1
|
Zhao W, Fang P, Lai C, Xu X, Wang Y, Liu H, Jiang H, Liu X, Liu J. Proteome-wide Mendelian randomization identifies therapeutic targets for ankylosing spondylitis. Front Immunol 2024; 15:1366736. [PMID: 38566994 PMCID: PMC10985162 DOI: 10.3389/fimmu.2024.1366736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Background Ankylosing Spondylitis (AS) is a chronic inflammatory disorder which can lead to considerable pain and disability. Mendelian randomization (MR) has been extensively applied for repurposing licensed drugs and uncovering new therapeutic targets. Our objective is to pinpoint innovative therapeutic protein targets for AS and assess the potential adverse effects of druggable proteins. Methods We conducted a comprehensive proteome-wide MR study to assess the causal relationships between plasma proteins and the risk of AS. The plasma proteins were sourced from the UK Biobank Pharma Proteomics Project (UKB-PPP) database, encompassing GWAS data for 2,940 plasma proteins. Additionally, GWAS data for AS were extracted from the R9 version of the Finnish database, including 2,860 patients and 270,964 controls. The colocalization analysis was executed to identify shared causal variants between plasma proteins and AS. Finally, we examined the potential adverse effects of druggable proteins for AS therapy by conducting a phenome-wide association study (PheWAS) utilizing the extensive Finnish database in version R9, encompassing 2,272 phenotypes categorized into 46 groups. Results The findings revealed a positive genetic association between the predicted plasma levels of six proteins and an elevated risk of AS, while two proteins exhibited an inverse association with AS risk (P fdr < 0.05). Among these eight plasma proteins, colocalization analysis identified AIF1, TNF, FKBPL, AGER, ALDH5A1, and ACOT13 as shared variation with AS(PPH3+PPH4>0.8), suggesting that they represent potential direct targets for AS intervention. Further phenotype-wide association studies have shown some potential side effects of these six targets (P fdr < 0.05). Conclusion Our investigation examined the causal connections between six plasma proteins and AS, providing a comprehensive understanding of potential therapeutic targets.
Collapse
Affiliation(s)
- Wenlong Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Fang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chengteng Lai
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoyu Xu
- Department of Biology, Wake Forest University, North Carolina, NC, United States
| | - Yang Wang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hao Liu
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hui Jiang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaozhou Liu
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jun Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Luo M, Zhao Z, Yi J. Osteogenesis of bone marrow mesenchymal stem cell in hyperglycemia. Front Endocrinol (Lausanne) 2023; 14:1150068. [PMID: 37415664 PMCID: PMC10321525 DOI: 10.3389/fendo.2023.1150068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Diabetes mellitus (DM) has been shown to be a clinical risk factor for bone diseases including osteoporosis and fragility. Bone metabolism is a complicated process that requires coordinated differentiation and proliferation of bone marrow mesenchymal stem cells (BMSCs). Owing to the regenerative properties, BMSCs have laid a robust foundation for their clinical application in various diseases. However, mounting evidence indicates that the osteogenic capability of BMSCs is impaired under high glucose conditions, which is responsible for diabetic bone diseases and greatly reduces the therapeutic efficiency of BMSCs. With the rapidly increasing incidence of DM, a better understanding of the impacts of hyperglycemia on BMSCs osteogenesis and the underlying mechanisms is needed. In this review, we aim to summarize the current knowledge of the osteogenesis of BMSCs in hyperglycemia, the underlying mechanisms, and the strategies to rescue the impaired BMSCs osteogenesis.
Collapse
Affiliation(s)
- Meng Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Xu K, Zhang L, Yu N, Ren Z, Wang T, Zhang Y, Zhao X, Yu T. Effects of advanced glycation end products (AGEs) on the differentiation potential of primary stem cells: a systematic review. Stem Cell Res Ther 2023; 14:74. [PMID: 37038234 PMCID: PMC10088298 DOI: 10.1186/s13287-023-03324-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
The formation and accumulation of advanced glycation end products (AGEs) have been associated with aging and the development, or worsening, of many degenerative diseases, such as atherosclerosis, chronic kidney disease, and diabetes. AGEs can accumulate in a variety of cells and tissues, and organs in the body, which in turn induces oxidative stress and inflammatory responses and adversely affects human health. In addition, under abnormal pathological conditions, AGEs create conditions that are not conducive to stem cell differentiation. Moreover, an accumulation of AGEs can affect the differentiation of stem cells. This, in turn, leads to impaired tissue repair and further aggravation of diabetic complications. Therefore, this systematic review clearly outlines the effects of AGEs on cell differentiation of various types of primary isolated stem cells and summarizes the possible regulatory mechanisms and interventions. Our study is expected to reveal the mechanism of tissue damage caused by the diabetic microenvironment from a cellular and molecular point of view and provide new ideas for treating complications caused by diabetes.
Collapse
Affiliation(s)
- Kuishuai Xu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Liang Zhang
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Ning Yu
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhongkai Ren
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Tianrui Wang
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yingze Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xia Zhao
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
4
|
Gao B, Wu J, Lv K, Shen C, Yao H. Visualized analysis of hotspots and frontiers in diabetes-associated periodontal disease research: a bibliometric study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1305. [PMID: 36660670 PMCID: PMC9843370 DOI: 10.21037/atm-22-2443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/14/2022] [Indexed: 12/24/2022]
Abstract
Background Diabetes-associated periodontal disease is caused by diabetes-enhanced host immune-inflammatory responses to bacterial insult. An increasing number of papers related to diabetes-associated periodontal disease have been published. This study analyzed research on diabetes-associated periodontal disease with bibliometrics methods. The objective of this study was to identify hotspots and frontiers in the diabetes-associated periodontal disease research field. Methods Publications were extracted from the Web of Science core collection database, and the document types included were limited to articles and reviews. The bibliometric analysis software CiteSpace5 was used to analyze the number of articles, research fields, countries/regions, institutions, authors, keywords, and other information. Outcomes were visualized to analyze the hotspots and research frontiers of diabetes-associated periodontal disease. Results A total of 3,572 articles were retrieved. Among the research fields, dentistry, oral surgery, and medicine accounted for the highest proportion of publications, and public, environmental, and occupational health had the highest betweenness centrality. The number of publications from the United States ranked first among all the countries, while Columbia University ranked first among all the institutions. Global cooperation was not frequent. Keyword analysis showed that inflammatory pathways were the hotspots. Burst words analysis indicated that early prevention was a research frontier. Conclusions The bibliometric method helped identify research hotspots and frontiers. Inflammatory pathways were hotspots, and early prevention was a frontier in diabetes-associated periodontal disease.
Collapse
|
5
|
Zhou F, Zhang G, Wu Y, Xiong Y. Inflammasome Complexes: Crucial mediators in osteoimmunology and bone diseases. Int Immunopharmacol 2022; 110:109072. [DOI: 10.1016/j.intimp.2022.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
|
6
|
Cheng K, Guo Q, Yang W, Wang Y, Sun Z, Wu H. Mapping Knowledge Landscapes and Emerging Trends of the Links Between Bone Metabolism and Diabetes Mellitus: A Bibliometric Analysis From 2000 to 2021. Front Public Health 2022; 10:918483. [PMID: 35719662 PMCID: PMC9204186 DOI: 10.3389/fpubh.2022.918483] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
BackgroundDiabetes mellitus (DM) have become seriously threatens to human health and life quality worldwide. As a systemic metabolic disease, multiple studies have revealed that DM is related to metabolic bone diseases and always induces higher risk of fracture. In view of this, the links between bone metabolism (BM) and DM (BMDM) have gained much attention and numerous related papers have been published. Nevertheless, no prior studies have yet been performed to analyze the field of BMDM research through bibliometric approach. To fill this knowledge gap, we performed a comprehensive bibliometric analysis of the global scientific publications in this field.MethodsArticles and reviews regarding BMDM published between 2000 and 2021 were obtained from the Web of Science after manually screening. VOSviewer 1.6.16, CiteSpace V 5.8.R3, Bibliometrix, and two online analysis platforms were used to conduct the bibliometric and visualization analyses.ResultsA total of 2,525 documents including 2,255 articles and 270 reviews were retrieved. Our analysis demonstrated a steady increasing trend in the number of publications over the past 22 years (R2 = 0.989). The United States has occupied the leading position with the largest outputs and highest H-index. University of California San Francisco contributed the most publications, and Schwartz AV was the most influential author. Collaboration among institutions from different countries was relatively few. The journals that published the most BMDM-related papers were Bone and Osteoporosis International. Osteoporosis and related fractures are the main bone metabolic diseases of greatest concern in this field. According to co-cited references result, “high glucose environment,” “glycation end-product” and “sodium-glucose co-transporter” have been recognized as the current research focus in this domain. The keywords co-occurrence analysis indicated that “diabetic osteoporosis,” “osteoarthritis,” “fracture risk,” “meta-analysis,” “osteogenic differentiation,” “bone regeneration,” “osteogenesis,” and “trabecular bone score” might remain the research hotspots and frontiers in the near future.ConclusionAs a cross-discipline research field, the links between bone metabolism and diabetes mellitus are attracting increased attention. Osteoporosis and related fractures are the main bone metabolic diseases of greatest concern in this field. These insights may be helpful for clinicians to recognize diabetic osteopenia and provide more attention and support to such patients.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Kunming Cheng
| | - Qiang Guo
- Department of Orthopaedic Surgery, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Weiguang Yang
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zaijie Sun
- Department of Orthopaedic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- *Correspondence: Zaijie Sun
| | - Haiyang Wu
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Haiyang Wu
| |
Collapse
|
7
|
Domingues A, Jolibois J, Marquet de Rougé P, Nivet-Antoine V. The Emerging Role of TXNIP in Ischemic and Cardiovascular Diseases; A Novel Marker and Therapeutic Target. Int J Mol Sci 2021; 22:ijms22041693. [PMID: 33567593 PMCID: PMC7914816 DOI: 10.3390/ijms22041693] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Thioredoxin interacting protein (TXNIP) is a metabolism- oxidative- and inflammation-related marker induced in cardiovascular diseases and is believed to represent a possible link between metabolism and cellular redox status. TXNIP is a potential biomarker in cardiovascular and ischemic diseases but also a novel identified target for preventive and curative medicine. The goal of this review is to focus on the novelties concerning TXNIP. After an overview in TXNIP involvement in oxidative stress, inflammation and metabolism, the remainder of this review presents the clues used to define TXNIP as a new marker at the genetic, blood, or ischemic site level in the context of cardiovascular and ischemic diseases.
Collapse
Affiliation(s)
- Alison Domingues
- INSERM 1140, Innovative Therapies in Haemostasis, Faculty of Pharmacy, Université de Paris, 75006 Paris, France; (A.D.); (J.J.); (P.M.d.R.)
| | - Julia Jolibois
- INSERM 1140, Innovative Therapies in Haemostasis, Faculty of Pharmacy, Université de Paris, 75006 Paris, France; (A.D.); (J.J.); (P.M.d.R.)
| | - Perrine Marquet de Rougé
- INSERM 1140, Innovative Therapies in Haemostasis, Faculty of Pharmacy, Université de Paris, 75006 Paris, France; (A.D.); (J.J.); (P.M.d.R.)
| | - Valérie Nivet-Antoine
- INSERM 1140, Innovative Therapies in Haemostasis, Faculty of Pharmacy, Université de Paris, 75006 Paris, France; (A.D.); (J.J.); (P.M.d.R.)
- Clinical Biochemistry Department, Assistance Publique des Hôpitaux de Paris, Necker Hospital, 75015 Paris, France
- Correspondence:
| |
Collapse
|