1
|
Kerek Á, Szabó Á, Dobra PF, Bárdos K, Paszerbovics B, Bata Z, Molnár-Nagy V, Jerzsele Á, Ózsvári L. Dose-response study of a fenugreek-based antibiotic alternative in Bábolna Tetra-SL chicks (1-42 days old) with mixed bacterial infections. Front Vet Sci 2025; 12:1570387. [PMID: 40343363 PMCID: PMC12058679 DOI: 10.3389/fvets.2025.1570387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Combating antimicrobial resistance is one of the most pressing public health challenges of our time. The rapid spread of resistant, zoonotic bacterial strains in livestock farming is increasingly raising concerns about the need to reduce antibiotic use. Because of this, there is an urgent need for safe and effective alternatives in animal husbandry. Methods This study aimed to perform an in vivo the dose-response analysis of fenugreek (Trigonella foenum-graecum), as a plant-based antibiotic alternative feed supplement in Bábolna Tetra-SL chicks (1-42 days old) with a 1:1 sex ratio. A total of 270 chicks were randomly assigned to 18 groups (15 birds per group) and subjected to six different treatment groups in three replicates: fenugreek at 1×, 10×, and 100× doses, an antibiotic-treated group (enrofloxacin), a positive control group (infection only), and a negative control group (no infection or treatment). The infection was induced using mixed Salmonella Enteritidis and Escherichia coli, administered via gavage on days 3 and 4 of life. The birds were monitored for clinical symptoms, body weight, feed intake, and Salmonella shedding through cloacal swab samples. Statistical analyses included mixed-effect logistic regression for mortality, mixed-effect linear models for weight gain, two-way ANOVA for feed efficiency, and random effects continuation ratio models for Salmonella isolation. Results Significant interactions for Group:Day and Sex:Day in weight gain were identified (p < 0.0001 for both). Additionally, the 1 × dose group showed significantly reduced Salmonella shedding compared to the positive control group on day 33 (p = 0.0031). The low-dose group (1×) demonstrated the most promising results, showing a 63% reduction in Salmonella shedding on day 10 and 31% on day 17. This group exhibited the fewest clinical symptoms, no diarrhea, and the lowest individual and specific feed intake up to day 24. Discussion The findings of this study suggest that low-dose fenugreek supplementation could be a viable strategy for reducing Salmonella shedding in poultry, potentially contributing to reduced antibiotic use in poultry farming and thus playing a role in the global effort to combat antimicrobial resistance. Future research will involve large-scale industrial trials and next-generation sequencing to evaluate the additive's impact on gut microbiota composition.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Péter Ferenc Dobra
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Krisztina Bárdos
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
- Department of Veterinary Forensics and Economics, Institute of Economics and Biostatistics, University of Veterinary Medicine, Budapest, Hungary
| | - Bettina Paszerbovics
- Department of Biostatistics, Institute of Economics and Biostatistics, University of Veterinary Medicine, Budapest, Hungary
| | | | | | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - László Ózsvári
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
- Department of Veterinary Forensics and Economics, Institute of Economics and Biostatistics, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
2
|
do Socorro Costa M, da Silva ARP, Santos Araújo J, Dos Santos ATL, Fonseca VJA, Gonçalves Alencar G, Moura TF, Gonçalves SA, Filho JMB, Morais-Braga MFB, Andrade-Pinheiro JC, Coutinho HDM. In vitro Evaluation of Fungal Susceptibility and Inhibition of Virulence by Diosgenin. Chem Biodivers 2024; 21:e202400444. [PMID: 38670923 DOI: 10.1002/cbdv.202400444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
Fungal infections are a public health problem that mainly affects immunosuppressed people, Candida spp. have been responsible for most sources of contamination and invasive fungal infections described around the world. The need arises to find new therapeutic approaches to combat growing infections. Plants and natural products have been considered a valuable source for discovering new molecules with active ingredients. Diosgenin is a sapogenin found in the families of Leguminosae and Dioscoreaceae, it is obtained mainly from the dioscin saponin through the hydrolysis method, it is a phytochemical that has been highlighted in the treatment of various diseases, as well as in combating microbial resistance. The present study aimed to evaluate the susceptibility of fungal strains to diosgenin, as well as verify the association with the reference drug and evaluate the inhibition of the virulence factor through morphological changes in the yeast state to the filamentous form of hyphae and pseudohyphae in strains of Candida albicans, Candida tropicalis and Candida krusei using the broth microdilution method and microculture technique. Antifungal assays revealed that diosgenin was not able to inhibit the growth of the tested strains. However, it was able to inhibit the fungal dimorphism of the strains evaluated, however further studies are recommended to verify its effectiveness against other virulence factors.
Collapse
Affiliation(s)
- Maria do Socorro Costa
- Graduate Program in Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - Ana Raquel Pereira da Silva
- Graduate Program in Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - Juliana Santos Araújo
- Laboratory of Applied Microbiology -, LAMAP, Federal University of Cariri, Barbalha, Ceará, Brazil
| | | | | | - Gabriel Gonçalves Alencar
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - Talysson Felismino Moura
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - Sheila Alves Gonçalves
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - José Maria Barbosa Filho
- Laboratory Technology Pharmaceutical, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Jacqueline Cosmo Andrade-Pinheiro
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
- Laboratory of Applied Microbiology -, LAMAP, Federal University of Cariri, Barbalha, Ceará, Brazil
| | | |
Collapse
|
3
|
Cong S, Peng Q, Cao L, Yi Q, Liu Y, Li L, Tong Q, Liang D. Diosgenin prevents periodontitis by inhibiting inflammation and promoting osteogenic differentiation. Oral Dis 2024; 30:2497-2510. [PMID: 37593795 DOI: 10.1111/odi.14708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/28/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Diosgenin, an essential dietary steroidal sapogenin, possess multiple pharmacological activities. This study aimed to assess the effects of diosgenin on periodontitis and elucidate the mechanisms. Lipopolysaccharide (LPS)-stimulated human periodontal ligament stem cells (hPDLCs) and a Porphyromonas gingivalis (P.g) plus ligation-induced animal model were used for in vitro and in vivo studies, respectively. Inflammatory responses, nuclear factor κ-B (NF-κB) signaling and osteogenesis-related markers were measured both in LPS-stimulated hPDLSCs and in gingival tissue of periodontitis rats. Treatment with diosgenin significantly inhibited the production of tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and interleukin (IL)-6 and the activation of NF-κB pathway in LPS-stimulated hPDLSCs. Further, treatment with diosgenin enhanced the expression of osteoblast-related genes and increased the osteogenic differentiation capacity. Further, activation NF-κB pathway largely abolished the protective effects of diosgenin. Consistent with the in vitro studies, in vivo studies showed that administering diosgenin to periodontitis rats significantly lowered the levels of the TNF-α, IL-1β, and IL-6 and the inflammatory transcription factor NF-κB in gingival tissue. In addition, osteoblast-related genes were promoted. Diosgenin attenuates periodontitis by adjusting NF-κB signaling to inhibit inflammatory effects and promoting osteogenesis, suggesting diosgenin might be developed as a therapeutic strategy for treating periodontitis in the future.
Collapse
Affiliation(s)
- Shaohua Cong
- Department of Stomatology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qian Peng
- Plastic and Reconstructive Surgery, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Liou Cao
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Yi
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yi Liu
- Department of Stomatology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Linhui Li
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qingchun Tong
- Department of Stomatology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dongyu Liang
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
4
|
Rakshit S, More A, Gaikwad S, Seniya C, Gade A, Muley VY, Mukherjee A, Kamble K. Role of diosgenin extracted from Helicteres isora L in suppression of HIV-1 replication: An in vitro preclinical study. Heliyon 2024; 10:e24350. [PMID: 38288021 PMCID: PMC10823083 DOI: 10.1016/j.heliyon.2024.e24350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
Background Diosgenin, an essential sapogenin steroid with significant biological implications, is composed of a hydrophilic sugar moiety intricately linked to a hydrophobic steroid aglycone. While the antiviral properties of diosgenin against numerous RNA viruses have been extensively documented, its potential in combating Human Immunodeficiency Virus infections remains unexplored. Experimental procedure This current investigation presents a comprehensive and systematic analysis of extracts derived from the leaves of Helicteres isora, which are notably enriched with diosgenin. Rigorous methodologies, including established chromatographic techniques and Fourier-transform infrared spectroscopy were employed for the characterization of the active diosgenin compound followed by molecular interaction analyses with the key HIV enzymes and mechanistic validation of HIV inhibition. Key results The inhibitory effects of extracted diosgenin on the replication of HIV-1 were demonstrated using a permissive cellular system, encompassing two distinct subtypes of HIV-1 strains. Computational analyses involving molecular interactions highlighted the substantial occupancy of critical active site pocket residues within the key HIV-1 proteins by diosgenin. Additionally, the mechanistic underpinnings of diosgenin activity in conjunction with standard controls were elucidated through specialized colorimetric assays, evaluating its impact on HIV-1 Reverse Transcriptase and Integrase enzymes. Conclusions To our current state of knowledge, this study represents the inaugural demonstration of the anti-HIV efficacy inherent to diosgenin found in the leaves of Helicteres isora, and can be taken further for drug design and development for the management of HIV infection.
Collapse
Affiliation(s)
- Smita Rakshit
- Department of Microbiology, Sant Gadge Baba Amravati University, Amravati, MH, India
| | - Ashwini More
- Division of Virology, ICMR-National AIDS Research Institute, Pune, MH, India
| | - Shraddha Gaikwad
- Division of Virology, ICMR-National AIDS Research Institute, Pune, MH, India
| | - Chandrabhan Seniya
- VIT Bhopal University, School of Biosciences, Engineering and Technology, Bhopal, MP, India
| | - Aniket Gade
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MH, India
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, MH, India
| | | | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune, MH, India
| | - Kapil Kamble
- Department of Microbiology, Sant Gadge Baba Amravati University, Amravati, MH, India
| |
Collapse
|
5
|
Xiang X, Xin X, Hou Y, Deng Y, Liu X, Yu W. Diosgenin alters LPS-induced macrophage polarization by activating PPARγ/NF-κB signaling pathway. Int Immunopharmacol 2024; 126:111270. [PMID: 38029551 DOI: 10.1016/j.intimp.2023.111270] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Diosgenin (DG) is a steroidal saponin derived from plants, and it exhibits anti-inflammatory properties. In this study, we employed an in vitro model of P.g.-LPS-stimulated mouse macrophage cell line RAW264.7 to investigate the anti-inflammatory effects and mechanism of DG under the condition of altered polarization of macrophages. The RAW264.7 cells were subjected to pre-treatment with DG with or without P.g.-LPS. In cultured macrophages, DG inhibited P.g.-LPS-induced pro-inflammatory M1 macrophages, and increased anti-inflammatory M2 macrophages. Notably, DG reduced the expression of phosphorylation levels of NF-κB p65 and IκB while increasing the expression of PPARγ. Further studies revealed that PPARγ inhibitor GW9662 or PPARγ siRNA reversed the inhibitory effect of DG on M1 phenotype. Collectively, the anti-inflammatory mechanism of DG is related to altering macrophage polarization by activating PPARγ and inhibiting NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xingchen Xiang
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xirui Xin
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yubo Hou
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yu Deng
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xinchan Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China.
| | - Weixian Yu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China; Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
6
|
Kim SY, Kim M, Kim TJ. Regulation of σ B-Dependent Biofilm Formation in Staphylococcus aureus through Strain-Specific Signaling Induced by Diosgenin. Microorganisms 2023; 11:2376. [PMID: 37894034 PMCID: PMC10609180 DOI: 10.3390/microorganisms11102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Staphylococcus aureus is a commensal skin bacterium and a causative agent of infectious diseases. Biofilm formation in S. aureus is a mechanism that facilitates the emergence of resistant strains. This study proposes a mechanism for the regulation of biofilm formation in S. aureus through strain-specific physiological changes induced by the plant steroid diosgenin. A comparison of diosgenin-induced changes in the expression of regulatory genes associated with physiological changes revealed the intracellular regulatory mechanisms involved in biofilm formation. Diosgenin reduced biofilm formation in S. aureus ATCC 6538 and methicillin-resistant S. aureus (MRSA) CCARM 3090 by 39% and 61%, respectively. Conversely, it increased biofilm formation in S. aureus ATCC 29213 and MRSA CCARM 3820 by 186% and 582%, respectively. Cell surface hydrophobicity and extracellular protein and carbohydrate contents changed in a strain-specific manner in response to biofilm formation. An assessment of the changes in gene expression associated with biofilm formation revealed that diosgenin treatment decreased the expression of icaA and spa and increased the expression of RNAIII, agrA, sarA, and sigB in S. aureus ATCC 6538 and MRSA CCARM 3090; however, contrasting gene expression changes were noted in S. aureus ATCC 29213 and MRSA CCARM 3820. These results suggest that a regulatory mechanism of biofilm formation is that activated sigB expression sequentially increases the expression of sarA, agrA, and RNAIII. This increased RNAIII expression decreases the expression of spa, a surface-associated adhesion factor. An additional regulatory mechanism of biofilm formation is that activated sigB expression decreases the expression of an unknown regulator that increases the expression of icaA. This in turn decreases the expression of icaA, which decreases the synthesis of polysaccharide intercellular adhesins and ultimately inhibits biofilm formation. By assessing strain-specific contrasting regulatory signals induced by diosgenin in S. aureus without gene mutation, this study elucidated the signal transduction mechanisms that regulate biofilm formation based on physiological and gene expression changes.
Collapse
Affiliation(s)
| | | | - Tae-Jong Kim
- Department of Forest Products and Biotechnology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
7
|
Qu S, Yu S, Ma X, Wang R. "Medicine food homology" plants promote periodontal health: antimicrobial, anti-inflammatory, and inhibition of bone resorption. Front Nutr 2023; 10:1193289. [PMID: 37396128 PMCID: PMC10307967 DOI: 10.3389/fnut.2023.1193289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
"Medicine food homology" (MFH) is a term with a lengthy history. It refers to the fact that a lot of traditional natural products have both culinary and therapeutic benefits. The antibacterial, anti-inflammatory and anticancer effects of MFH plants and their secondary metabolites have been confirmed by numerous research. A bacterially generated inflammatory illness with a complicated pathophysiology, periodontitis causes the loss of the teeth's supporting tissues. Several MFH plants have recently been shown to have the ability to prevent and treat periodontitis, which is exhibited by blocking the disease's pathogens and the virulence factors that go along with them, lowering the host's inflammatory reactions and halting the loss of alveolar bone. To give a theoretical foundation for the creation of functional foods, oral care products and adjuvant therapies, this review has especially explored the potential medicinal benefit of MFH plants and their secondary metabolites in the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Shanlin Qu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Shuo Yu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xiaolin Ma
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Rui Wang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
8
|
Zhao J, Zhang Y, Cheng Y, Xie S, Li DD, Zhang PF, Ren XY, Wang X. Effects of modified triangular flap for third molar extraction on distal periodontal health of second molar: A randomized controlled study. Heliyon 2023; 9:e16161. [PMID: 37234672 PMCID: PMC10208835 DOI: 10.1016/j.heliyon.2023.e16161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Objective The aim of this study was to assess the effect of flap design for impacted mandibular third molar extraction on the distal periodontal tissue of their neighbors clinically, immunologically, and microbiologically. Study design This randomized controlled study comprised 100 patients who were allocated randomly to receive either a triangular flap or a modified triangular flap. The distal periodontal pocket depth, plaque index, bleeding on probing, the presence of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia, and the level of interleukin-1β, interleukin-8 and matrix metalloproteinase-8 of adjacent second molars were measured at baseline, and 1, 4 and 8 weeks after surgery. Results After 1 and 4 weeks, distal periodontal conditions of adjacent second molars deteriorated, along with an increase in subgingival microbiota and inflammatory factors in both groups. And compared to the modified triangular flap group, the triangular flap group significantly increased (p < 0.05). Prevotella intermedia, interleukin-1β and probing depth were positively correlated in both groups. After 8 weeks, they returned to the preoperative level. Conclusions In this study, both flap designs for impacted mandibular third molar extractions was associated with worse clinical periodontal indices, increased inflammatory biomarkers of gingival crevicular fluid, and more subgingival pathogenic microbiota within 4 weeks. But compared with the triangular flap, the modified triangular flap was better for distal periodontal health of adjacent second molars, which provides certain directions for clinical treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Yongfeng Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Si Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | | | - Peng-Fei Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Xiu-Yun Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| |
Collapse
|
9
|
Jadimurthy R, Jagadish S, Nayak SC, Kumar S, Mohan CD, Rangappa KS. Phytochemicals as Invaluable Sources of Potent Antimicrobial Agents to Combat Antibiotic Resistance. Life (Basel) 2023; 13:948. [PMID: 37109477 PMCID: PMC10145550 DOI: 10.3390/life13040948] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Plants have been used for therapeutic purposes against various human ailments for several centuries. Plant-derived natural compounds have been implemented in clinics against microbial diseases. Unfortunately, the emergence of antimicrobial resistance has significantly reduced the efficacy of existing standard antimicrobials. The World Health Organization (WHO) has declared antimicrobial resistance as one of the top 10 global public health threats facing humanity. Therefore, it is the need of the hour to discover new antimicrobial agents against drug-resistant pathogens. In the present article, we have discussed the importance of plant metabolites in the context of their medicinal applications and elaborated on their mechanism of antimicrobial action against human pathogens. The WHO has categorized some drug-resistant bacteria and fungi as critical and high priority based on the need to develope new drugs, and we have considered the plant metabolites that target these bacteria and fungi. We have also emphasized the role of phytochemicals that target deadly viruses such as COVID-19, Ebola, and dengue. Additionally, we have also elaborated on the synergetic effect of plant-derived compounds with standard antimicrobials against clinically important microbes. Overall, this article provides an overview of the importance of considering phytogenous compounds in the development of antimicrobial compounds as therapeutic agents against drug-resistant microbes.
Collapse
Affiliation(s)
- Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | - Swamy Jagadish
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | - Siddaiah Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India;
| | - Sumana Kumar
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | | |
Collapse
|
10
|
A Study on the Chemistry and Biological Activity of 26-Sulfur Analogs of Diosgenin: Synthesis of 26-Thiodiosgenin S-Mono- and Dioxides, and Their Alkyl Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010189. [PMID: 36615383 PMCID: PMC9822051 DOI: 10.3390/molecules28010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
A chemoselective procedure for MCPBA oxidation of 26-thiodiosgenin to corresponding sulfoxides and sulfone was elaborated. An unusual equilibration of sulfoxides in solution was observed. Moreover, α-alkylation of sulfoxide and sulfone was investigated. Finally, the biological activity of obtained compounds was examined.
Collapse
|
11
|
do Socorro Costa M, da Silva ARP, Araújo NJS, Filho JMB, Tavares JF, de Freitas TS, Pereira Junior FN, de Sousa EO, Maia FPA, de Vasconcelos JEL, Pinheiro JCA, Coutinho HDM. Evaluation of the antibacterial and inhibitory activity of NorA and MepA efflux pumps from Staphylococcus aureus by diosgenin. Life Sci 2022; 308:120978. [PMID: 36122765 DOI: 10.1016/j.lfs.2022.120978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
The increase in bacterial resistance to available antibiotics has driven several researchers to search for new agents with therapeutic properties. Diosgenin is a naturally occurring steroidal saponin that has demonstrated several pharmacological properties. In the present study, we report the antimicrobial activity of diosgenin against the standard and multidrug-resistant bacteria of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, in addition to the efflux pump inhibitory activity against Staphylococcus aureus strains carrying NorA and MepA pumps. For this purpose, the broth microdilution method was used, from which the value of the Minimum Inhibitory Concentration (MIC) was obtained, and this was associated with subinhibitory concentration (MIC/8) with antibiotic of clinical use and ethidium bromide for strains carrier by efflux pump. Diosgenin showed antimicrobial activity for standard S. aureus bacteria and potentiating activity in association with gentamicin and ampicillin for P. aeruginosa multidrug-resistant bacteria, it also showed potentiation in association with norfloxacin against the E. coli strain and gentamicin against the S. aureus strain. Antimicrobial activity against efflux pump-bearing strains revealed that saponin did not interfere with the efflux pump mechanism or intervened antagonistically. Thus, saponin has shown to be very promising against bacterial resistance in association with aminoglycoside, fluoroquinolones and beta-lactam, however additional studies should be carried out to better elucidate the mechanism of action of diosgenin.
Collapse
Affiliation(s)
- Maria do Socorro Costa
- Graduate Program in Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil; Laboratory of Microbiology and Molecular Biology, Regional University of Cariri - LMBM, Crato, Ceará, Brazil
| | - Ana Raquel Pereira da Silva
- Graduate Program in Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil; Laboratory of Microbiology and Molecular Biology, Regional University of Cariri - LMBM, Crato, Ceará, Brazil
| | | | - José Maria Barbosa Filho
- Laboratory Technology Pharmaceutical, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Josean Fechine Tavares
- Laboratory Technology Pharmaceutical, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Thiago Sampaio de Freitas
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri - LMBM, Crato, Ceará, Brazil
| | | | | | | | | | - Jacqueline Cosmo Andrade Pinheiro
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri - LMBM, Crato, Ceará, Brazil; Graduate Program in Health Sciences, Federal University of Cariri, Barbalha, Ceará, Brazil
| | | |
Collapse
|
12
|
Nasution AK, Wijaya SH, Gao P, Islam RM, Huang M, Ono N, Kanaya S, Altaf-Ul-Amin M. Prediction of Potential Natural Antibiotics Plants Based on Jamu Formula Using Random Forest Classifier. Antibiotics (Basel) 2022; 11:antibiotics11091199. [PMID: 36139978 PMCID: PMC9495033 DOI: 10.3390/antibiotics11091199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Jamu is the traditional Indonesian herbal medicine system that is considered to have many benefits such as serving as a cure for diseases or maintaining sound health. A Jamu medicine is generally made from a mixture of several herbs. Natural antibiotics can provide a way to handle the problem of antibiotic resistance. This research aims to discover the potential of herbal plants as natural antibiotic candidates based on a machine learning approach. Our input data consists of a list of herbal formulas with plants as their constituents. The target class corresponds to bacterial diseases that can be cured by herbal formulas. The best model has been observed by implementing the Random Forest (RF) algorithm. For 10-fold cross-validations, the maximum accuracy, recall, and precision are 91.10%, 91.10%, and 90.54% with standard deviations 1.05, 1.05, and 1.48, respectively, which imply that the model obtained is good and robust. This study has shown that 14 plants can be potentially used as natural antibiotic candidates. Furthermore, according to scientific journals, 10 of the 14 selected plants have direct or indirect antibacterial activity.
Collapse
Affiliation(s)
- Ahmad Kamal Nasution
- Computational Systems Biology Lab, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0101, Japan
- Correspondence: (A.K.N.); (M.A.-U.-A.)
| | - Sony Hartono Wijaya
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Pei Gao
- Computational Systems Biology Lab, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0101, Japan
| | - Rumman Mahfujul Islam
- Computational Systems Biology Lab, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0101, Japan
| | - Ming Huang
- Computational Systems Biology Lab, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0101, Japan
| | - Naoaki Ono
- Computational Systems Biology Lab, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0101, Japan
| | - Shigehiko Kanaya
- Computational Systems Biology Lab, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0101, Japan
| | - Md. Altaf-Ul-Amin
- Computational Systems Biology Lab, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0101, Japan
- Correspondence: (A.K.N.); (M.A.-U.-A.)
| |
Collapse
|
13
|
Spiegel M, Krzyżek P, Dworniczek E, Adamski R, Sroka Z. In Silico Screening and In Vitro Assessment of Natural Products with Anti-Virulence Activity against Helicobacter pylori. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010020. [PMID: 35011255 PMCID: PMC8746548 DOI: 10.3390/molecules27010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori is one of the most frequent human pathogens and a leading etiological agent of various gastric diseases. As stringent response, coordinated by a SpoT protein, seems to be crucial for the survivability of H. pylori, the main goal of this article was to use in silico computational studies to find phytochemical compounds capable of binding to the active site of SpoT from H. pylori and confirm the ability of the most active candidates to interfere with the virulence of this bacterium through in vitro experiments. From 791 natural substances submitted for the virtual screening procedure, 10 were chosen and followed for further in vitro examinations. Among these, dioscin showed the most interesting parameters (the lowest MIC, the highest anti-biofilm activity in static conditions, and a relatively low stimulation of morphological transition into coccoids). Therefore, in the last part, we extended the research with a number of further experiments and observed the ability of dioscin to significantly reduce the formation of H. pylori biofilm under Bioflux-generated flow conditions and its capacity for additive enhancement of the antibacterial activity of all three commonly used antibiotics (clarithromycin, metronidazole, and levofloxacin). Based on these results, we suggest that dioscin may be an interesting candidate for new therapies targeting H. pylori survivability and virulence.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
- Correspondence: (M.S.); (P.K.)
| | - Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland;
- Correspondence: (M.S.); (P.K.)
| | - Ewa Dworniczek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland;
| | - Ryszard Adamski
- Laboratory of Microscopic Techniques, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63, 50-001 Wroclaw, Poland;
| | - Zbigniew Sroka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|