1
|
Fazaeli H, Sheikholeslami A, Ghasemian F, Amini E, Sheykhhasan M. The Emerging Role of LncRNA FENDRR in Multiple Cancers: A Review. Curr Mol Med 2023; 23:606-629. [PMID: 35579154 DOI: 10.2174/1566524022666220509122505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) are prominent as crucial regulators of tumor establishment and are repeatedly dysregulated in multiple cancers. Therefore, lncRNAs have been identified to play an essential function in carcinogenesis and progression of cancer at genetic and epigenetic levels. FENDRR (fetal-lethal noncoding developmental regulatory RNA) as a LncRNA is a hallmark of various malignancies. FENDRR is crucial for multiple organs' development, such as the lung and heart. The effects of FENDRR under signaling pathways in different cancers have been identified. In addition, it has been verified that FENDRR can affect the development and progression of various cancers. In addition, FENDRR expression has been associated with epigenetic regulation of target genes participating in tumor immunity. Furthermore, FENDRR downregulation was observed in various types of cancers, including colorectal cancer, gastric cancer, pancreatic cancer, cholangiocarcinoma, liver cancer, gallbladder cancer, lung cancer, breast cancer, endometrial cancer, prostate cancer, chronic myeloid leukemia, osteosarcoma, and cutaneous malignant melanoma cells. Here, we review the biological functions and molecular mechanisms of FENDRR in several cancers, and we will discuss its potential as a cancer biomarker and as a probable option for cancer treatment.
Collapse
Affiliation(s)
- Hoda Fazaeli
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Azar Sheikholeslami
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Fatemeh Ghasemian
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Elaheh Amini
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohsen Sheykhhasan
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Gupta M, Singh D, Rastogi S, Siddique HR, Al-Dayan N, Ahmad A, Sikander M, Sarwat M. Anti-cancer activity of guggulsterone by modulating apoptotic markers: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1155163. [PMID: 37201024 PMCID: PMC10185795 DOI: 10.3389/fphar.2023.1155163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023] Open
Abstract
Background: Guggulsterone (pregna-4,17-diene-3,16-dione; C21H28O2) is an effective phytosterol isolated from the gum resin of the tree Commiphora wightii (Family Burseraceae) and is responsible for many of the properties of guggul. This plant is widely used as traditional medicine in Ayurveda and Unani system of medicine. It exhibits several pharmacological activities, such as anti-inflammatory, analgesic, antibacterial, anti-septic and anticancer. In this article, the activities of Guggulsterone against cancerous cells were determined and summarized. Methods: Using 7 databases (PubMed, PMC, Google Scholar, Science Direct, Scopus, Cochrane and Ctri.gov), the literature search was conducted since conception until June 2021. Extensive literature search yielded 55,280 studies from all the databases. A total of 40 articles were included in the systematic review and of them, 23 articles were included in the meta-analysis.The cancerous cell lines used in the studies were for pancreatic cancer, hepatocellular carcinoma, head and neck squamous cell carcinoma, cholangiocarcinoma, oesophageal adenocarcinoma, prostrate cancer, colon cancer, breast cancer, gut derived adenocarcinoma, gastric cancer, colorectal cancer, bladder cancer, glioblastoma, histiocytic leukemia, acute myeloid leukemia and non-small cell lung cancer. The reliability of the selected studies was assessed using ToxRTool. Results: Based on this review, guggulsterone significantly affected pancreatic cancer (MiaPaCa-2, Panc-1, PC-Sw, CD18/HPAF, Capan1, PC-3), hepatocellular carcinoma (Hep3B, HepG2, PLC/PRF/5R), head and neck squamous cell carcinoma (SCC4, UM-22b, 1483), cholangiocarcinoma (HuCC-T1, RBE, Sk-ChA-1, Mz-ChA-1) and oesophageal adenocarcinoma (CP-18821, OE19), prostrate cancer (PC-3), colon cancer (HT-29), breast cancer (MCF7/DOX), gut derived adenocarcinoma (Bic-1), gastric cancer (SGC-7901), colorectal cancer (HCT116), bladder cancer (T24, TSGH8301), glioblastoma (A172, U87MG, T98G), histiocytic leukemia (U937), acute myeloid leukemia (HL60, U937) and non-small cell lung cancer (A549, H1975) by inducing apoptotic pathways, inhibiting cell proliferation, and regulating the expression of genes involved in apoptosis. Guggulsterone is known to have therapeutic and preventive effects on various categories of cancers. It can inhibit the progression of tumors and can even reduce their size by inducing apoptosis, exerting anti-angiogenic effects, and modulating various signaling cascades. In vitro studies reveal that Guggulsterone inhibits and suppresses the proliferation of an extensive range of cancer cells by decreasing intrinsic mitochondrial apoptosis, regulating NF-kB/STAT3/β-Catenin/PI3K/Akt/CHOP pathway, modulating the expression of associated genes/proteins, and inhibiting angiogenesis. Furthermore, Guggulsterone reduces the production of inflammatory markers, such as CDX2 and COX-2. The other mechanism of the Guggulsterone activity is the reversal of P-glycoprotein-mediated multidrug resistance. Twenty three studies were selected for meta-analysis following the PRISMA statements. Fixed effect model was used for reporting the odds ratio. The primary endpoint was percentage apoptosis. 11 of 23 studies reported the apoptotic effect at t = 24 h and pooled odds ratio was 3.984 (CI 3.263 to 4.865, p < 0.001). 12 studies used Guggulsterone for t > 24 h and the odds ratio was 11.171 (CI 9.148 to 13.643, 95% CI, p < 0.001). The sub-group analysis based on cancer type, Guggulsterone dose, and treatment effects. Significant alterations in the level of apoptotic markers were reported by Guggulsterone treatment. Conclusion: This study suggested that Guggulsterone has apoptotic effects against various cancer types. Further investigation of its pharmacological activity and mechanism of action should be conducted. In vivo experiments and clinical trials are required to confirm the anticancer activity.
Collapse
Affiliation(s)
- Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Shruti Rastogi
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Ghaziabad, Uttar Pradesh, India
| | - Hifzur R. Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Noura Al-Dayan
- Medical Laboratory Department, Applied Medical Science, Prince Sattam Bin Abdul Aziz University, Al-Kharj, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Sikander
- Department of Immunology and Microbiology, Biomedical Research, The University of Texas, McAllen, TX, United States
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
- *Correspondence: Maryam Sarwat,
| |
Collapse
|
3
|
Na-Bangchang K, Plengsuriyakarn T, Karbwang J. The Role of Herbal Medicine in Cholangiocarcinoma Control: A Systematic Review. PLANTA MEDICA 2023; 89:3-18. [PMID: 35468650 DOI: 10.1055/a-1676-9678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The growing incidence of cholangiocarcinoma (bile duct cancer) and limited treatment options stimulate a pressing demand for research and the development of new chemotherapeutics against cholangiocarcinoma. This study aimed to systematically review herbs and herb-derived compounds or herbal formulations that have been investigated for their anti-cholangiocarcinoma potential. Systematic literature searches were conducted in three electronic databases: PubMed, ScienceDirect, and Scopus. One hundred and twenty-three research articles fulfilled the eligibility critera and were included in the analysis (68 herbs, isolated compounds and/or synthetic analogs, 9 herbal formulations, and 119 compounds that are commonly found in several plant species). The most investigated herbs were Atractylodes lancea (Thunb.) DC. (Compositae) and Curcuma longa L. (Zingiberaceae). Only A. lancea (Thunb.) DC. (Compositae) has undergone the full process of nonclinical and clinical development to deliver the final product for clinical use. The extracts of A. lancea (Thunb.) DC. (Compositae), Garcinia hanburyi Hook.f. (Clusiaceae), and Piper nigrum L. (Piperaceae) exhibit antiproliferative activities against human cholangiocarcinoma cells (IC50 < 15 µg/mL). Cucurbitacin B and triptolide are herbal isolated compounds that exhibit the most promising activities (IC50 < 1 µM). A series of experimental studies (in vitro, in vivo, and humans) confirmed the anti-cholangiocarcinoma potential and safety profile of A. lancea (Thunb.) DC. (Compositae) and its active compounds atractylodin and β-eudesmol, including the capsule pharmaceutical of the standardized A. lancea (Thunb.) DC. (Compositae) extract. Future research should be focused on the full development of the candidate herbs to deliver products that are safe and effective for cholangiocarcinoma control.
Collapse
Affiliation(s)
- Kesara Na-Bangchang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| | - Tullayakorn Plengsuriyakarn
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| | - Juntra Karbwang
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| |
Collapse
|
4
|
Akhtar S, Zarif L, Kuttikrishnan S, Prabhu KS, Patil K, Nisar S, Abou-Saleh H, Merhi M, Dermime S, Bhat AA, Uddin S. Guggulsterone Induces Apoptosis in Multiple Myeloma Cells by Targeting High Mobility Group Box 1 via Janus Activated Kinase/Signal Transducer and Activator of Transcription Pathway. Cancers (Basel) 2022; 14:5621. [PMID: 36428714 PMCID: PMC9688888 DOI: 10.3390/cancers14225621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Multiple myeloma (MM) is a hematological disorder characterized by the abnormal expansion of plasma cells in the bone marrow. Despite great advances over the past three decades in discovering the efficacious therapies for MM, the disease remains incurable for most patients owing to emergence of drug-resistant cancerous cells. Guggulsterone (GS), a phytosteroid, extracted from the gum resin of guggul plant, has displayed various anticancer activities in vitro and in vivo; however, the molecular mechanisms of its anticancer activity have not been evaluated in MM cells. Therefore, in this study, we investigated the anticancer activity of GS in various MM cell lines (U266, MM.1S, and RPMI 8226) and the mechanisms involved. GS treatment of MM cells caused inhibition of cell proliferation and induction of apoptotic cell death as indicated by increased Bax protein expression, activation of caspases, and cleavage of poly (ADP-ribose) polymerase. This was associated with the downregulation of various proliferative and antiapoptotic gene products, including cyclin D, Bcl-2, Bcl-xL, and X-linked inhibitor of apoptosis protein. GS also suppressed the constitutive and interleukin 6-induced activation of STAT3. Interestingly, the inhibition of Janus activated kinase or STAT3 activity by the specific inhibitors or by siRNA knockdown of STAT3 resulted in the downregulation of HMGB1, suggesting an association between GS, STAT3, and HMGB1. Finally, GS potentiated the anticancer effects of bortezomib (BTZ) in MM cells. Herein, we demonstrated that GS could be a potential therapeutic agent for the treatment of MM, possibly alone or in combination with BTZ.
Collapse
Affiliation(s)
- Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Lubna Zarif
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Sabah Nisar
- Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Haissam Abou-Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar
| | - Ajaz A. Bhat
- Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
5
|
Zhou J, Nie W, Yuan J, Zhang Z, Mi L, Wang C, Huang R. GSG2 knockdown suppresses cholangiocarcinoma progression by regulating cell proliferation, apoptosis and migration. Oncol Rep 2021; 45:91. [PMID: 33846801 PMCID: PMC8042665 DOI: 10.3892/or.2021.8042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/18/2021] [Indexed: 01/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common type of hepatocellular carcinoma characterized by high aggressiveness and extremely poor patient prognosis. The germ cell-specific gene 2 protein (GSG2) is a histone H3 threonine-3 kinase required for normal mitosis. Nevertheless, the role and mechanism of GSG2 in the progression and development of CCA remain elusive. In the present study, the association between GSG2 and CCA was elucidated. Firstly, we demonstrated that GSG2 was overexpressed in CCA specimens and HCCC-9810 and QBC939 cells by immunohistochemical (IHC) staining. It was further revealed that high expression of GSG2 in CCA had significant clinical significance in predicting disease deterioration. Subsequently, cell proliferation, apoptosis, cell cycle distribution and migration were measured by MTT, flow cytometry, and wound healing assays, respectively in vitro. The results demonstrated that downregulation of GSG2 decreased proliferation, promoted apoptosis, arrested the cell cycle and weakened migration in the G2 phase of CCA cells. Additionally, GSG2 knockdown inhibited CCA cell migration by suppressing epithelial-mesenchymal transition (EMT)-related proteins, such as N-cadherin and vimentin. Mechanistically, GSG2 exerted effects on CCA cells by modulating the PI3K/Akt, CCND1/CDK6 and MAPK9 signaling pathways. In vivo experiments further demonstrated that GSG2 knockdown suppressed tumor growth. In summary, GSG2 was involved in the progression of CCA, suggesting that GSG2 may be a potential therapeutic target for CCA patients.
Collapse
Affiliation(s)
- Jun Zhou
- Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Wanpin Nie
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of The Central South University, Changsha, Hunan 410013, P.R. China
| | - Jiajia Yuan
- Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Zeyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of The Central South University, Changsha, Hunan 410013, P.R. China
| | - Liangliang Mi
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of The Central South University, Changsha, Hunan 410013, P.R. China
| | - Changfa Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of The Central South University, Changsha, Hunan 410013, P.R. China
| | - Ranglang Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of The Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
6
|
Lin C, Zhu X, Jin Q, Sui A, Li J, Shen L. Effects of Holothurian Glycosaminoglycan on the Sensitivity of Lung Cancer to Chemotherapy. Integr Cancer Ther 2021; 19:1534735420911430. [PMID: 32202167 PMCID: PMC7092648 DOI: 10.1177/1534735420911430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sea cucumber is a kind of food. Holothurian glycosaminoglycan (hGAG) is extracted from the body wall of the sea cucumber. Administration of hGAG and cisplatin (DDP) together to treat lung cancer was investigated. Lung adenocarcinoma A549 cells were cultured and divided into 4 groups: control group, hGAG 100 µg/mL group, DDP 3 µg/mL group, and hGAG 100 µg/mL + DDP 3 µg/mL group. Cell inhibition and apoptosis was evaluated by CCK8 and Hoechst33258 staining. Cell cycle was tested by Annexin V-FITC/PI (propidium iodide) double-staining and flow cytometry. The expression of mRNA and protein of Bcl-2, Bax, caspase-3, and survivin were detected by reverse transcriptase-polymerase chain reaction and Western blot, respectively. The results showed that hGAG combined with DDP enhanced the inhibitory effect of DDP on A549 lung cells through apoptosis pathway. The mechanism of apoptosis may be related to the reduction of Bcl-2 and survivin, as well as the ascension of Bax and caspase-3. hGAG could promote A549 cell cycle arrest in G1 and G2 phase and improve the DDP chemotherapy effects on A549 cells.
Collapse
Affiliation(s)
- Cunzhi Lin
- Department of Pulmonary Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xinhong Zhu
- Internal Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Qing Jin
- Department of Intensive Care Unit, The 903rd Hospital of People's Liberation Army, Hangzhou, Zhejiang, China
| | - Aihua Sui
- Department of Respiratory & Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jinfeng Li
- Department of Respiratory & Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Liyan Shen
- Department of Respiratory & Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Girisa S, Parama D, Harsha C, Banik K, Kunnumakkara AB. Potential of guggulsterone, a farnesoid X receptor antagonist, in the prevention and treatment of cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:313-342. [PMID: 36046484 PMCID: PMC9400725 DOI: 10.37349/etat.2020.00019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the most dreadful diseases in the world with a mortality of 9.6 million annually. Despite the advances in diagnosis and treatment during the last couple of decades, it still remains a serious concern due to the limitations associated with currently available cancer management strategies. Therefore, alternative strategies are highly required to overcome these glitches. The importance of medicinal plants as primary healthcare has been well-known from time immemorial against various human diseases, including cancer. Commiphora wightii that belongs to Burseraceae family is one such plant which has been used to cure various ailments in traditional systems of medicine. This plant has diverse pharmacological properties such as antioxidant, antibacterial, antimutagenic, and antitumor which mostly owes to the presence of its active compound guggulsterone (GS) that exists in the form of Z- and E-isomers. Mounting evidence suggests that this compound has promising anticancer activities and was shown to suppress several cancer signaling pathways such as NF-κB/ERK/MAPK/AKT/STAT and modulate the expression of numerous signaling molecules such as the farnesoid X receptor, cyclin D1, survivin, caspases, HIF-1α, MMP-9, EMT proteins, tumor suppressor proteins, angiogenic proteins, and apoptotic proteins. The current review is an attempt to summarize the biological activities and diverse anticancer activities (both in vitro and in vivo) of the compound GS and its derivatives, along with its associated mechanism against various cancers.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
8
|
Yu A, Zhao L, Kang Q, Li J, Chen K, Fu H. Transcription factor HIF1α promotes proliferation, migration, and invasion of cholangiocarcinoma via long noncoding RNA H19/microRNA-612/Bcl-2 axis. Transl Res 2020; 224:26-39. [PMID: 32505707 DOI: 10.1016/j.trsl.2020.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022]
Abstract
Cholangiocarcinoma, which is the most common invasive malignant tumor of the biliary tract, has poor prognosis. There is evidence suggesting that hypoxia-inducible factor 1α (HIF1α) plays an important role in cholangiocarcinoma. Also, microRNA-612 (miR-612) is another key regulator of cholangiocarcinoma. In this study, we investigate the scantly documented interaction of HIF1α and miR-612 in cholangiocarcinoma. We first undertook microarray-based cholangiocarcinoma gene expression profiles to screen out the differentially expressed long noncoding RNAs (lncRNAs) and genes. We used reverse transcription quantitative polymerase chain reaction to detect the expression of HIF1α in normal bile duct and cholangiocarcinoma tissues, and in corresponding cells lines. Cell counting kit 8, scratch, and Transwell assays were used to detect the proliferation, migration and invasion of cholangiocarcinoma cells. Cell cycle distribution and apoptosis were detected by flow cytometry. ChIP, dual luciferase reporter gene assay, RNA pull-down, and RNA immunoprecipitation were used to verify relationship between HIF1α and lncRNA H19, and lncRNA H19 and miR-612. We also monitored tumor formation in nude mice to verify the effect of HIF1α on cholangiocarcinoma. HIF1α expression was elevated in cholangiocarcinoma tissues and cells. Silencing HIF1α reduced proliferation, migration, and invasion of cholangiocarcinoma cells. HIF1α transcriptionally activated the expression of lncRNA H19. Overexpression of miR-612 could rescue the proliferation, migration and invasion of cholangiocarcinoma cells caused by lncRNA H19 overexpression. Taken together, HIF1α activated lncRNA H19-mediated miR-612/Bcl-2 pathway to promote cholangiocarcinoma, suggesting a promising therapeutic target for cholangiocarcinoma.
Collapse
Affiliation(s)
- Aijun Yu
- The First Department of General Surgery, Affiliated Hospital of Chengde Medical University, Chengde, P.R. China.
| | - Luwen Zhao
- The First Department of Gynecology, Affiliated Hospital of Chengde Medical University, Chengde, P.R. China
| | - Qingmin Kang
- The First Department of General Surgery, Affiliated Hospital of Chengde Medical University, Chengde, P.R. China
| | - Jian Li
- The First Department of General Surgery, Affiliated Hospital of Chengde Medical University, Chengde, P.R. China
| | - Kai Chen
- The First Department of General Surgery, Affiliated Hospital of Chengde Medical University, Chengde, P.R. China
| | - Hua Fu
- The First Department of General Surgery, Affiliated Hospital of Chengde Medical University, Chengde, P.R. China
| |
Collapse
|
9
|
Zhang X, Zhang Y, Zhang Y, Lv P, Zhang P, Chu C, Mao J, Wang X, Li W, Liu G. Bio-engineered cell membrane nanovesicles as precision theranostics for perihilar cholangiocarcinoma. Biomater Sci 2020; 8:1575-1579. [PMID: 32096499 DOI: 10.1039/c9bm02088h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Perihilar cholangiocarcinoma (PHCC) presents a formidable challenge due to its occult anatomic location, aggressive growth, insensitivity to conventional chemotherapy, and poor prognosis. Herein, we engineered a human epidermal growth factor receptor 2 (HER2) affibody to the surface of cell membrane nanovesicles (A-NVs) in a ligand-oriented manner and loaded them with indocyanine green (ICG) as precision theranostics for PHCC treatment. The A-NVs@ICG were prepared and exhibited satisfactory targeting effects in HER2-overexpressing PHCC cells. In vivo fluorescence and photoacoustic imaging demonstrated that A-NVs@ICG promoted the accumulation of ICG in PHCC tissue, leading to enhanced tumor regression and improved anti-cancer effects when combined with photoirradiation. Therefore, bio-engineered A-NVs@ICG represent a promising nanotheranostic agent for PHCC with potential for clinical translation.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Yunming Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Peng Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Pengfei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jingsong Mao
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Xiaoyong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Wengang Li
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
10
|
Blanco-Vaca F, Cedó L, Julve J. Phytosterols in Cancer: From Molecular Mechanisms to Preventive and Therapeutic Potentials. Curr Med Chem 2020; 26:6735-6749. [PMID: 29874991 DOI: 10.2174/0929867325666180607093111] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/13/2018] [Accepted: 02/24/2018] [Indexed: 12/17/2022]
Abstract
Cancer is the second leading cause of death worldwide. Compelling evidence supports the hypothesis that the manipulation of dietary components, including plant compounds termed as phytochemicals, demonstrates certain important health benefits in humans, including those in cancer. In fact, beyond their well-known cardiovascular applications, phytosterols may also possess anticancer properties, as has been demonstrated by several studies. Although the mechanism of action by which phytosterols (and derivatives) may prevent cancer development is still under investigation, data from multiple experimental studies support the hypothesis that they may modulate proliferation and apoptosis of tumor cells. Phytosterols are generally considered safe for human consumption and may also be added to a broad spectrum of food matrices; further, they could be used in primary and secondary prevention. However, few interventional studies have evaluated the relationship between the efficacy of different types and forms of phytosterols in cancer prevention. In this context, the purpose of this review was to revisit and update the current knowledge on the molecular mechanisms involved in the anticancer action of phytosterols and their potential in cancer prevention or treatment.
Collapse
Affiliation(s)
- Francisco Blanco-Vaca
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau [IRHSCSP] i Institut d'Investigacio Biomedica Sant Pau [IIB-Sant Pau], Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lídia Cedó
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau [IRHSCSP] i Institut d'Investigacio Biomedica Sant Pau [IIB-Sant Pau], Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Josep Julve
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau [IRHSCSP] i Institut d'Investigacio Biomedica Sant Pau [IIB-Sant Pau], Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| |
Collapse
|
11
|
Qin X, Lu M, Zhou Y, Li G, Liu Z. LncRNA FENDRR represses proliferation, migration and invasion through suppression of survivin in cholangiocarcinoma cells. Cell Cycle 2019; 18:889-897. [PMID: 30983519 DOI: 10.1080/15384101.2019.1598726] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study was to investigate the biological function and underlying mechanisms of FENDRR in cholangiocarcinoma (CCA) cell proliferation, migration and invasion. FENDRR and survivin expression in CCA tissues or cell lines were measured by qRT-PCR. In QBC939 and HuCCTl cells, cell proliferation was detected by CCK-8, cell migration and invasion were using transwell assay. RNA pull-down and RIP assay were performed to determine whether FENDRR can combine with SETDB1 in CCA cell. The effect of SETDB1 on survivin and H3K9me1 expression in CCA cells were determined by western blotting. ChIP analysis was performed to analyze the combination of SETDB1 with survivin promoter in CCA cell. The effect of SETDB1 knockdown on survivin and H3K9me1 expression in CCA cells after transfection with FENDRR were determined by western blotting. The results showed that lncRNA FENDRR was downregulated in CCA tissues and cells, and was negatively correlated with survivin expression. Further investigation demonstrated that FENDRR represses CCA cell proliferation, migration and invasion through regulating survivin expression. FENDRR associated with SETDB1 and H3K9 to epigenetically silence survivin and then regulated cell proliferation, migration and invasion. These findings indicate an important role for FENDRR-survivin axis in CCA cell proliferation, migration and invasion, and reveal a novel epigenetic mechanism for survivin silencing. Our data indicated that FENDRR silences survivin via SETDB1-mediated H3K9 methylation, thereby represses CCA cell proliferation, migration and invasion.
Collapse
Affiliation(s)
- Xinglei Qin
- a Department of Hepatobiliary Surgery, Henan Provincial People's Hospital , People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University , Zhengzhou , Henan , China
| | - Min Lu
- b Department of Cardiology, Henan Provincial People's Hospital , People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University , Zhengzhou , Henan , China
| | - Yajun Zhou
- a Department of Hepatobiliary Surgery, Henan Provincial People's Hospital , People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University , Zhengzhou , Henan , China
| | - Gang Li
- a Department of Hepatobiliary Surgery, Henan Provincial People's Hospital , People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University , Zhengzhou , Henan , China
| | - Zhaoyang Liu
- a Department of Hepatobiliary Surgery, Henan Provincial People's Hospital , People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University , Zhengzhou , Henan , China
| |
Collapse
|
12
|
Pavlovic S, Jovic Z, Karan R, Krtinic D, Rankovic G, Golubovic M, Lilic J, Pavlovic V. Modulatory effect of curcumin on ketamine-induced toxicity in rat thymocytes: Involvement of reactive oxygen species (ROS) and the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. Bosn J Basic Med Sci 2018; 18:320-327. [PMID: 29579407 DOI: 10.17305/bjbms.2018.2607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/27/2022] Open
Abstract
Ketamine is a widely used anesthetic in pediatric clinical practice. Previous studies have demonstrated that ketamine induces neurotoxicity and has a modulatory effect on the cells of the immune system. Here, we evaluated the potential protective effect and underlying mechanisms of natural phenolic compound curcumin against ketamine-induced toxicity in rat thymocytes. Rat thymocytes were exposed to 100 µM ketamine alone or combined with increasing concentrations of curcumin (0.3, 1, and 3 μM) for 24 hours. Cell viability was analyzed with CCK-8 assay kit. Apoptosis was analyzed using flow cytometry and propidium iodide as well as Z-VAD-FMK and Z-LEHD-FMK inhibitors. Reactive oxygen species (ROS) production and mitochondrial membrane potential [MMP] were measured by flow cytometry. Colorimetric assay with DEVD-pNA substrate was used for assessing caspase-3 activity. Involvement of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was tested with Wortmannin inhibitor. Ketamine induced toxicity in cells, increased the number of hypodiploid cells, caspase-3 activity and ROS production, and inhibited the MMP. Co-incubation of higher concentrations of curcumin (1 and 3 μM) with ketamine markedly decreased cytotoxicity, apoptosis rate, caspase-3 activity, and ROS production in rat thymocytes, and increased the MMP. Application of Z-VAD-FMK (a pan caspase inhibitor) or Z-LEHD-FMK (caspase-9 inhibitor) with ketamine effectively attenuated the ketamine-induced apoptosis in rat thymocytes. Administration of Wortmannin (a PI3K inhibitor) with curcumin and ketamine significantly decreased the protective effect of curcumin on rat thymocytes. Our results indicate that ketamine-induced toxicity in rat thymocytes mainly occurs through the mitochondria-mediated apoptotic pathway and that the PI3K/Akt signaling pathway is involved in the anti-apoptotic effect of curcumin.
Collapse
Affiliation(s)
- Svetlana Pavlovic
- Department of Anesthesiology, Medical Faculty University of Nis, Nis, Serbia.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kunnumakkara AB, Banik K, Bordoloi D, Harsha C, Sailo BL, Padmavathi G, Roy NK, Gupta SC, Aggarwal BB. Googling the Guggul (Commiphora and Boswellia) for Prevention of Chronic Diseases. Front Pharmacol 2018; 9:686. [PMID: 30127736 PMCID: PMC6087759 DOI: 10.3389/fphar.2018.00686] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022] Open
Abstract
Extensive research during last 2 decades has revealed that most drugs discovered today, although costs billions of dollars for discovery, and yet they are highly ineffective in their clinical response. For instance, the European Medicines Agency has approved 68 anti-cancer drugs, and out of which 39 has reached the market level with no indication of increased survival nor betterment of quality of life. Even when drugs did improve survival rate compared to available treatment strategies, most of these were found to be clinically insignificant. This is a fundamental problem with modern drug discovery which is based on thinking that most chronic diseases are caused by alteration of a single gene and thus most therapies are single gene-targeted therapies. However, extensive research has revealed that most chronic diseases are caused by multiple gene products. Although most drugs designed by man are mono-targeted therapies, however, those designed by "mother nature" and have been used for thousands of years, are "multi-targeted" therapies. In this review, we examine two agents that have been around for thousands of years, namely "guggul" from Commiphora and Boswellia. Although we are all familiar with the search engine "google," this is another type of "guggul" that has been used for centuries and being explored for its various biological activities. The current review summarizes the traditional uses, chemistry, in vitro and in vivo biological activities, molecular targets, and clinical trials performed with these agents.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Kishore Banik
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Choudhary Harsha
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Bethsebie L. Sailo
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Nand K. Roy
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Subash C. Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
14
|
Wang F, Li J, Li R, Pan G, Bai M, Huang Q. Angelicin inhibits liver cancer growth in vitro and in vivo. Mol Med Rep 2017; 16:5441-5449. [PMID: 28849216 PMCID: PMC5647089 DOI: 10.3892/mmr.2017.7219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/26/2017] [Indexed: 01/12/2023] Open
Abstract
Previous studies have reported that angelicin exerted antiproliferative effects on several types of tumor cell. However, to the best of our knowledge, the effects of angelicin monotherapy on human liver cancer remain to be investigated. In the present study, the antitumor activity of angelicin was evaluated in vitro and in vivo, and the molecular mechanisms underlying its effects were investigated. The present results revealed that angelicin induced apoptosis in liver cancer cells in a dose‑ and time‑dependent manner. Furthermore, in HepG2 and Huh‑7 cells, angelicin‑induced apoptosis was demonstrated to be mitochondria dependent, involving the phosphatidylinositol‑4,5‑bisphosphate 3‑kinase/RAC‑α serine/threonine-protein kinase signaling pathway. In addition, administration of angelicin to mice bearing liver tumor xenografts inhibited tumor growth, without producing significant secondary adverse effects. These results suggested that angelicin may have potential as a novel therapeutic agent for the treatment of patients with liver cancer.
Collapse
Affiliation(s)
- Fengliang Wang
- Department of Hepatobiliary Surgery, Affiliated Minda Hospital of Hubei Institute for Nationalities, Enshi, Hubei 445000, P.R. China
| | - Jun Li
- Department of Hepatobiliary Surgery, Affiliated Minda Hospital of Hubei Institute for Nationalities, Enshi, Hubei 445000, P.R. China
| | - Rong Li
- Department of Hepatobiliary Surgery, Affiliated Minda Hospital of Hubei Institute for Nationalities, Enshi, Hubei 445000, P.R. China
| | - Guohua Pan
- Department of Hepatobiliary Surgery, Affiliated Minda Hospital of Hubei Institute for Nationalities, Enshi, Hubei 445000, P.R. China
| | - Mingxia Bai
- Department of Hepatobiliary Surgery, Affiliated Minda Hospital of Hubei Institute for Nationalities, Enshi, Hubei 445000, P.R. China
| | - Qiang Huang
- Department of Hepatobiliary Surgery, Affiliated Minda Hospital of Hubei Institute for Nationalities, Enshi, Hubei 445000, P.R. China
| |
Collapse
|
15
|
Ward NP, Poff AM, Koutnik AP, D’Agostino DP. Complex I inhibition augments dichloroacetate cytotoxicity through enhancing oxidative stress in VM-M3 glioblastoma cells. PLoS One 2017. [PMID: 28644886 PMCID: PMC5482478 DOI: 10.1371/journal.pone.0180061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The robust glycolytic metabolism of glioblastoma multiforme (GBM) has proven them susceptible to increases in oxidative metabolism induced by the pyruvate mimetic dichloroacetate (DCA). Recent reports demonstrate that the anti-diabetic drug metformin enhances the damaging oxidative stress associated with DCA treatment in cancer cells. We sought to elucidate the role of metformin's reported activity as a mitochondrial complex I inhibitor in the enhancement of DCA cytotoxicity in VM-M3 GBM cells. Metformin potentiated DCA-induced superoxide production, which was required for enhanced cytotoxicity towards VM-M3 cells observed with the combination. Similarly, rotenone enhanced oxidative stress resultant from DCA treatment and this too was required for the noted augmentation of cytotoxicity. Adenosine monophosphate kinase (AMPK) activation was not observed with the concentration of metformin required to enhance DCA activity. Moreover, addition of an activator of AMPK did not enhance DCA cytotoxicity, whereas an inhibitor of AMPK heightened the cytotoxicity of the combination. Our data indicate that metformin enhancement of DCA cytotoxicity is dependent on complex I inhibition. Particularly, that complex I inhibition cooperates with DCA-induction of glucose oxidation to enhance cytotoxic oxidative stress in VM-M3 GBM cells.
Collapse
Affiliation(s)
- Nathan P. Ward
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, United States of America
| | - Angela M. Poff
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, United States of America
| | - Andrew P. Koutnik
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, United States of America
| | - Dominic P. D’Agostino
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, United States of America
- * E-mail:
| |
Collapse
|
16
|
Wen F, Zhao X, Zhao Y, Lu Z, Guo Q. The anticancer effects of Resina Draconis extract on cholangiocarcinoma. Tumour Biol 2016; 37:15203-15210. [DOI: doi10.1007/s13277-016-5393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
17
|
The anticancer effects of Resina Draconis extract on cholangiocarcinoma. Tumour Biol 2016; 37:15203-15210. [DOI: 10.1007/s13277-016-5393-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/09/2016] [Indexed: 10/20/2022] Open
|