1
|
Sharma P, Pal D, Gill AR, Gupta M, Goyal S, Bansal P, Sharma U, Mathkor DM, Haque S, Kaur D, SinghTuli H. Baicalein, a natural flavonoid in gastrointestinal cancers treatment: recent trends and future perspectives. Med Oncol 2024; 42:35. [PMID: 39718726 DOI: 10.1007/s12032-024-02587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
Gastrointestinal cancer is a malignant condition of the gastrointestinal tract (GI) which affect multi-organs of digestive system, such as esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum, and anus. Gastrointestinal cancer is a 5th most common malignant cancer and 4th major cause in cancer-related mortality rate. Various significant facilities are available that have reduced the radio-resistance, chemo-resistance, and their adverse side effects. However, there are serious side effects associated with chemical and radiations during the process. Baicalein is a natural flavonoid extracted from dried roots of Scutellaria baicalensis, showing anti-cancerous property. It is also participating in inhibiting metastasis, accelerating apoptosis and elevating autophagy through inhibition of inflammation and cell proliferation. In this review, we have focused on Chemistry and pharmacokinetics of Baicalein for drug designing and clinical applications majorly in gastrointestinal cancer. Moreover, various types of cancer related to gastrointestinal, role of nanotechnology, and its synergism for reducing cancer are also discussed. Thus, the review would be beneficial to explore the role of baicalein against gastrointestinal cancer treatment.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, India
| | - Deeksha Pal
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, India.
| | - Anita Rani Gill
- Department of Biotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Mahiti Gupta
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, India
| | - Soniya Goyal
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, India
| | - Poonam Bansal
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Universidad Espíritu Santo, UEES, Samborondón, Ecuador
| | - Damandeep Kaur
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, India
- Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, India
| | - Hardeep SinghTuli
- Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, India.
| |
Collapse
|
2
|
Hegde M, P R A, Mumbrekar KD. Exploring baicalein: A natural flavonoid for enhancing cancer prevention and treatment. Heliyon 2024; 10:e40809. [PMID: 39691196 PMCID: PMC11650287 DOI: 10.1016/j.heliyon.2024.e40809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/12/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Despite years of development in cancer therapy, achieving successful cancer treatment remains a major research topic. Primary means of cancer treatment include chemotherapy, radiotherapy, and surgery. However, these modalities are associated with limitations and adverse effects on normal tissues. Therefore, there is a search for novel therapeutic approaches that will increase the efficacy of the available treatment while minimizing side effects. Naturally occurring bioactive chemicals such as flavonoids have long been used in traditional medicine to treat various illnesses. Baicalein, an active ingredient in Scutellaria baicalensis Georgi, is utilised in traditional medicine to treat conditions such as hypertension, cardiovascular disease, inflammation, and infections. This review focuses on summarizing the data available on cancer prevention and treatment usage of baicalein. Baicalein is thought to prevent cancer progression by inducing apoptosis, autophagy, and genome instability, and its ability to promote chemo-potentiation, anti-metastatic effects, and regulate specific signalling molecules and transcription factors. Baicalein can be a promising option for cancer treatment, either alone or in combination with established anticancer drugs.
Collapse
Affiliation(s)
- Madhu Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Archana P R
- Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
3
|
Zhao K, Zhang J, Zhou L, Sun Z. Scutellaria baicalensis and its flavonoids in the treatment of digestive system tumors. Front Pharmacol 2024; 15:1483785. [PMID: 39654621 PMCID: PMC11625591 DOI: 10.3389/fphar.2024.1483785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Scutellaria baicalensis has been used for the treatment of digestive system disorders for thousands of years in China and other regions. Modern research have revealed its therapeutic efforts in digestive system tumors. Thus, to review the updated progress of S. baicalensis and its main flavonoids in the treatment of digestive system tumors in the past 10 years, this article summarized the therapeutic effect and molecular mechanisms of S. baicalensis and its 5 flavonoids on tumors in oral cavity, esophagus, stomach, colon, liver, pancreas by inhibiting tumor cell proliferation, inducing autophagy, stimulating immune response, and increasing drug sensitivity. In conclusion, S. baicalensis and its flavonoids could be applied to treat digestive system tumors with different type of methods.
Collapse
Affiliation(s)
- Kangning Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinlong Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Sun
- The Second Gastroenterology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Yu Q, Tang R, Mo W, Zhao L, Li L. Baicalein Enhances Radiosensitivity in Colorectal Cancer via JAK2/STAT3 Pathway Inhibition. Chem Biol Drug Des 2024; 104:e14611. [PMID: 39152534 DOI: 10.1111/cbdd.14611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Radiation resistance is a crucial factor influencing therapeutic outcomes in colorectal cancer (CRC). Baicalein (BE), primarily derived from Scutellaria baicalensis, has demonstrated anti-CRC properties. However, the impact of BE on the radiosensitivity of CRC remains unclear. This study aimed to evaluate the radiosensitization effects of BE and elucidate its mechanism in CRC radiotherapy. We established an in vitro radioresistant cell model (CT26-R) using parental CRC cells (CT26) subjected to ionizing radiation (IR). CT26-R cells were pretreated with or without BE, followed by transfection with pcDNA-NC and pcDNA-JAK2. The proliferation of CT26-R cells treated with BE and IR was assessed using a colony formation assay. A CRC animal model was developed in BALB/c mice via CT26-R cell transplantation. The radiosensitizing effect of BE on CRC was evaluated in vivo. TUNEL assay was conducted to detect apoptosis in tumor tissue. The expression levels of p-STAT3, JAK2, PD-L1, and SOCS3 in vitro and in vivo were measured by western blotting. Our results demonstrated that BE significantly increased radiosensitivity in vitro and in vivo and enhanced apoptosis in tumor tissues. Additionally, BE significantly downregulated the expression of p-STAT3, JAK2, and PD-L1, and significantly upregulated SOCS3 expression. These in vivo effects were reversed by pcDNA-JAK2. In summary, our data suggest that BE enhances CRC radiosensitivity by inhibiting the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Qingqing Yu
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Rongjun Tang
- Hyperthermia Center, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Weixing Mo
- Department of Radiology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Linfang Zhao
- Department of Ultrasonography, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lingdi Li
- Department of Medical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Cho I, Chung KH, Kim Y, Choi CH, Koh JT. Baicalein inhibits IL-1β-induced extracellular matrix degradation with decreased MCP-1 expression in primary rat chondrocytes. Toxicol Res 2024; 40:237-246. [PMID: 38525128 PMCID: PMC10959879 DOI: 10.1007/s43188-024-00225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 03/26/2024] Open
Abstract
Baicalein is a flavonoid extracted from the roots of Scutellaria baicalensis and Scutellaria lateriflora. This compound exerts various biochemical activities, including antioxidant and anti-inflammatory effects. The study aimed to investigate the effect of baicalein on articular cartilage cells and elucidate its underlying mechanism. In primary rat chondrocyte cultures, treatment with baicalein demonstrated a reduction in the loss of proteoglycan and extracellular matrix degradation induced by interleukin (IL)-1β. Baicalein suppressed IL-1β-induced catabolic responses, including the expression and activation of matrix metalloproteinase (MMP)-13, MMP-3, and MMP-1. In addition, baicalein effectively reduced nitric oxide and prostaglandin E2 production, and it downregulated the expression of inducible nitric oxide synthase and cyclooxygenase-2 in primary rat chondrocytes. Furthermore, baicalein downregulated IL-1β-induced inflammatory chemokines and cytokines, such as GM-CSF and MCP-1. These findings suggest that baicalein could potentially mitigate the catabolic responses of IL-1β in chondrocytes, making it a promising candidate for both the prevention and treatment of osteoarthritis. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00225-4.
Collapse
Affiliation(s)
- InA Cho
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Ki-Ho Chung
- Department of Preventive and Public Health Dentistry, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Young Kim
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Choong-Ho Choi
- Department of Preventive and Public Health Dentistry, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
6
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
7
|
Wang J, Wu Z, Peng J, You F, Ren Y, Li X, Xiao C. Multiple roles of baicalin and baicalein in the regulation of colorectal cancer. Front Pharmacol 2024; 15:1264418. [PMID: 38375035 PMCID: PMC10875017 DOI: 10.3389/fphar.2024.1264418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
The prevalence of colorectal cancer is increasing worldwide, and despite advances in treatment, colorectal cancer (CRC) remains in the top three for mortality due to several issues, including drug resistance and low efficiency. There is increasing evidence that baicalin and baicalein, novel small molecule inhibitor extracts of the Chinese herb Scutellaria baicalensis, have better anti-colorectal cancer effects and are less likely to induce drug resistance in cancer cells. The present review article explains the anti-proliferative properties of baicalin and baicalein in the context of against CRC. Additionally, it explores the underlying mechanisms by which these compounds modulate diverse signaling pathways associated with apoptosis, cell proliferation, tumor angiogenesis, invasion, metastasis, and tumor microenvironment. Moreover, this review article highlights the inhibitory effect of colorectal inflammatory-cancer transformation and the near-term therapeutic strategy of using them as adjuvant agents in chemotherapy.
Collapse
Affiliation(s)
- Jiamei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayuan Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yifeng Ren
- Oncology Teaching and Research Department of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Wang L, Ni B, Wang J, Zhou J, Wang J, Jiang J, Sui Y, Tian Y, Gao F, Lyu Y. Research Progress of Scutellaria baicalensis in the Treatment of Gastrointestinal Cancer. Integr Cancer Ther 2024; 23:15347354241302049. [PMID: 39610320 PMCID: PMC11605761 DOI: 10.1177/15347354241302049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Gastrointestinal (GI) cancer stands as one of the most prevalent forms of cancer globally, presenting a substantial medical and economic burden on cancer treatment. Despite advancements in therapies, it continues to exhibit the second highest mortality rate, primarily attributed to drug resistance and post-treatment side effects. There is an urgent need for novel therapeutic approaches to tackle this persistent challenge. Scutellaria baicalensis, widely used in Traditional Chinese Medicine (TCM), holds a profound pharmaceutical legacy. Modern pharmacological studies have unveiled its anticancer, antioxidant, and immune-enhancing properties. S. baicalensis contains hundreds of active ingredients, with flavonoids, polysaccharides, phenylethanoid glycosides, terpenoids, and sterols being the principal components. These constituents contribute to the treatment of GI cancer by inducing apoptosis in tumor cells, arresting the cell cycle, inhibiting tumor proliferation and metastasis, regulating the tumor microenvironment, modulating epigenetics, and reversing drug resistance. Furthermore, the utilization of modern drug delivery technologies can enhance the bioavailability and therapeutic efficacy of TCM. The treatment of GI cancer with S. baicalensis is characterized by its multi-component, multi-target, and multi-pathway advantages, and S. baicalensis has a broad prospect of becoming a clinical adjuvant or even the main therapy for GI cancer.
Collapse
Affiliation(s)
- Lankang Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Baoyi Ni
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Jilai Zhou
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Junyi Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiakang Jiang
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yutong Sui
- Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Yaoyao Tian
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng Gao
- Mudanjiang Hospital of Chinese Medicine, Mudanjiang, China
| | - Yufeng Lyu
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
9
|
Meng M, Tan J, Chen H, Shi Z, Kwan HY, Su T. Brevilin A exerts anti-colorectal cancer effects and potently inhibits STAT3 signaling invitro. Heliyon 2023; 9:e18488. [PMID: 37593607 PMCID: PMC10432182 DOI: 10.1016/j.heliyon.2023.e18488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related morbidity worldwide, with an estimated of 1.85 million new cases and 850,000 deaths every year. Nevertheless, the current treatment regimens for CRC have many disadvantages, including toxicities and off-targeted side effects. STAT3 (signal transducer and activator of transcription 3) has been considered as a promising molecular target for CRC therapy. Brevilin A, a sesquiterpene lactone compound rich in Centipedae Herba has potent anticancer effects in nasopharyngeal, prostate and breast cancer cells by inhibiting the STAT3 signaling. However, the anti-CRC effect of brevilin A and the underlying mechanism of action have not been fully elucidated. In this study, we aimed to investigate the involvement of STAT3 signaling in the anti-CRC action of brevilin A. Here, HCT-116 and CT26 cell models were used to investigate the anti-CRC effects of brevilin A in vitro. HCT-116 cells overespressing with STAT3 were used to evaluate the involvement of STAT3 signaling in the anti-CRC effect of brevilin A. Screening of 49 phosphorylated tyrosine kinases in the HCT-116 cells after brevilin A treatment was performed by using the human phospho-receptor tyrosine kinase (phospho-RTK) array. Results showed that brevilin A inhibited cell proliferation and cell viability, induced apoptosis, reduced cell migration and invasion, inhibited angiogenesis, lowered the protein expression levels of phospho-Src (Tyr416), phospho-JAK2 (Y1007/1008) and phospho-STAT3 (Tyr705), and inhibited STAT3 activation and nuclear localization. Brevilin A also significantly reduced the protein expression levels of STAT3 target genes, such as MMP-2, VEGF and Bcl-xL. More importantly, over-activation of STAT3 diminished brevilin A's effects on cell viability. All these results suggest that brevilin A exerts potent anti-CRC effects, at least in part, by inhibiting STAT3 signaling. Our findings provide a strong pharmacological basis for the future exploration and development of brevilin A as a novel STAT3-targeting phytotherapeutic agent for CRC treatment.
Collapse
Affiliation(s)
- Mingjing Meng
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jincheng Tan
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui Chen
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiqiang Shi
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hiu-Yee Kwan
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, China
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, China
| |
Collapse
|
10
|
Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem 2023; 11:1158198. [PMID: 37234200 PMCID: PMC10206224 DOI: 10.3389/fchem.2023.1158198] [Citation(s) in RCA: 207] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Free radicals are reactive oxygen species that constantly circulate through the body and occur as a side effect of many reactions that take place in the human body. Under normal conditions, they are removed from the body by antioxidant processes. If these natural mechanisms are disrupted, radicals accumulate in excess and contribute to the development of many diseases. Methodology: Relevant recent information on oxidative stress, free radicals, reactive oxidative species, and natural and synthetic antioxidants was collected by researching electronic databases such as PubMed / Medline, Web of Science, and Science Direct. Results: According to the analysed studies, this comprehensive review provided a recent update on oxidative stress, free radicals and antioxidants and their impact on the pathophysiology of human diseases. Discussion: To counteract the condition of oxidative stress, synthetic antioxidants must be provided from external sources to supplement the antioxidant defense mechanism internally. Because of their therapeutic potential and natural origin, medicinal plants have been reported as the main source of natural antioxidants phytocompounds. Some non-enzymatic phytocompounds such as flavonoids, polyphenols, and glutathione, along with some vitamins have been reported to possess strong antioxidant activities in vivo and in vitro studies. Thus, the present review describes, in brief, the overview of oxidative stress-directed cellular damage and the unction of dietary antioxidants in the management of different diseases. The therapeutic limitations in correlating the antioxidant activity of foods to human health were also discussed.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali University Vanasthali, Rajasthan, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali University Vanasthali, Rajasthan, India
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Balakyz Yeskaliyeva
- Al-Farabi Kazakh National University, Faculty of Chemistry and Chemical Technology, Almaty, Kazakhstan
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food` Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
11
|
Sisin NNT, Rahman WN. Potentials of Bismuth-Based Nanoparticles and Baicalein Natural Compounds as Radiosensitizers in Cancer Radiotherapy: a Review. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-022-01057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Wang L, Feng T, Su Z, Pi C, Wei Y, Zhao L. Latest research progress on anticancer effect of baicalin and its aglycone baicalein. Arch Pharm Res 2022; 45:535-557. [DOI: 10.1007/s12272-022-01397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/11/2022] [Indexed: 11/02/2022]
|
13
|
Molecular Targets and Mechanisms of Hedyotis diffusa- Scutellaria barbata Herb Pair for the Treatment of Colorectal Cancer Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6186662. [PMID: 35707465 PMCID: PMC9192289 DOI: 10.1155/2022/6186662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
Objective: Hedyotis diffusa-Scutellaria barbata herb pair (HS) has therapeutic effects on a variety of cancers, and this study aims to systematically explore the multiple mechanisms of HS in the treatment of colorectal cancer (CRC). Methods. The active ingredients of HS were obtained from TCMSP, and the potential targets related to these ingredients were screened from the STITCH, SuperPred, and Swiss TargetPrediction databases. Targets associated with CRC were retrieved by Drugbank, TTD, DisGeNET, and GeneCards. We used a Venn diagram to screen the intersection targets and used Cytoscape to construct the herb-ingredient-target-disease network, and the core targets were selected. The Go analysis and KEGG pathway annotation were performed by R language software. We used PyMol and Autodock Vina to achieve molecular docking of core ingredients and targets. Results: A total of 33 active ingredients were obtained from the HS, and 762 CRC-related targets were reserved from the four databases. We got 170 intersection targets to construct the network and found that the four ingredients with the most targets were quercetin, luteolin, baicalein, and dinatin, which were the core ingredients. The PPI analysis showed that the core targets were STAT3, TP53, MAPK3, AKT1, JUN, EGFR, MYC, VEGFA, EGF, and CTNNB1. Molecular docking results showed that these core ingredients had good binding potential with core targets, especially the docking of each component with MAPK obtained the lowest binding energy. HS acts simultaneously on various signaling pathways related to CRC, including the PI3K-Akt signaling pathway, proteoglycans in cancer, and the MAPK signaling pathway. Conclusions: This study systematically analyzed the active ingredients, core targets, and central mechanisms of HS in the treatment of CRC. It reveals the role of HS targeting PI3K-Akt signaling and MAPK signaling pathways in the treatment of CRC. We hope that our research could bring a new perspective to the therapy of CRC and find new anticancer drugs.
Collapse
|
14
|
Shi WK, Li YH, Bai XS, Lin GL. The Cell Cycle-Associated Protein CDKN2A May Promotes Colorectal Cancer Cell Metastasis by Inducing Epithelial-Mesenchymal Transition. Front Oncol 2022; 12:834235. [PMID: 35311137 PMCID: PMC8929760 DOI: 10.3389/fonc.2022.834235] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 01/04/2023] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy, and recurrence and metastasis contribute considerably to its high mortality. It is well known that the epithelial-mesenchymal transition (EMT) accelerates the rate of cancer cell dissemination and migration, thus promoting cancer metastasis. Targeted therapy is a common modality for cancer treatment, and it can play a role in inhibiting cancer progression. In this study, bioinformatics was used to search for genes associated with the prognosis of CRC. First, differential analysis was performed on colon and rectal cancer samples to obtain 2,840 and 3,177 differentially expressed genes (DEGs), respectively. A Venn diagram was then used to identify 262 overlapping genes from the two groups of DEGs and EMT-related genes. The overlapping genes were subjected to batch survival analysis and batch expression analysis successively, and nine genes were obtained whose high expression in CRC led to a poor prognosis. The least absolute shrinkage and selection operator (LASSO) prognostic model was then constructed to obtain the risk score formula. A nomogram was constructed to seek prognostic independent factors to obtain CDKN2A. Finally, CCK-8 assay, flow cytometry and western blotting assays were performed to analyze the cellular biological function of CDKN2A. The results showed that knockdown of CDKN2A expression inhibited HT-29 cell proliferation, promoted apoptosis and cell cycle progression, and affected the EMT process in CRC.
Collapse
Affiliation(s)
- Wei-Kun Shi
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yun-Hao Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xue-Shan Bai
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-Le Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Cao HJ, Zhou W, Xian XL, Sun SJ, Ding PJ, Tian CY, Tian FL, Jiang CH, Fu TT, Zhao S, Dai JY. A Mixture of Baicalein, Wogonin, and Oroxylin-A Inhibits EMT in the A549 Cell Line via the PI3K/AKT-TWIST1-Glycolysis Pathway. Front Pharmacol 2022; 12:821485. [PMID: 35222014 PMCID: PMC8864075 DOI: 10.3389/fphar.2021.821485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/31/2021] [Indexed: 12/27/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a worldwide disease with a high morbidity and mortality rate, which is most derived from its metastasis. Some studies show that the epithelial-mesenchymal transition (EMT) process promotes lung cancer cell migration and invasion, leading to NSCLC metastasis. Total flavonoid aglycones extract (TFAE) isolated from Scutellaria baicalensis was reported to inhibit tumor growth and induce apoptosis. In this study, we found that baicalein, wogonin, and oroxylin-A were the active compounds of TFAE. After reconstructing with these three compounds [baicalein (65.8%), wogonin (21.2%), and oroxylin-A (13.0%)], the reconstructed TFAE (reTFAE) inhibited the EMT process of A549 cells. Then, bioinformatic technology was employed to elucidate the potential pharmacodynamic mechanism network of reTFAE. We identified the relationship between reTFAE and PI3K/Akt signaling pathways, with TWIST1 as the key protein. LY294002, the inhibitor of the PI3K/Akt signaling pathway, and knock-down TWIST1 could significantly enhance the efficacy of reTFAE, with increasing expression of epithelial markers and decreasing expression of mesenchymal markers in A549 cells at the same time. Furthermore, stable isotope dimethyl-labeled proteomics technology was conducted to complement the follow-up mechanism that the EMT-inhibition process may be realized through the glycolysis pathway. In conclusion, we claim that TWIST1-targeted flavonoids could provide a new strategy to inhibit EMT progress for the treatment of NSCLC.
Collapse
Affiliation(s)
- Hui-Juan Cao
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, China
| | - Wei Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiao-Le Xian
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, China
| | - Shu-Jun Sun
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Pei-Jie Ding
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, China
| | - Chun-Yu Tian
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, China
| | - Fu-Ling Tian
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, China
| | - Chun-Hua Jiang
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, China
| | - Ting-Ting Fu
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, China
| | - Shu Zhao
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, China
| | - Jian-Ye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Snail Upregulates Transcription of FN, LEF, COX2, and COL1A1 in Hepatocellular Carcinoma: A General Model Established for Snail to Transactivate Mesenchymal Genes. Cells 2021; 10:cells10092202. [PMID: 34571852 PMCID: PMC8467536 DOI: 10.3390/cells10092202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/14/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022] Open
Abstract
SNA is one of the essential EMT transcriptional factors capable of suppressing epithelial maker while upregulating mesenchymal markers. However, the mechanisms for SNA to transactivate mesenchymal markers was not well elucidated. Recently, we demonstrated that SNA collaborates with EGR1 and SP1 to directly upregulate MMP9 and ZEB1. Remarkably, a SNA-binding motif (TCACA) upstream of EGR/SP1 overlapping region on promoters was identified. Herein, we examined whether four other mesenchymal markers, lymphoid enhancer-binding factor (LEF), fibronectin (FN), cyclooxygenase 2 (COX2), and collagen type alpha I (COL1A1) are upregulated by SNA in a similar fashion. Expectedly, SNA is essential for expression of these mesenchymal genes. By deletion mapping and site directed mutagenesis coupled with dual luciferase promoter assay, SNA-binding motif and EGR1/SP1 overlapping region are required for TPA-induced transcription of LEF, FN, COX2 and COL1A1. Consistently, TPA induced binding of SNA and EGR1/SP1 on relevant promoter regions of these mesenchymal genes using ChIP and EMSA. Thus far, we found six of the mesenchymal genes are transcriptionally upregulated by SNA in the same fashion. Moreover, comprehensive screening revealed similar sequence architectures on promoter regions of other SNA-upregulated mesenchymal markers, suggesting that a general model for SNA-upregulated mesenchymal genes can be established.
Collapse
|
17
|
AL-Ishaq RK, Liskova A, Kubatka P, Büsselberg D. Enzymatic Metabolism of Flavonoids by Gut Microbiota and Its Impact on Gastrointestinal Cancer. Cancers (Basel) 2021; 13:3934. [PMID: 34439088 PMCID: PMC8394324 DOI: 10.3390/cancers13163934] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is a prevalent global health disease with a massive burden on health care providers. Internal and external factors such as obesity, smoking, diet (red meat), low socioeconomic status and infection with Helicobacter pylori are the critical risk factors of GI cancers. Flavonoids are natural phenolic compounds found abundantly in fruits and vegetables. Upon ingestion, 90% of flavonoids consumed require further enzymatic metabolism by the gut microbiome to enhance their bioavailability and absorption. Several epidemiological studies reported that consumption of flavonoids and their enzymatic conversion by gut microbes is strongly associated with the reduced risk of GI cancer development. This review summarizes the current knowledge on the enzymatic conversion of flavonoids by the human gut microbiome. It also addresses the underlying anti-GI cancer effects on metabolic pathways such as apoptosis and cellular proliferation. Overall, metabolites produced from flavonoid's enzymatic conversion illustrate anti-GI cancer effects, but the mechanisms of action need further clarification.
Collapse
Affiliation(s)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| |
Collapse
|
18
|
Yin B, Li W, Qin H, Yun J, Sun X. The Use of Chinese Skullcap ( Scutellaria baicalensis) and Its Extracts for Sustainable Animal Production. Animals (Basel) 2021; 11:ani11041039. [PMID: 33917159 PMCID: PMC8067852 DOI: 10.3390/ani11041039] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary With the increasing pressure to address the problems of bacterial resistance and drug residues, medicinal herbs are gradually taking a more important role in animal production. Scutellaria baicalensis is a common and widely used Chinese medicinal herb. The main bioactive compounds in the plant are baicalein and baicalin. These compounds have many biological functions including anti-oxidation, antipyretic, analgesic, anti-inflammatory, antiallergic, antimicrobial, immunomodulatory, and antitumor effects. S. baicalensis and its extracts can effectively promote animal growth, improve the production performance of dairy cows, reduce the stress and inflammatory response, and have effective therapeutic effects on diseases caused by bacteria, viruses, and other pathogenic microorganisms. This paper summarizes the biological function of S. baicalensis and its application in sustainable animal production to provide a reference for future application of S. baicalensis and other medicinal herbs in animal production and disease treatment. Abstract Drugs have been widely adopted in animal production. However, drug residues and bacterial resistance are a worldwide issue, and thus the most important organizations (FAO, USDA, EU, and EFSA) have limited or banned the use of some drugs and the use of antibiotics as growth promoters. Natural products such as medicinal herbs are unlikely to cause bacterial resistance and have no chemical residues. With these advantages, medicinal herbs have long been used to treat animal diseases and improve animal performance. In recent years, there has been an increasing interest in the study of medicinal herbs. S. baicalensis is a herb with a high medicinal value. The main active compounds are baicalin and baicalein. They may act as antipyretic, analgesic, anti-inflammatory, antiallergenic, antimicrobial, and antitumor agents. They also possess characteristics of being safe, purely natural, and not prone to drug resistance. S. baicalensis and its extracts can effectively promote the production performance of livestock and treat many animal diseases, such as mastitis. In this review, we summarize the active compounds, biological functions, and applications of S. baicalensis in the production of livestock and provide a guideline for the application of natural medicines in the production and treatment of diseases.
Collapse
Affiliation(s)
- Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Wei Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Hongyu Qin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Jinyan Yun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Xuezhao Sun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
- The Innovation Centre of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin Agricultural Science and Technology University, Jilin 132109, China
- Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin 132109, China
- Correspondence: ; Tel.: +86-187-4327-5745
| |
Collapse
|
19
|
Samec M, Liskova A, Koklesova L, Mersakova S, Strnadel J, Kajo K, Pec M, Zhai K, Smejkal K, Mirzaei S, Hushmandi K, Ashrafizadeh M, Saso L, Brockmueller A, Shakibaei M, Büsselberg D, Kubatka P. Flavonoids Targeting HIF-1: Implications on Cancer Metabolism. Cancers (Basel) 2021; 13:E130. [PMID: 33401572 PMCID: PMC7794792 DOI: 10.3390/cancers13010130] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor hypoxia is described as an oxygen deprivation in malignant tissue. The hypoxic condition is a consequence of an imbalance between rapidly proliferating cells and a vascularization that leads to lower oxygen levels in tumors. Hypoxia-inducible factor 1 (HIF-1) is an essential transcription factor contributing to the regulation of hypoxia-associated genes. Some of these genes modulate molecular cascades associated with the Warburg effect and its accompanying pathways and, therefore, represent promising targets for cancer treatment. Current progress in the development of therapeutic approaches brings several promising inhibitors of HIF-1. Flavonoids, widely occurring in various plants, exert a broad spectrum of beneficial effects on human health, and are potentially powerful therapeutic tools against cancer. Recent evidences identified numerous natural flavonoids and their derivatives as inhibitors of HIF-1, associated with the regulation of critical glycolytic components in cancer cells, including pyruvate kinase M2(PKM2), lactate dehydrogenase (LDHA), glucose transporters (GLUTs), hexokinase II (HKII), phosphofructokinase-1 (PFK-1), and pyruvate dehydrogenase kinase (PDK). Here, we discuss the results of most recent studies evaluating the impact of flavonoids on HIF-1 accompanied by the regulation of critical enzymes contributing to the Warburg phenotype. Besides, flavonoid effects on glucose metabolism via regulation of HIF-1 activity represent a promising avenue in cancer-related research. At the same time, only more-in depth investigations can further elucidate the mechanistic and clinical connections between HIF-1 and cancer metabolism.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Sandra Mersakova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia; (S.M.); (J.S.)
| | - Jan Strnadel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia; (S.M.); (J.S.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200 Brno, Czech Republic;
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, 1477893855 Tehran, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, 1419963114 Tehran, Iran;
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy;
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
20
|
Network Pharmacology-Based Study on the Mechanism of Gegen Qinlian Decoction against Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8897879. [PMID: 33294000 PMCID: PMC7714584 DOI: 10.1155/2020/8897879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/17/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022]
Abstract
Purpose Gegen Qinlian decoction (GQD) has been used to treat gastrointestinal diseases, such as diarrhea and ulcerative colitis (UC). A recent study demonstrated that GQD enhanced the effect of PD-1 blockade in colorectal cancer (CRC). This study used network pharmacology analysis to investigate the mechanisms of GQD as a potential therapeutic approach against CRC. Materials and Methods Bioactive chemical ingredients (BCIs) of GQD were collected from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. CRC-specific genes were obtained using the gene expression profile GSE110224 from the Gene Expression Omnibus (GEO) database. Target genes related to BCIs of GQD were then screened out. The GQD-CRC ingredient-target pharmacology network was constructed and visualized using Cytoscape software. A protein-protein interaction (PPI) network was subsequently constructed and analyzed with BisoGenet and CytoNCA plug-in in Cytoscape. Gene Ontology (GO) functional and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis for target genes were then performed using the R package of clusterProfiler. Results One hundred and eighteen BCIs were determined to be effective on CRC, including quercetin, wogonin, and baicalein. Twenty corresponding target genes were screened out including PTGS2, CCNB1, and SPP1. Among these genes, CCNB1 and SPP1 were identified as crucial to the PPI network. A total of 212 GO terms and 6 KEGG pathways were enriched for target genes. Functional analysis indicated that these targets were closely related to pathophysiological processes and pathways such as biosynthetic and metabolic processes of prostaglandins and prostanoids, cytokine and chemokine activities, and the IL-17, TNF, Toll-like receptor, and nuclear factor-kappa B (NF-κB) signaling pathways. Conclusion The study elucidated the “multiingredient, multitarget, and multipathway” mechanisms of GQD against CRC from a systemic perspective, indicating GQD to be a candidate therapy for CRC treatment.
Collapse
|