.M.)
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, 00185 Rome, Italy; (M.R.); (G.F.)
| | - Ludovica Iovino
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.I.); (L.C.)
| | - Pietro Familiari
- Department of Human Neurosciences, Division of Neurosurgery, Sapienza University, 00185 Rome, Italy;
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (F.S.); (M.R.)
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (F.S.); (M.R.)
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, 00185 Rome, Italy; (M.R.); (G.F.)
| | - Laura Civiero
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.I.); (L.C.)
- IRCCS San Camillo Hospital, 30126 Venice, Italy
| | - Igea D’Agnano
- Institute of Biomedical Technologies, CNR, 20054 Segrate, Italy;
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (C.S.); (L.M.)
| |
Collapse
|
4
|
Tumor Suppressive Effects of miR-124 and Its Function in Neuronal Development. Int J Mol Sci 2021; 22:ijms22115919. [PMID: 34072894 PMCID: PMC8198231 DOI: 10.3390/ijms22115919] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
MicroRNA-124 (miR-124) is strongly expressed in neurons, and its expression increases as neurons mature. Through DNA methylation in the miR-124 promoter region and adsorption of miR-124 by non-coding RNAs, miR-124 expression is known to be reduced in many cancer cells, especially with high malignancy. Recently, numerous studies have focused on miR-124 due to its promising tumor-suppressive effects; however, the overview of their results is unclear. We surveyed the tumor-suppressive effect of miR-124 in glial cell lineage cancers, which are the most frequently reported cancer types involving miR-124, and in lung, colon, liver, stomach, and breast cancers, which are the top five causes of cancer death. Reportedly, miR-124 not only inhibits proliferation and accelerates apoptosis, but also comprehensively suppresses tumor malignant transformation. Moreover, we found that miR-124 exerts its anti-tumor effects by regulating a wide range of target genes, most notably STAT3 and EZH2. In addition, when compared to the original role of miR-124 in neuronal development, we found that the miR-124 target genes that contribute to neuronal maturation share similarities with genes that cause cancer cell metastasis and epithelial-mesenchymal transition. We believe that the two apparently unrelated fields, cancer and neuronal development, can bring new discoveries to each other through the study of miR-124.
Collapse
|
5
|
MicroRNA124 and microRNA21-5p regulate migration, proliferation and differentiation of rat bone marrow mesenchymal stem cells. Biosci Rep 2021; 40:226597. [PMID: 33026076 PMCID: PMC7584812 DOI: 10.1042/bsr20193531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 08/29/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that can be a useful source of cells for the treatment of many diseases, including neurologic diseases. The curative effect of MSCs relies mostly on cell’s capacity of migration, proliferation and differentiation. MicroRNAs (miRNAs) are small non-coding RNAs that play important roles on regulating various cell behaviors. Here, we report that miRNA-124 (miR124) and miRNA-21-5p (miR21-5p) display different regulatory roles on migration, proliferation and neuron differentiation of MSCs. MiR124 was shown greatly promoting MSCs migration and neuronal differentiation. MiR21-5p could significantly enhance the proliferation and neuronal differentiation ability of MSCs. MiR124 and miR21-5p synergistically promote differentiation of MSCs into neurons. Collectively, miR124 and miR21-5p can functionally regulate cell migration, proliferation and neuronal differentiation of MSCs. Therefore, miR124 and miR21-5p may be promising tools to improve transplantation efficiency for neural injury.
Collapse
|
6
|
Wang J, Cheng CS, Lu Y, Sun S, Huang S. Volatile Anesthetics Regulate Anti-Cancer Relevant Signaling. Front Oncol 2021; 11:610514. [PMID: 33718164 PMCID: PMC7952859 DOI: 10.3389/fonc.2021.610514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/22/2021] [Indexed: 11/27/2022] Open
Abstract
Volatile anesthetics are widely used inhalation anesthetics in clinical anesthesia. In recent years, the regulation of anti-cancer relevant signaling of volatile anesthetics has drawn the attention of investigators. However, their underlying mechanism remains unclear. This review summarizes the research progress on the regulation of anti-cancer relevant signaling of volatile anesthetics, including sevoflurane, desflurane, xenon, isoflurane, and halothane in vitro, in vivo, and clinical studies. The present review article aims to provide a general overview of regulation of anti-cancer relevant signaling and explore potential underlying molecular mechanisms of volatile anesthetics. It may promote promising insights of guiding clinical anesthesia procedure and instructing enhance recovery after surgery (ERAS) with latent benefits.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Lu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shen Sun
- Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Shaoqiang Huang
- Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Hai B, Pan X, Du C, Mao T, Jia F, Liu Y, Ma Y, Liu X, Zhu B. LncRNA XIST Promotes Growth of Human Chordoma Cells by Regulating miR-124-3p/iASPP Pathway. Onco Targets Ther 2020; 13:4755-4765. [PMID: 32547104 PMCID: PMC7266409 DOI: 10.2147/ott.s252195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction Chordoma is a malignant primary bone tumor that is found in the spine and skull. X-inactive specific transcript (XIST) is a long non-coding RNA (lncRNA) is known to be involved in the development of various cancers, but its precise function and mechanism in human chordoma have not been elucidated. Here, we investigated the role of lncRNA XIST in chordoma progression. Methods Quantitative real time-polymerase chain reaction (qRT-PCR) was performed to determine lncRNA XIST expression in human chordoma tissues and matched-noncancerous tissues. Western blot was used to determine protein expression. Silencing and overexpression of lncRNA XIST were carried out by RNA interference (RNAi) and lentiviral transduction, respectively. Cell Counting Kit-8 (CCK-8) assay and flow cytometry were employed to examine the effects of lncRNA XIST on growth of human chordoma cells. Lastly, the role of lncRNA XIST in vivo was explored using a xenograft model. Results We found that lncRNA XIST expression was upregulated in chordoma and strongly correlated with poor patient prognosis. Moreover, lncRNA XIST promoted proliferation and inhibited apoptosis of chordoma cells. Mechanistically, upregulation of lncRNA XIST led to a decrease in miR-124-3p expression, thereby promoting the expression of the miR-124-3p target gene, inhibitor of apoptosis-stimulating protein of p53 (iASPP). Addition of miR-124-3p inhibitor or mimic reversed the effects induced by lncRNA XIST silencing or overexpression on chordoma cell proliferation. Lastly, using a xenograft mouse model, we found that silencing of lncRNA XIST decreased tumorigenicity in vivo, as shown by increased tumor cell apoptosis. Conclusion Our findings demonstrate a key role for lncRNA XIST in chordoma progression by regulating miR124-3p/iAPSS pathway.
Collapse
Affiliation(s)
- Bao Hai
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Xiaoyu Pan
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Chuanchao Du
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Tianli Mao
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Fei Jia
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yu Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yunlong Ma
- The Center for Pain Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China.,The Center for Pain Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Bin Zhu
- The Center for Pain Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| |
Collapse
|
8
|
Deng D, Luo K, Liu H, Nie X, Xue L, Wang R, Xu Y, Cui J, Shao N, Zhi F. p62 acts as an oncogene and is targeted by miR-124-3p in glioma. Cancer Cell Int 2019; 19:280. [PMID: 31708690 PMCID: PMC6836386 DOI: 10.1186/s12935-019-1004-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
Background Glioma is the most common central nervous system (CNS) tumour. p62, an important autophagy adaptor, plays a crucial role in cancer. However, the role of p62 in the progression of glioma is poorly characterized. Methods We examined the expression of p62 in glioma tissues and cell lines. Then we investigated the function of p62 in vitro, and clarified the mechanism underlying the regulation of p62 expression. Results We revealed that p62 was upregulated at both the mRNA and protein levels in human glioma tissues irrelevant to isocitrate dehydrogenase (IDH) status. Then, we found that overexpression of p62 promoted glioma progression by promoting proliferation, migration, glycolysis, temozolomide (TMZ) resistance and nuclear factor κB (NF-κB) signalling pathway, and repressing autophagic flux and reactive oxygen species (ROS) in vitro. In accordance with p62 overexpression, knockdown of p62 exerted anti-tumour effects in glioma cells. Subsequently, we demonstrated that miR-124-3p directly targeted the 3′-UTR of p62 mRNA, leading to the downregulation of p62. Finally, we found that p62 function could be partially reversed by miR-124-3p overexpression. Conclusions Our results demonstrate that p62 can be targeted by miR-124-3p and acts as an oncogene in glioma, suggesting the potential value of p62 as a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Danni Deng
- 1Department of Neurosurgery, The First People's Hospital of Changzhou, #185 Juqian Road, Changzhou, Jiangsu China.,2Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, #185 Juqian Road, Changzhou, Jiangsu China
| | - Kaiming Luo
- 2Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, #185 Juqian Road, Changzhou, Jiangsu China.,3Department of Endocrinology, The First People's Hospital of Changzhou, Changzhou, Jiangsu China
| | - Hongmei Liu
- 4School of Biological Science and Medical Engineering, Beihang University, #37 Xueyuan Road, Beijing, China
| | - Xichen Nie
- 5MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, #135 Xingangxi Road, Guangzhou, China
| | - Lian Xue
- 1Department of Neurosurgery, The First People's Hospital of Changzhou, #185 Juqian Road, Changzhou, Jiangsu China.,2Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, #185 Juqian Road, Changzhou, Jiangsu China
| | - Rong Wang
- 1Department of Neurosurgery, The First People's Hospital of Changzhou, #185 Juqian Road, Changzhou, Jiangsu China.,2Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, #185 Juqian Road, Changzhou, Jiangsu China
| | - Yuan Xu
- 1Department of Neurosurgery, The First People's Hospital of Changzhou, #185 Juqian Road, Changzhou, Jiangsu China.,2Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, #185 Juqian Road, Changzhou, Jiangsu China
| | - Jun Cui
- 5MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, #135 Xingangxi Road, Guangzhou, China
| | - Naiyuan Shao
- 1Department of Neurosurgery, The First People's Hospital of Changzhou, #185 Juqian Road, Changzhou, Jiangsu China
| | - Feng Zhi
- 1Department of Neurosurgery, The First People's Hospital of Changzhou, #185 Juqian Road, Changzhou, Jiangsu China.,2Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, #185 Juqian Road, Changzhou, Jiangsu China
| |
Collapse
|