1
|
Zhao J, Zhang Y, Xia Y, Zhou J, Geng Y, Hua H. miR-16-5p Regulates Proliferation and Apoptosis in High Glucose-Treated Human Retinal Microvascular Endothelial Cells by Targeting VEGFA and TGFBR1. J Ophthalmol 2025; 2025:3082206. [PMID: 40166052 PMCID: PMC11957861 DOI: 10.1155/joph/3082206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 04/02/2025] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and the main cause of vision loss in the middle-aged and elderly people. miRNAs play vital roles in the development of DR. This study aimed to explore the effects of miR-16-5p on high glucose (HG)-stimulated human retinal microvascular endothelial cells (HRECs) by modulating vascular endothelial growth factor A (VEGFA) and transforming growth factor beta receptor 1 (TGFBR1). HRECs were treated with 5 mM, 10 mM, 20 mM, and 30 mM of HG to induce the DR cell model. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of miR-16-5p and mRNAs of VEGFA and TGFBR1. Western blot was used to examine VEGFA and TGFBR1 protein levels. The 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay was conducted to test cell proliferation. Flow cytometry with Annexin V-FITC/PI double staining was carried out to assess cell apoptosis ratio. Dual-luciferase assay was used to identify the target relationship between miR-16-5p and VEGFA and TGFBR1. Results found that the expression of miR-16-5p in HG-treated HRECs was reduced, and VEGFA and TGFBR1 expressions were upregulated. Knockdown of miR-16-5p increased VEGFA and TGFBR1 mRNA and protein levels, promoted cell proliferation, and inhibited apoptosis in HG-treated HRECs. VEGFA and TGFBR1 inhibition reversed the effect of knocking down miR-16-5p on HRECs. Dual-luciferase reporter assay revealed that VEGFA and TGFBR1 were the target of miR-16-5p. Overall, knockdown of miR-16-5p enhances proliferation and inhibits apoptosis of HRECs by upregulating VEGFA and TGFBR1 expression.
Collapse
Affiliation(s)
- JianFeng Zhao
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - YanFei Zhang
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Yuan Xia
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Jie Zhou
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Yu Geng
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - HaiRong Hua
- Department of Pathology, Kunming Medical University, Kunming 650500, Yunnan, China
| |
Collapse
|
2
|
James R, Subramanyam KN, Payva F, E AP, Tv VK, Sivaramakrishnan V, Ks S. In-silico analysis predicts disruption of normal angiogenesis as a causative factor in osteoporosis pathogenesis. BMC Genom Data 2024; 25:85. [PMID: 39379846 PMCID: PMC11460074 DOI: 10.1186/s12863-024-01269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Angiogenesis-osteogenesis coupling is critical for proper functioning and maintaining the health of bones. Any disruption in this coupling, associated with aging and disease, might lead to loss of bone mass. Osteoporosis (OP) is a debilitating bone metabolic disorder that affects the microarchitecture of bones, gradually leading to fracture. Computational analysis revealed that normal angiogenesis is disrupted during the progression of OP, especially postmenopausal osteoporosis (PMOP). The genes associated with OP and PMOP were retrieved from the DisGeNET database. Hub gene analysis and molecular pathway enrichment were performed via the Cytoscape plugins STRING, MCODE, CytoHubba, ClueGO and the web-based tool Enrichr. Twenty-eight (28) hub genes were identified, eight of which were transcription factors (HIF1A, JUN, TP53, ESR1, MYC, PPARG, RUNX2 and SOX9). Analysis of SNPs associated with hub genes via the gnomAD, I-Mutant2.0, MUpro, ConSurf and COACH servers revealed the substitution F201L in IL6 as the most deleterious. The IL6 protein was modeled in the SWISS-MODEL server and the substitution was analyzed via the YASARA FoldX plugin. A positive ΔΔG (1.936) of the F201L mutant indicates that the mutated structure is less stable than the wild-type structure is. Thirteen hub genes, including IL6 and the enriched molecular pathways were found to be profoundly involved in angiogenesis/endothelial function and immune signaling. Mechanical loading of bones through weight-bearing exercises can activate osteoblasts via mechanotransduction leading to increased bone formation. The present study suggests proper mechanical loading of bone as a preventive strategy for PMOP, by which angiogenesis and the immune status of the bone can be maintained. This in silico analysis could be used to understand the molecular etiology of OP and to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Remya James
- Department of Zoology, St. Joseph's College for Women, Alappuzha, Kerala, 688001, India.
- School of Biosciences, Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 614043, India.
| | - Koushik Narayan Subramanyam
- Department of Orthopaedics, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, Puttaparthi, Andhra Pradesh, 515134, India
| | - Febby Payva
- Department of Zoology, St. Joseph's College for Women, Alappuzha, Kerala, 688001, India
- School of Biosciences, Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 614043, India
| | - Amrisa Pavithra E
- Department of Zoology, St. Joseph's College for Women, Alappuzha, Kerala, 688001, India
| | - Vineeth Kumar Tv
- Department of Zoology, The Cochin College, Kochi, Kerala, 682002, India.
| | - Venketesh Sivaramakrishnan
- School of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, Puttaparthi, Andhra Pradesh, 515134, India
| | - Santhy Ks
- School of Biosciences, Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 614043, India.
| |
Collapse
|
3
|
Zhu J, Ouyang X, Liu Y, Qian Y, Chen Y, Xu B. LncRNA GAS5 modulates Schwann cell function and enhances facial nerve injury repair via the miR-138-5p/CXCL12 axis. J Mol Histol 2024; 55:741-752. [PMID: 39068616 DOI: 10.1007/s10735-024-10227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Facial nerve is an integral part of peripheral nerve. Schwann cells are important microglia involved in the repair and regulation of facial nerve injury. LncRNA growth arrest‑specific transcript 5 (GAS5) is involved in the behavioral regulation of Schwann cell and the regeneration of peripheral nervous system. However, there is little research about the effect of GAS5 on the repair of facial nerve injury (FNI) by regulating Schwann cells. This study aimed to investigate the role of GAS5 in Schwann cell function and FNI repair, focusing on the miR-138-5p/CXCL12 axis. Hematoxylin and eosin staining, Luxol fast blue staining, transmission electron microscope, and immunofluorescence (IF) experiments were used to verify the effect of GAS5 on FNI rats. Reverse transcription real-time polymerase chain reaction was performed to detect GAS5, miR-138-5p, and C-X-C motif chemokine ligand 12 (CXCL12) mRNA expression. IF staining was used to detect the inflorescence of S100 calcium binding protein B (S100β), SRY-box transcription factor 10 (SOX10), and tubulin beta 3 class III (β-Tubulin III). Glial fibrillary acidic protein (GFAP), nerve growth factor receptor (NGFR), S100β, brain derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and CXCL12 proteins were detected using western blot. The 5-bromo-2'-deoxyuridine staining, Transwell, and flow cytometry assays were conducted to detect Schwann cell function. Dual-luciferase, RNA immunoprecipitation, and RNA pulldown assay were used to identify the interaction among GAS5, miR-138-5p, and CXCL12. Results found that GAS5 was downregulated in facial nerve tissues of FNI rats. Overexpressed GAS5 decreased facial grading, inhibited demyelination, and promoted proliferation, migration, and suppressed apoptosis of Schwann cells. Mechanistically, GAS5 was a sponge of miR-138-5p and positively regulated CXCL12 expression. GAS5 inhibition repressed CXCL12 expression and decreased cell proliferation and migration, increased apoptosis rate of Schwann cells by sponging miR-138-5p. In conclusion, overexpression of GAS5 accelerates facial nerve repair in FNI rats by regulating miR-138-5p/CXCL12 axis.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, 1088 HaiYuan middle road, Kunming, 650106, Yunnan, China
| | - Xin Ouyang
- Stomatology Centre, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Yu Liu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, 1088 HaiYuan middle road, Kunming, 650106, Yunnan, China
| | - Yemei Qian
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, 1088 HaiYuan middle road, Kunming, 650106, Yunnan, China
| | - Yuancan Chen
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, 1088 HaiYuan middle road, Kunming, 650106, Yunnan, China
| | - Biao Xu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, 1088 HaiYuan middle road, Kunming, 650106, Yunnan, China.
| |
Collapse
|
4
|
Zhang Y, Zhan L, Jiang X, Tang X. Comprehensive review for non-coding RNAs: From mechanisms to therapeutic applications. Biochem Pharmacol 2024; 224:116218. [PMID: 38643906 DOI: 10.1016/j.bcp.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Non-coding RNAs (ncRNAs) are an assorted collection of transcripts that are not translated into proteins. Since their discovery, ncRNAs have gained prominence as crucial regulators of various biological functions across diverse cell types and tissues, and their abnormal functioning has been implicated in disease. Notably, extensive research has focused on the relationship between microRNAs (miRNAs) and human cancers, although other types of ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as significant contributors to human disease. In this review, we provide a comprehensive summary of our current knowledge regarding the roles of miRNAs, lncRNAs, and circRNAs in cancer and other major human diseases, particularly cancer, cardiovascular, neurological, and infectious diseases. Moreover, we discuss the potential utilization of ncRNAs as disease biomarkers and as targets for therapeutic interventions.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Pokorná M, Černá M, Boussios S, Ovsepian SV, O’Leary VB. lncRNA Biomarkers of Glioblastoma Multiforme. Biomedicines 2024; 12:932. [PMID: 38790894 PMCID: PMC11117901 DOI: 10.3390/biomedicines12050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis. The expression of lncRNAs in the nervous system varies in different cell types, implicated in mechanisms of neurons and glia, with effects on the development and functioning of the brain. Reports have also shown a link between changes in lncRNA molecules and the etiopathogenesis of brain neoplasia, including glioblastoma multiforme (GBM). GBM is an aggressive variant of brain cancer with an unfavourable prognosis and a median survival of 14-16 months. It is considered a brain-specific disease with the highly invasive malignant cells spreading throughout the neural tissue, impeding the complete resection, and leading to post-surgery recurrences, which are the prime cause of mortality. The early diagnosis of GBM could improve the treatment and extend survival, with the lncRNA profiling of biological fluids promising the detection of neoplastic changes at their initial stages and more effective therapeutic interventions. This review presents a systematic overview of GBM-associated deregulation of lncRNAs with a focus on lncRNA fingerprints in patients' blood.
Collapse
Affiliation(s)
- Markéta Pokorná
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK;
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury CT2 7PB, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| | - Saak V. Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent ME4 4TB, UK;
- Faculty of Medicine, Tbilisi State University, Tbilisi 0177, Georgia
| | - Valerie Bríd O’Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| |
Collapse
|
6
|
Huang C, Li Y, Li B, Liu X, Luo D, Liu Y, Wei M, Yang Z, Xu Y. Identifying potential ferroptosis key genes for diagnosis and treatment of postmenopausal osteoporosis through competitive endogenous RNA network analysis. Heliyon 2024; 10:e23672. [PMID: 38226266 PMCID: PMC10788451 DOI: 10.1016/j.heliyon.2023.e23672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/24/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024] Open
Abstract
Objective Postmenopausal osteoporosis (PMOP) is a common systemic metabolic bone disorder that is owing to the reduced estrogen secretion and imbalance of bone absorption and bone formation in postmenopausal women. Ferroptosis has been identified as a novel modulatory mechanism of osteoporosis. Nevertheless, the particular modulatory mechanism between ferroptosis and PMOP is still unclear. The objective of the current investigation was to detect potential biomarkers connected to ferroptosis in PMOP and discover its probable mechanism through bioinformatics. Methods We downloaded PMOP-related microarray datasets from the database of Gene Expression Omnibus (GEO) and obtained the differentially expressed genes (DEGs). Utilizing bioinformatics analysis, the DEGs were intersected with the ferroptosis dataset to obtain ferroptosis-connected mRNAs. Enrichment analysis employing KOBAS 3.0 was conducted to comprehend the biological functions and enrichment pathways of the DEGs. The generation of the protein-protein interaction (PPI) network was conducted with the aim of identifying central genes. Lastly, the coexpression and competitive endogenous RNA (ceRNA) networks were built using Cytoscape. With the help of external datasets GSE56815 to verify the reliability of the hub genes by plotting ROC curves. Results We identified 178 DE microRNAs (miRNAs), 138 DE circular RNAs (circRNAs), and 86 ferroptosis-related mRNAs. Enrichment analysis exhibited that mRNAs were primarily connected with the signaling pathways of PI3K/Akt, metabolism, mTOR, FoxO, HIF-1, AMPK, MAPK, ferroptosis, VEGF, and NOD-like receptors. Generation of the PPI network detected eight hub genes. The circRNA/miR-23b-3p/PTEN axis may relieve PMOP by inhibiting ferroptosis through targeting the pathway of PI3K/Akt signaling, which is a vital modulatory pathway for PMOP progression. Moreover, the ROC curves ultimately indicates that the four hub genes have greater diagnostic importance in PMOP samples in contrast to the normal group samples, which may be possible markers for PMOP diagnosis. Conclusions Bioinformatics analysis identified four hub genes, namely, PTEN, SIRT1, VEGFA, and KRAS, as potential biomarkers for PMOP diagnosis and management. Moreover, the circRNA/miR-23b-3p/PTEN axis may relieve PMOP by suppressing ferroptosis through targeting the pathway of PI3K/Akt signaling, providing a new avenue to explore the pathogenesis of PMOP.
Collapse
Affiliation(s)
- Chengcheng Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Yang Li
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Bo Li
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Xiujuan Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Dan Luo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Yuan Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Mengjuan Wei
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - ZhenGuo Yang
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Yunsheng Xu
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| |
Collapse
|
7
|
Philippe S, Delay M, Macian N, Morel V, Pickering ME. Common miRNAs of Osteoporosis and Fibromyalgia: A Review. Int J Mol Sci 2023; 24:13513. [PMID: 37686318 PMCID: PMC10488272 DOI: 10.3390/ijms241713513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
A significant clinical association between osteoporosis (OP) and fibromyalgia (FM) has been shown in the literature. Given the need for specific biomarkers to improve OP and FM management, common miRNAs might provide promising tracks for future prevention and treatment. The aim of this review is to identify miRNAs described in OP and FM, and dysregulated in the same direction in both pathologies. The PubMed database was searched until June 2023, with a clear mention of OP, FM, and miRNA expression. Clinical trials, case-control, and cross-sectional studies were included. Gray literature was not searched. Out of the 184 miRNAs found in our research, 23 are shared by OP and FM: 7 common miRNAs are dysregulated in the same direction for both pathologies (3 up-, 4 downregulated). The majority of these common miRNAs are involved in the Wnt pathway and the cholinergic system and a possible link has been highlighted. Further studies are needed to explore this relationship. Moreover, the harmonization of technical methods is necessary to confirm miRNAs shared between OP and FM.
Collapse
Affiliation(s)
- Soline Philippe
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Marine Delay
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
- Inserm 1107, Neuro-Dol, University Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Nicolas Macian
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Véronique Morel
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Marie-Eva Pickering
- Rheumatology Department, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Ali U, Khan MM, Khan N, Haya RT, Asghar MU, Abbasi BH. Chimaphila umbellata; a biotechnological perspective on the coming-of-age prince's pine. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023:1-16. [PMID: 37359710 PMCID: PMC10249550 DOI: 10.1007/s11101-023-09880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Chimaphila umbellata has been studied for almost two centuries now, with the first paper exploring the phytochemistry of the plant published in 1860. Almost all contemporary studies focus on the biotechnological advances of C. umbellata including its utilization as a natural alternative in the cosmetic, food, biofuel, and healthcare industry, with a special focus on its therapeutic uses. This literature review critically investigates the significance and applications of secondary metabolites extracted from the plant and presses on the biotechnological approaches to improve its utilization. C. umbellata is home to many industrially and medicinally important phytochemicals, the majority of which belong to phenolics, sterols, and triterpenoids. Other important compounds include 5-hydroxymethylfurfural, isohomoarbutin, and methyl salicylate (the only essential oil of the plant). Chimaphilin is the characteristic phytochemical of the plant. This review focuses on the phytochemistry of C. umbellata and digs into their chemical structures and attributes. It further discusses the challenges of working with C. umbellata including its alarming conservation status, problems with in-vitro cultivation, and research and development issues. This review concludes with recommendations based on biotechnology, bioinformatics, and their crucial interface.
Collapse
Affiliation(s)
- Urooj Ali
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590 Punjab Pakistan
- Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | | | - Naveera Khan
- Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Rida tul Haya
- Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | | | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320 Pakistan
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 37000 Tours, France
| |
Collapse
|
9
|
Zhang G, Liu Z, Li Z, Zhang B, Yao P, Qiao Y. Therapeutic approach of natural products that treat osteoporosis by targeting epigenetic modulation. Front Genet 2023; 14:1182363. [PMID: 37287533 PMCID: PMC10242146 DOI: 10.3389/fgene.2023.1182363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023] Open
Abstract
Osteoporosis (OP) is a metabolic disease that affects bone, resulting in a progressive decrease in bone mass, quality, and micro-architectural degeneration. Natural products have become popular for managing OP in recent years due to their minimal adverse side effects and suitability for prolonged use compared to chemically synthesized products. These natural products are known to modulate multiple OP-related gene expressions, making epigenetics an important tool for optimal therapeutic development. In this study, we investigated the role of epigenetics in OP and reviewed existing research on using natural products for OP management. Our analysis identified around twenty natural products involved in epigenetics-based OP modulation, and we discussed potential mechanisms. These findings highlight the clinical significance of natural products and their potential as novel anti-OP therapeutics.
Collapse
Affiliation(s)
- Guokai Zhang
- Binzhou Hospital of Traditional Chinese Medicine, Binzhou, China
| | - Zhenying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihan Li
- The First Affiliated Hospital of Shandong First Medical University Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Bing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pengyu Yao
- Shandong Laboratory of Engineering Technology Suzhou Biomedical Engineering and Technology Chinese Academy of Sciences, Jinan, China
- Jinan Guoke Medical Engineering and Technology Development Company, Jinan, China
| | - Yun Qiao
- Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
10
|
Zhang W, Liu Y, Luo Y, Shu X, Pu C, Zhang B, Feng P, Xiong A, Kong Q. New insights into the role of long non-coding RNAs in osteoporosis. Eur J Pharmacol 2023; 950:175753. [PMID: 37119958 DOI: 10.1016/j.ejphar.2023.175753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Osteoporosis is a common disease in elderly individuals, and osteoporosis can easily lead to bone and hip fractures that seriously endanger the health of elderly individuals. At present, the treatment of osteoporosis is mainly anti-osteoporosis drugs, but there are side effects associated with anti-osteoporosis drugs. Therefore, it is very important to develop early diagnostic indicators and new therapeutic drugs for the prevention and treatment of osteoporosis. Long noncoding RNAs (lncRNAs), noncoding RNAs longer than 200 nucleotides, can be used as diagnostic markers for osteoporosis, and lncRNAs play an important role in the progression of osteoporosis. Many studies have shown that lncRNAs can be the target of osteoporosis. Therefore, herein, the role of lncRNAs in osteoporosis is summarized, aiming to provide some information for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuheng Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuanrui Luo
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiang Shu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Congmin Pu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pin Feng
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ao Xiong
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Qingquan Kong
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Sharing Circulating Micro-RNAs between Osteoporosis and Sarcopenia: A Systematic Review. Life (Basel) 2023; 13:life13030602. [PMID: 36983758 PMCID: PMC10051676 DOI: 10.3390/life13030602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Background: Osteosarcopenia, a combination of osteopenia/osteoporosis and sarcopenia, is a common condition among older adults. While numerous studies and meta-analyses have been conducted on osteoporosis biomarkers, biomarker utility in osteosarcopenia still lacks evidence. Here, we carried out a systematic review to explore and analyze the potential clinical of circulating microRNAs (miRs) shared between osteoporosis/osteopenia and sarcopenia. Methods: We performed a systematic review on PubMed, Scopus, and Embase for differentially expressed miRs (p-value < 0.05) in (i) osteoporosis and (ii) sarcopenia. Following screening for title and abstract and deduplication, 83 studies on osteoporosis and 11 on sarcopenia were identified for full-text screening. Full-text screening identified 54 studies on osteoporosis, 4 on sarcopenia, and 1 on both osteoporosis and sarcopenia. Results: A total of 69 miRs were identified for osteoporosis and 14 for sarcopenia. There were 9 shared miRs, with evidence of dysregulation (up- or down-regulation), in both osteoporosis and sarcopenia: miR-23a-3p, miR-29a, miR-93, miR-133a and b, miR-155, miR-206, miR-208, miR-222, and miR-328, with functions and targets implicated in the pathogenesis of osteosarcopenia. However, there was little agreement in the results across studies and insufficient data for miRs in sarcopenia, and only three miRs, miR-155, miR-206, and miR-328, showed the same direction of dysregulation (down-regulation) in both osteoporosis and sarcopenia. Additionally, for most identified miRs there has been no replication by more than one study, and this is particularly true for all miRs analyzed in sarcopenia. The study quality was typically rated intermediate/high risk of bias. The large heterogeneity of the studies made it impossible to perform a meta-analysis. Conclusions: The findings of this review are particularly novel, as miRs have not yet been explored in the context of osteosarcopenia. The dysregulation of miRs identified in this review may provide important clues to better understand the pathogenesis of osteosarcopenia, while also laying the foundations for further studies to lead to effective screening, monitoring, or treatment strategies.
Collapse
|
12
|
Lin T, Zhang Z, Wu J, Jiang H, Wang C, Ma J, Yin Y, Wang S, Gao R, Zhou X. A ROS/GAS5/SIRT1 reinforcing feedback promotes oxidative stress-induced adipogenesis in bone marrow-derived mesenchymal stem cells during osteoporosis. Int Immunopharmacol 2023; 114:109560. [PMID: 36538848 DOI: 10.1016/j.intimp.2022.109560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND LincGAS5 have been reported to regulate the progression of osteoporosis (OP). However, the relationship between LincGAS5 and reactive oxygen species (ROS) in osteoporosis were still unclear. METHODS Bilateral ovariectomy (OVX) rat were established as OP model and verified by the Micro-computed tomography. The ROS level of BMSCs derived from OVX and control rat were detected by Immunofluorescence (IF) and flow cytometry. The role of GAS5, miR-23b-3p and SIRT1 on the osteogenic differentiation were dectected by ARS saining and ALP staining, while the The Oil Red O staining and flow cytometry (FCM) were hired to determine adipogenic differentiation of BMSCs under different treatment. The expression of GAS5,miR-23b-3p and SIRT1 in BMSCs was detected by RT-qPCR and the correlation among them was analyzed. In addition, Luciferase activity was used to detect whether miR-23b-3p combined with GAS5 and SIRT1 in OP mice BMSCs. RESULTS We established the OVX rat model and found higher ROS level in BMSCs isolated from OVX rats. Meanwhile, GAS5 was down-regulated by ROS and remarkably lowly expressed in OVX rat comparing with the negative control. We confirmed GAS5 inhibited adipogenesis and promoted osteoporosis progression. Mechanically, GAS5 bound with miR-23b-3p and suppressed its biological function. We also identified that miR-23b-3p bound with Sirtuin 1 (SIRT1) and decreased its stability. Furthermore, SIRT1 suppressed ROS production in BMSCs, which in turn un-regulated GAS5 expression through ROS-GAS5 axis. CONCLUSION We identified a negative feedback loop, ROS-GAS5-SIRT1, in osteoporosis progression. Our findings provided potential targets and biomarkers for osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- Tao Lin
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China.
| | - Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Jinhui Wu
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China.
| | - Heng Jiang
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Ce Wang
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Jun Ma
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Yan Yin
- Zhangjiagang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu Provence, People's Republic of China
| | - Suchun Wang
- Zhangjiagang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu Provence, People's Republic of China
| | - Rui Gao
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China.
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China.
| |
Collapse
|
13
|
Lee CM, Yang YS, Kornelius E, Huang CN, Hsu MY, Lee CY, Peng SY, Yang SF. Association of Long Non-Coding RNA Growth Arrest-Specific 5 Genetic Variants with Diabetic Retinopathy. Genes (Basel) 2022; 13:genes13040584. [PMID: 35456391 PMCID: PMC9029547 DOI: 10.3390/genes13040584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of this work was to appraise the potential associations of single nucleotide polymorphisms (SNPs) of long non-coding RNA growth arrest-specific 5 (GAS5) with diabetic retinopathy (DR) in a diabetes mellitus (DM) population. Two loci of the GAS5 SNPs (rs55829688 and rs145204276) were genotyped via TaqMan allelic discrimination in 449 non-DR patients and 273 DR subjects. The SNP rs145204276 Del/Del showed a significantly higher distribution in the DR group compared to the non-DR group (AOR: 2.487, 95% CI: 1.424–4.344, p = 0.001). During subgroup analyses, the non-proliferative diabetic retinopathy (NPDR) subgroup demonstrated a significantly higher ratio of the SNP rs145204276 Del/Del (AOR: 2.917, 95% CI: 1.574–5.406, p = 0.001) and Ins/Del + Del/Del (AOR: 1.242, 95% CI: 1.016–1.519, p = 0.034) compared to the non-DR population, while the proliferative diabetic retinopathy (PDR) subgroup did not reveal significant differences in either SNP rs145204276 or rs55829688 distributions compared to the non-DR group. Furthermore, patients with a GAS5 SNP rs145204276 Del/Del showed a significantly shorter DM duration than the wild type (Ins/Ins) (p = 0.021). In conclusion, our findings demonstrate that the GAS5 SNP rs145204276 Del/Del variant is associated with an increased susceptibility to DR in DM patients, particularly in those patients with NPDR.
Collapse
Affiliation(s)
- Chee-Ming Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-M.L.); (C.-N.H.); (S.-Y.P.)
- Department of Ophthalmology, Jen-Ai Hospital, Taichung 412, Taiwan
| | - Yi-Sun Yang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-S.Y.); (E.K.); (M.-Y.H.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Edy Kornelius
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-S.Y.); (E.K.); (M.-Y.H.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-M.L.); (C.-N.H.); (S.-Y.P.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-S.Y.); (E.K.); (M.-Y.H.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Min-Yen Hsu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-S.Y.); (E.K.); (M.-Y.H.)
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Yi Lee
- Department of Ophthalmology, Nobel Eye Institute, Taipei 115, Taiwan;
| | - Shu-Yen Peng
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-M.L.); (C.-N.H.); (S.-Y.P.)
- Department of Ophthalmology, Jen-Ai Hospital, Taichung 412, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-M.L.); (C.-N.H.); (S.-Y.P.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence:
| |
Collapse
|
14
|
Liu G, Luo S, Lei Y, Jiao M, Cao R, Guan H, Tian R, Wang K, Yang P. Osteogenesis-Related Long Noncoding RNA GAS5 as a Novel Biomarker for Osteonecrosis of Femoral Head. Front Cell Dev Biol 2022; 10:857612. [PMID: 35392165 PMCID: PMC8980611 DOI: 10.3389/fcell.2022.857612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background: The lack of effective biomarkers makes it difficult to achieve early diagnosis and intervention for osteonecrosis of the femoral head (ONFH). Hence, we aimed to identify novel long noncoding RNA (lncRNA) biomarkers for ONFH. Methods: High-throughput RNA sequencing was performed to detect lncRNA and mRNA expression levels in subchondral bone samples from three patients with ONFH and three patients with femoral neck fractures. Integrated bioinformatics analyses were conducted to identify lncRNAs associated with ONFH development and their potential functions and signaling pathways. A co-expression network was constructed based on the gene time-series expression data in GSE113253. After selecting lncRNA GAS5 as a novel biomarker for ONFH, bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation assays were performed to verify the association between lncRNA GAS5 and osteogenic differentiation. Alkaline phosphatase (ALP) staining and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to measure the osteogenic phenotype and lncRNA GAS5 expression. Finally, for further validation, ONFH rat models were established, and lncRNA GAS5 expression in subchondral bone was detected by RT-qPCR. Results: We identified 126 and 959 differentially expressed lncRNAs and genes, respectively. lncRNA GAS5 expression level was significantly downregulated in patients with ONFH compared to the control group patients. The BMSC osteogenic differentiation assays showed that ALP activity increased gradually from days 3 to 7, while the lncRNA GAS5 expression level was significantly upregulated in the osteogenic differentiation induction groups. Furthermore, in vivo experiments suggested that the bone volume/tissue volume value and trabecular thickness significantly decreased in the ONFH rat model group compared to the control group, whereas the trabecular space significantly increased in the ONFH group compared to the control group. In addition, the lncRNA GAS5 expression level significantly decreased in the ONFH rat model group. Conclusion: The lncRNA GAS5 expression level was highly associated with BMSC osteogenic differentiation and was significantly downregulated in both the subchondral trabecular bone tissue of ONFH patients and ONFH rat models. Therefore, lncRNA GAS5 can serve as an ONFH osteogenic biomarker to provide an effective target for early diagnosis and molecular therapy of ONFH.
Collapse
|