1
|
Metsäniitty M, Hasnat S, Öhman C, Salo T, Eklund KK, Oscarsson J, Salem A. Zebrafish larvae as a model for studying the impact of oral bacterial vesicles on tumor cell growth and metastasis. Hum Cell 2024; 37:1696-1705. [PMID: 39138804 PMCID: PMC11481661 DOI: 10.1007/s13577-024-01114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Oral bacteria naturally secrete extracellular vesicles (EVs), which have attracted attention for their promising biomedical applications including cancer therapeutics. However, our understanding of EV impact on tumor progression is hampered by limited in vivo models. In this study, we propose a facile in vivo platform for assessing the effect of EVs isolated from different bacterial strains on oral cancer growth and dissemination using the larval zebrafish model. EVs were isolated from: wild-type Aggregatibacter actinomycetemcomitans and its mutant strains lacking the cytolethal distending toxin (CDT) or lipopolysaccharide (LPS) O-antigen; and wild-type Porphyromonas gingivalis. Cancer cells pretreated with EVs were xenotransplanted into zebrafish larvae, wherein tumor growth and metastasis were screened. We further assessed the preferential sites for the metastatic foci development. Interestingly, EVs from the CDT-lacking A. actinomycetemcomitans resulted in an increased tumor growth, whereas EVs lacking the lipopolysaccharide O-antigen reduced the metastasis rate. P. gingivalis-derived EVs showed no significant effects. Cancer cells pretreated with EVs from the mutant A. actinomycetemcomitans strains tended to metastasize less often to the head and tail compared to the controls. In sum, the proposed approach provided cost- and labor-effective yet efficient model for studying bacterial EVs in oral carcinogenesis, which can be easily extended for other cancer types. Furthermore, our results support the notion that these nanosized particles may represent promising targets in cancer therapeutics.
Collapse
Affiliation(s)
- Marjut Metsäniitty
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Saika Hasnat
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Carina Öhman
- Oral Microbiology, Department of Odontology, Umeå University, 90187, Umeå, Sweden
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Kari K Eklund
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, 00014, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland
| | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, 90187, Umeå, Sweden
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland.
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
2
|
Metsäniitty M, Hasnat S, Öhman C, Salo T, Eklund KK, Oscarsson J, Salem A. Extracellular vesicles from Aggregatibacter actinomycetemcomitans exhibit potential antitumorigenic effects in oral cancer: a comparative in vitro study. Arch Microbiol 2024; 206:244. [PMID: 38702412 PMCID: PMC11068833 DOI: 10.1007/s00203-024-03976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Aggregatibacter actinomycetemcomitans is an opportunistic Gram-negative periodontopathogen strongly associated with periodontitis and infective endocarditis. Recent evidence suggests that periodontopathogens can influence the initiation and progression of oral squamous cell carcinoma (OSCC). Herein we aimed to investigate the effect of A. actinomycetemcomitans-derived extracellular vesicles (EVs) on OSCC cell behavior compared with EVs from periodontopathogens known to associate with carcinogenesis. EVs were isolated from: A. actinomycetemcomitans and its mutant strains lacking the cytolethal distending toxin (CDT) or lipopolysaccharide (LPS) O-antigen; Porphyromonas gingivalis; Fusobacterium nucleatum; and Parvimonas micra. The effect of EVs on primary and metastatic OSCC cells was assessed using cell proliferation, apoptosis, migration, invasion, and tubulogenesis assays. A. actinomycetemcomitans-derived EVs reduced the metastatic cancer cell proliferation, invasion, tubulogenesis, and increased apoptosis, mostly in CDT- and LPS O-antigen-dependent manner. EVs from F. nucleatum impaired the metastatic cancer cell proliferation and induced the apoptosis rates in all OSCC cell lines. EVs enhanced cancer cell migration regardless of bacterial species. In sum, this is the first study demonstrating the influence of A. actinomycetemcomitans-derived EVs on oral cancer in comparison with other periodontopathogens. Our findings revealed a potential antitumorigenic effect of these EVs on metastatic OSCC cells, which warrants further in vivo investigations.
Collapse
Affiliation(s)
- Marjut Metsäniitty
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Shrabon Hasnat
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Carina Öhman
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, 90187, Sweden
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Kari K Eklund
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, 00014, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, 90187, Sweden
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
| |
Collapse
|
3
|
Nasiri K, Amiri Moghaddam M, Etajuri EA, Badkoobeh A, Tavakol O, Rafinejad M, Forutan Mirhosseini A, Fathi A. Periodontitis and progression of gastrointestinal cancer: current knowledge and future perspective. Clin Transl Oncol 2023; 25:2801-2811. [PMID: 37036595 DOI: 10.1007/s12094-023-03162-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/26/2023] [Indexed: 04/11/2023]
Abstract
Periodontitis is a polymicrobial disorder caused by dysbiosis. Porphyromonas gingivalis (P.gingivalis) and Fusobacterium nucleatum (F.nucleatum) are pathobiont related to periodontitis pathogenesis and were found to be abundant in the intestinal mucosa of inflammatory bowel disease (IBD) and colorectal cancer (CRC) patients. Besides, periodontal infections have been found in a variety of tissues and organs, indicating that periodontitis is not just an inflammation limited to the oral cavity. Considering the possible translocation of pathobiont from the oral cavity to the gastrointestinal (GI) tract, this study aimed to review the published articles in this field to provide a comprehensive view of the existing knowledge about the relationship between periodontitis and GI malignancies by focusing on the oral/gut axis.
Collapse
Affiliation(s)
- Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran
| | - Masoud Amiri Moghaddam
- Department of Periodontics, Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Enas Abdalla Etajuri
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Omid Tavakol
- Department of Prosthodontics, Islamic Azad University, Shiraz, Iran
| | | | | | - Amirhossein Fathi
- Department of Prosthodontics, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Wang X, He Z, Yang H, He C, Wang C, Fazal A, Lai X, Yang L, Wen Z, Yang M, Ma S, Jie W, Cai J, Yin T, Liu B, Yang Y, Qi J. Genome-Wide Identification of LeBAHDs in Lithospermum erythrorhizon and In Vivo Transgenic Studies Confirm the Critical Roles of LeBAHD1/LeSAT1 in the Conversion of Shikonin to Acetylshikonin. Life (Basel) 2022; 12:life12111775. [PMID: 36362930 PMCID: PMC9694994 DOI: 10.3390/life12111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
The BAHD acyltransferase family is a unique class of plant proteins that acylates plant metabolites and participates in plant secondary metabolic processes. However, the BAHD members in Lithospermum erythrorhizon remain unknown and uncharacterized. Although the heterologously expressed L. erythrorhizon BAHD family member LeSAT1 in Escherichia coli has been shown to catalyze the conversion of shikonin to acetylshikonin in vitro, its in vivo role remains unknown. In this study, the characterization, evolution, expression patterns, and gene function of LeBAHDs in L. erythrorhizon were explored by bioinformatics and transgenic analysis. We totally identified 73 LeBAHDs in the reference genome of L. erythrorhizon. All LeBAHDs were phylogenetically classified into five clades likely to perform different functions, and were mainly expanded by dispersed and WGD/segmental duplication. The in vivo functional investigation of the key member LeBAHD1/LeSAT1 revealed that overexpression of LeBAHD1 in hairy roots significantly increased the content of acetylshikonin as well as the conversion rate of shikonin to acetylshikonin, whereas the CRISPR/Cas9-based knockout of LeBAHD1 in hairy roots displayed the opposite trend. Our results not only confirm the in vivo function of LeBAHD1/LeSAT1 in the biosynthesis of acetylshikonin, but also provide new insights for the biosynthetic pathway of shikonin and its derivatives.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhuoyu He
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Huan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Cong He
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Changyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaohui Lai
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Liangjie Yang
- Yili Key Laboratory of Applied Research and Development on Active Ingredients of Chinese Herbal Medicine, Yili National Agricultural Science and Technology Park at Xinjiang, Yili 835600, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Shenglin Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wencai Jie
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jinfeng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (Y.Y.); (J.Q.)
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (Y.Y.); (J.Q.)
| |
Collapse
|
5
|
Zhang Z, Bai J, Zeng Y, Cai M, Yao Y, Wu H, You L, Dong X, Ni J. Pharmacology, toxicity and pharmacokinetics of acetylshikonin: a review. PHARMACEUTICAL BIOLOGY 2020; 58:950-958. [PMID: 32956595 PMCID: PMC7534356 DOI: 10.1080/13880209.2020.1818793] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CONTEXT Acetylshikonin, a naphthoquinone derivative, is mainly extracted from some species of the family Boraginaceae, such as Lithospermum erythrorhizon Sieb. et Zucc., Arnebia euchroma (Royle) Johnst., and Arnebia guttata Bunge. As a bioactive compound, acetylshikonin has attracted much attention because of its broad pharmacological properties. OBJECTIVE This review provides a comprehensive summary of the pharmacology, toxicity, and pharmacokinetics of acetylshikonin focussing on its mechanisms on the basis of currently available literature. METHODS The information of acetylshikonin from 1977 to 2020 was collected using major databases including Elsevier, Scholar, PubMed, Springer, Web of Science, and CNKI. Acetylshikonin, pharmacology, toxicity, pharmacokinetics, and naphthoquinone derivative were used as key words. RESULTS According to emerging evidence, acetylshikonin exerts a wide spectrum of pharmacological effects such as anticancer, anti-inflammatory, lipid-regulatory, antidiabetic, antibacterial, antifungal, antioxidative, neuroprotective, and antiviral properties. However, only a few studies have reported the adverse effects of acetylshikonin, with respect to reproductive toxicity and genotoxicity. Pharmacokinetic studies demonstrate that acetylshikonin is associated with a wide distribution and poor absorption. CONCLUSIONS Although experimental data supports the beneficial effects of this compound, acetylshikonin cannot be considered as a therapy drug without further investigations, especially, on the toxicity and pharmacokinetics.
Collapse
Affiliation(s)
- Zhiqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yawen Zeng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mengru Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Elsalem L, Jum'ah AA, Alfaqih MA, Aloudat O. The Bacterial Microbiota of Gastrointestinal Cancers: Role in Cancer Pathogenesis and Therapeutic Perspectives. Clin Exp Gastroenterol 2020; 13:151-185. [PMID: 32440192 PMCID: PMC7211962 DOI: 10.2147/ceg.s243337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
The microbiota has an essential role in the pathogenesis of many gastrointestinal diseases including cancer. This effect is mediated through different mechanisms such as damaging DNA, activation of oncogenic pathways, production of carcinogenic metabolites, stimulation of chronic inflammation, and inhibition of antitumor immunity. Recently, the concept of "pharmacomicrobiomics" has emerged as a new field concerned with exploring the interplay between drugs and microbes. Mounting evidence indicates that the microbiota and their metabolites have a major impact on the pharmacodynamics and therapeutic responses toward anticancer drugs including conventional chemotherapy and molecular-targeted therapeutics. In addition, microbiota appears as an attractive target for cancer prevention and treatment. In this review, we discuss the role of bacterial microbiota in the pathogenesis of different cancer types affecting the gastrointestinal tract system. We also scrutinize the evidence regarding the role of microbiota in anticancer drug responses. Further, we discuss the use of probiotics, fecal microbiota transplantation, and antibiotics, either alone or in combination with anticancer drugs for prevention and treatment of gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Lina Elsalem
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad A Jum'ah
- Department of Conservative Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Mahmoud A Alfaqih
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Osama Aloudat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
7
|
Zhao R, Choi BY, Wei L, Fredimoses M, Yin F, Fu X, Chen H, Liu K, Kundu JK, Dong Z, Lee MH. Acetylshikonin suppressed growth of colorectal tumour tissue and cells by inhibiting the intracellular kinase, T-lymphokine-activated killer cell-originated protein kinase. Br J Pharmacol 2020; 177:2303-2319. [PMID: 31985814 PMCID: PMC7174886 DOI: 10.1111/bph.14981] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Overexpression or aberrant activation of the T-lymphokine-activated killer cell-originated protein kinase (TOPK) promotes gene expression and growth of solid tumours, implying that TOPK would be a rational target in developing novel anticancer drugs. Acetylshikonin, a diterpenoid compound isolated from Lithospermum erythrorhizon root, exerts a range of biological activities. Here we have investigated whether acetylshikonin, by acting as an inhibitor of TOPK, can attenuate the proliferation of colorectal cancer cells and the growth of patient-derived tumours, in vitro and in vivo. EXPERIMENTAL APPROACH Targets of acetylshikonin, were identified using kinase profiling analysis, kinetic/binding assay, and computational docking analysis and knock-down techniques. Effects of acetylshikonin on colorectal cancer growth and the underlying mechanisms were evaluated in cell proliferation assays, propidium iodide and annexin-V staining analyses and western blots. Patient-derived tumour xenografts in mice (PDX) and immunohistochemistry were used to assess anti-tumour effects of acetylshikonin. KEY RESULTS Acetylshikonin directly inhibited TOPK activity, interacting with the ATP-binding pocket of TOPK. Acetylshikonin suppressed cell proliferation by inducing cell cycle arrest at the G1 phase, stimulated apoptosis, and increased the expression of apoptotic biomarkers in colorectal cancer cell lines. Mechanistically, acetylshikonin diminished the phosphorylation and activation of TOPK signalling. Furthermore, acetylshikonin decreased the volume of PDX tumours and reduced the expression of TOPK signalling pathway in xenograft tumours. CONCLUSION AND IMPLICATIONS Acetylshikonin suppressed growth of colorectal cancer cells by attenuating TOPK signalling. Targeted inhibition of TOPK by acetylshikonin might be a promising new approach to the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Bu Young Choi
- Department of Pharmaceutical Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Chungbuk, South Korea
| | - Lixiao Wei
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | | | - Fanxiang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xiaorong Fu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Joydeb Kumar Kundu
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
8
|
Zhou Y, Luo GH. Porphyromonas gingivalis and digestive system cancers. World J Clin Cases 2019; 7:819-829. [PMID: 31024953 PMCID: PMC6473131 DOI: 10.12998/wjcc.v7.i7.819] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 02/05/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is an anaerobic gram-negative bacterium that colonizes in the epithelium and has been strongly associated with periodontal disease. Recently, various degrees of associations between P. gingivalis and digestive system cancers, including oral squamous cell carcinoma in the oral cavity, oesophageal squamous carcinoma in the digestive tract, and pancreatic cancer in pancreatic tissues, have been displayed in multiple clinical and experimental studies. Since P. gingivalis has a strong association with periodontal diseases, not only the relationships between P. gingivalis and digestive system tumours but also the effects induced by periodontal diseases on cancers are well-illustrated in this review. In addition, the prevention and possible treatments for these digestive system tumours induced by P. gingivalis infection are also included in this review. At the end, we also highlighted the possible mechanisms of cancers caused by P. gingivalis. One important carcinogenic effect of P. gingivalis is inhibiting the apoptosis of epithelial cells, which also plays an intrinsic role in protecting cancerous cells. Some signalling pathways activated by P. gingivalis are involved in cell apoptosis, tumourigenesis, immune evasion and cell invasion of tumour cells. In addition, metabolism of potentially carcinogenic substances caused by P. gingivalis is also one of the connections between this bacterium and cancers.
Collapse
Affiliation(s)
- Ying Zhou
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Guang-Hua Luo
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| |
Collapse
|
9
|
Chen Y, Zhou R, Yi Z, Li Y, Fu Y, Zhang Y, Li P, Li X, Pan Y. Porphyromonas gingivalis induced inflammatory responses and promoted apoptosis in lung epithelial cells infected with H1N1 via the Bcl‑2/Bax/Caspase‑3 signaling pathway. Mol Med Rep 2018; 18:97-104. [PMID: 29750299 PMCID: PMC6059728 DOI: 10.3892/mmr.2018.8983] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the effects of Porphyromonas gingivalis (P. gingivalis) on inflammatory cytokine and nitic oxide (NO) production in lung epithelial cells infected with H1N1, and the underlying mechanisms. Lung epithelial cells were co-infected with P. gingivalis and H1N1. The concentrations of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 were detected via an ELISA, and the concentration of NO was detected by the nitrate reductive enzymatic method at 4, 8, 12 and 24 h following infection. The expression levels of inducible NO synthase (iNOS) was detected by western blotting. The apoptotic rate of lung epithelial cells was detected by flow cytometry. The relative protein expression levels of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax) and caspase-3 in lung epithelial cells were detected by western blotting. Compared with the control group, the concentration of the inflammatory cytokines TNF-α, IL-1β and IL-6 exhibited a significant increase (P<0.05) in the viral-infected, bacterial-infected and co-infected groups. The concentration of NO also increased significantly (P<0.05), along with the rise in the expression levels of iNOS (P<0.05) and the increase in the apoptosis rate of lung epithelial cells (P<0.05). The relative expression levels of caspase-3 and Bax proteins were increased significantly in the viral- and bacterial-infected groups when compared with the control. The relative expression levels of Bcl-2 protein exhibited a significant decrease in lung epithelial cells following the co-infection with P. gingivalis and H1N1 compared with the control (P<0.05). The results of the present study revealed that the combination of P. gingivalis and H1N1 infection in lung epithelial cells may promote the production of inflammatory cytokines and increase NO production, leading to increased levels of apoptosis in lung epithelial cells via the Bcl-2/Bax/caspase-3 signaling pathway.
Collapse
Affiliation(s)
- Yongju Chen
- School of Stomatology, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Rui Zhou
- Department of Stomatology, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Zhe Yi
- Department of Stomatology, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Yonggang Li
- Department of Pathogeny Biology, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Ying Fu
- Department of Stomatology, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yibo Zhang
- Department of Pathogeny Biology, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Ping Li
- School of Stomatology, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Xin Li
- School of Stomatology, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yaping Pan
- Department of Stomatology, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|