1
|
Wicher G, Roy A, Vaccaro A, Vemuri K, Ramachandran M, Olofsson T, Imbria RN, Belting M, Nilsson G, Dimberg A, Forsberg-Nilsson K. Lack of ST2 aggravates glioma invasiveness, vascular abnormality, and immune suppression. Neurooncol Adv 2025; 7:vdaf010. [PMID: 39931535 PMCID: PMC11808570 DOI: 10.1093/noajnl/vdaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Background Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, characterized by aggressive growth and a dismal prognosis. Interleukin-33 (IL-33) and its receptor ST2 have emerged as regulators of glioma growth, but their exact function in tumorigenesis has not been deciphered. Indeed, previous studies on IL-33 in cancer have yielded somewhat opposing results as to whether it is pro- or anti-tumorigenic. Methods IL-33 expression was assessed in a GBM tissue microarray and public databases. As in vivo models we used orthotopic xenografts of patient-derived GBM cells, and syngenic models with grafted mouse glioma cells. Results We analyzed the role of IL-33 and its receptor ST2 in nonmalignant cells of the glioma microenvironment and found that IL-33 levels are increased in cells surrounding the tumor. Protein complexes of IL-33 and ST2 are mainly found outside of the tumor core. The IL-33-producing cells consist primarily of oligodendrocytes. To determine the function of IL-33 in the tumor microenvironment, we used mice lacking the ST2 receptor. When glioma cells were grafted to ST2-deficient mouse brains, the resulting tumors exhibited a more invasive growth pattern, and are associated with poorer survival, compared to wild-type mice. Tumors in ST2-deficient hosts are more invasive, with increased expression of extracellular matrix remodeling enzymes and enhanced tumor angiogenesis. Furthermore, the absence of ST2 leads to a more immunosuppressive environment. Conclusions Our findings reveal that glia-derived IL-33 and its receptor ST2 participate in modulating tumor invasiveness, tumor vasculature, and immunosuppression in glioma.
Collapse
Affiliation(s)
- Grzegorz Wicher
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ananya Roy
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alessandra Vaccaro
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kalyani Vemuri
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Tommie Olofsson
- Academic Laboratory, Uppsala University Hospital, Uppsala, Sweden
| | - Rebeca-Noemi Imbria
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mattias Belting
- Department of Hematology, Oncology and Radiophysics, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Section of Oncology, Lund University, Lund, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Gunnar Nilsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, and Centre for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anna Dimberg
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Wang X, Li J, Nie J, Huang W, Tang J, Peng Y, Gao Y, Lu R. IL-33 protects retinal structure and function via mTOR/S6 signaling pathway in optic nerve crush. Exp Eye Res 2024; 248:110121. [PMID: 39401556 DOI: 10.1016/j.exer.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
This study demonstrated the functions and molecular mechanisms of the IL-33/ST2 axis in experimental optic neuropathy. C57BL/6J mice were used to establish an optic nerve crush (ONC) model. ONC mice were administered with IL-33 intraperitoneal injection, with PBS vehicle as control. Immunofluorescence, quantitative RT-PCR, and western blot techniques were utilized to assess the expression of the IL-33/ST2 axis. The electroretinography (ERG), optical coherence tomography (OCT), H&E, and luxol fast blue were used to assess the structural and functional changes. Western blot was employed to detect the activation of the mTOR/S6 pathway. The IL-33 expression level in the inner nuclear layer of the retina in ONC mice reached its peak on day 3, accompanied by a significant increase in IL-33 receptor ST2 expression. IL-33 treatment promoted the survival of retinal ganglion cells, restored the thickness of inner retina layer (IRL), alleviated the demyelination of the optic nerve, and recovered the decreased amplitude of b-wave in ONC mice. Furthermore, administration of IL-33 activated the mTOR/S6 signaling pathway in RGCs, which was significantly suppressed in the ONC condition. This study indicated that boosting the IL-33/ST2/mTOR/S6 pathway can protect against structural and functional damage to the retina and optic nerve induced by ONC. As a result, the IL-33/ST2 axis holds potential as a therapeutic option for treating various optic neuropathies.
Collapse
Affiliation(s)
- Xinyue Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jinmiao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jiahe Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Weifeng Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Junjie Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yue Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yang Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Rong Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Yuan K, Tang Y, Ding Z, Peng L, Zeng J, Wu H, Yi Q. Mutant ATRX: pathogenesis of ATRX syndrome and cancer. Front Mol Biosci 2024; 11:1434398. [PMID: 39479502 PMCID: PMC11521912 DOI: 10.3389/fmolb.2024.1434398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
The transcriptional regulator ATRX, a genetic factor, is associated with a range of disabilities, including intellectual, hematopoietic, skeletal, facial, and urogenital disabilities. ATRX mutations substantially contribute to the pathogenesis of ATRX syndrome and are frequently detected in gliomas and many other cancers. These mutations disrupt the organization, subcellular localization, and transcriptional activity of ATRX, leading to chromosomal instability and affecting interactions with key regulatory proteins such as DAXX, EZH2, and TERRA. ATRX also functions as a transcriptional regulator involved in the pathogenesis of neuronal disorders and various diseases. In conclusion, ATRX is a central protein whose abnormalities lead to multiple diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Huaying Wu
- Key Laboratory of Model Animals and Stem Cell Biology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Qi Yi
- Key Laboratory of Model Animals and Stem Cell Biology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Ai J, Weng Y, Jiang L, Liu C, Liu H, Chen H. Dexamethasone Suppresses IL-33-exacerbated Malignant Phenotype of U87MG Glioblastoma Cells via NF-κB and MAPK Signaling Pathways. Anticancer Agents Med Chem 2024; 24:389-397. [PMID: 38192141 DOI: 10.2174/0118715206281991231222073858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Interleukin (IL)-33 is highly expressed in glioblastoma (GBM) and promotes tumor progression. Targeting IL-33 may be an effective strategy for the treatment of GBM. Dexamethasone (DEX) is a controversial drug routinely used clinically in GBM therapy. Whether DEX has an effect on IL-33 is unknown. This study aimed to investigate the effect of DEX on IL-33 and the molecular mechanisms involved. METHODS U87MG cells were induced by tumor necrosis factor (TNF)-α to express IL-33 and then treated with DEX. The mRNA levels of IL-33, NF-κB p65, ERK1/2, and p38 were determined by real-time quantitative PCR. The expression of IL-33, IkBα (a specific inhibitor of NF-κB) and MKP-1 (a negative regulator of MAPK), as well as the phosphorylation of NF-κB, ERK1/2 and p38 MAPK, were detected by Western blotting. The secretion of IL-33 was measured by ELISA. The proliferation, migration and invasion of U87MG cells were detected by CCK8 and transwell assays, respectively. RESULTS DEX significantly reduced TNF-α-induced production of IL-33 in U87MG cells, which was dependent on inhibiting the activation of the NF-κB, ERK1/2 and p38 MAPK signaling pathways, and was accompanied by the increased expression of IkBα but not MKP-1. Furthermore, the proliferation, migration and invasion of U87MG cells exacerbated by IL-33 were suppressed by DEX. CONCLUSION DEX inhibited the production and tumor-promoting function of IL-33. Whether DEX can benefit GBM patients remains controversial. Our results suggest that GBM patients with high IL-33 expression may benefit from DEX treatment and deserve further investigation.
Collapse
Affiliation(s)
- Jie Ai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
- College of Pharmacy, Guilin Medical University, Guilin, 541199, PR China
| | - Yinhua Weng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
| | - Liyan Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
| | - Chao Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Huoying Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, PR China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| |
Collapse
|
5
|
Guo S, Qian C, Li W, Zeng Z, Cai J, Luo Y. Modulation of Neuroinflammation: Advances in Roles and Mechanisms of the IL-33/ST2 Axis Involved in Ischemic Stroke. Neuroimmunomodulation 2023; 30:226-236. [PMID: 37729881 PMCID: PMC10614518 DOI: 10.1159/000533984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023] Open
Abstract
Interleukin (IL)-33 was initially recognized as a constituent of the IL-1 cytokine family in 2005. It exerts pleiotropic effects by regulating immune responses via its binding to the receptor ST2 (IL-33R). The IL-33/ST2 pathway has been linked to several inflammatory disorders. In human and rodents, the broad expression of IL-33 in spinal cord tissues and brain indicates its central nervous system-specific functions. Growing evidence supports the protective effects of the IL-33/ST2 pathway in ischemic stroke, along with a better understanding of the underlying mechanisms. IL-33 plays a crucial role in the regulation of the release of inflammatory molecules from glial cells in response to neuropathological lesions. Moreover, IL-33/ST2-mediated neuroprotection following cerebral ischemia may be linked to T-cell function, specifically regulatory T cells. Soluble ST2 (sST2) acts as a decoy receptor in the IL-33/ST2 axis, blocking IL-33 signaling through the membrane ST2 receptor. sST2 has also been identified as a potential inflammatory biomarker of ischemic stroke. Targeting sST2 specifically to eliminate its inhibition of the protective IL-33/ST2 pathway in ischemic brain tissues is a promising approach for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Shuang Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengli Qian
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenfeng Li
- Department of Clinical Medicine, The Second Clinical College, Wuhan University, Wuhan, China
| | - Zhikun Zeng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junlong Cai
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Pan X, Liu J, Li M, Liang Y, Liu Z, Lao M, Fang M. The association of serum IL-33/ST2 expression with hepatocellular carcinoma. BMC Cancer 2023; 23:704. [PMID: 37507682 PMCID: PMC10375617 DOI: 10.1186/s12885-023-11179-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND IL-33 is a multifunctional cytokine with dual functions. However, the clinicopathological and prognostic significance of IL-33 in cancer patients, especially in patients with hepatocellular carcinoma (HCC), remains controversial. Therefore, we conducted a study of 565 patients with HCC and 561 healthy controls and performed a meta-analysis to quantitatively evaluate the above problems. METHODS We collected blood from 565 patients with HCC and 561 healthy controls. ELISA was used to detect the concentrations of IL-33 and ST2 in the serum, and RT‒PCR was used to detect the levels of IL-33 and ST2 mRNA. Meanwhile, we collected comprehensive literature on IL-33 and the clinical characteristics of cancer patients retrieved from the PubMed, Web of Science and CNKI databases as of December 2022. An odds ratio (OR) with a 95% confidence interval (CI) was used to estimate the impact through overall and stratified analyses. RESULTS Compared with the healthy control group, the levels of ST2 mRNA and serum in the peripheral blood of HCC patients increased (p < 0.05), while the levels of IL-33 mRNA and serum showed no significant difference between the two groups (p > 0.05). In the meta-analysis section, at the tissue level, the overall analysis showed that the expression of IL-33 was positively correlated with tumor stage, histological grade, distant metastasis, and tumor size. Compared with patients with low IL-33 expression, the 3-year overall survival (OS) rate (OR = 3.467, p < 0.001) and 5-year OS rate (OR = 2.784, p < 0.001) of patients with high IL-33 expression were lower. At the serum expression level, the overall analysis showed that the expression of IL-33 increased the risk of cancer, and the serum level of IL-33 was positively correlated with tumor stage and vascular invasion. CONCLUSION IL-33/ST2 is a useful predictive or prognostic biomarker in clinical evaluation and may be used as a potential therapeutic target, but much research is needed to verify this hypothesis.
Collapse
Affiliation(s)
- Xiaolan Pan
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Jinfeng Liu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Meiqin Li
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Yihua Liang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Zhimin Liu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Ming Lao
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China.
| | - Min Fang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China.
| |
Collapse
|
7
|
Zhao G, Ding L, Yu H, Wang W, Wang H, Hu Y, Qin L, Deng G, Xie B, Li G, Qi L. M2-like tumor-associated macrophages transmit exosomal miR-27b-3p and maintain glioblastoma stem-like cell properties. Cell Death Dis 2022; 8:350. [PMID: 35927251 PMCID: PMC9352681 DOI: 10.1038/s41420-022-01081-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022]
Abstract
There is growing evidence supporting the implications of exosomes-shuttled microRNAs (miRs) in the phenotypes of glioblastoma stem cells (GSCs), whilst the role of exosomal miR-27b-3p remains to be established. Herein, the aim of this study was to investigate the effect of M2 tumor-associated macrophage (TAM)-derived exosomal miR-27b-3p on the function of GSCs. Clinical glioblastoma (GBM) specimens were obtained and GSCs and M2-TAMs were isolated by fluorescence-activated cell sorting (FACS), and exosomes were separated from M2-TAMs. It was observed that M2-TAM-derived exosomes promoted the stem-like properties of GSCs. Gain- and loss- of function assays were then conducted to explore the effects of exosomal miR-27b-3p and the miR-27b-3p/MLL4/PRDM1 axis on GSC phenotypes. A xenograft tumor model of GBM was further established for in vivo substantiation. Inhibition of miR-27b-3p in M2-TAMs reduced exosomal miR-27b-3p transferred into GSCs and consequently diminished GSC viability in vitro and tumor-promoting effects of GSCs in vivo. The interaction among miR-27b-3p, mixed linked leukemia 4 (MLL4), positive regulatory domain I (PRDM1) was validated by dual-luciferase and ChIP assays. MLL4 positively regulated PRDM1 expression by inducing methylation in the PRDM1 enhancer region and ultimately reduced IL-33 expression. miR-27b-3p targeted MLL4/PRDM1 to activate IL-33 and maintain the stem-like function of GSCs. In conclusion, our study elucidated that M2-TAM-derived exosomal miR-27b-3p enhanced the tumorigenicity of GSCs through the MLL4/PRDM1/IL-33 axis.
Collapse
Affiliation(s)
- Guifang Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, People's Republic of China.,Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Lijuan Ding
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Hongquan Yu
- Department of Oncological Neurosurgery, the First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Weiyao Wang
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Huan Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, People's Republic of China
| | - Yao Hu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, People's Republic of China
| | - Lingsha Qin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, People's Republic of China
| | - Guangce Deng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, People's Republic of China
| | - Buqing Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, People's Republic of China
| | - Guofeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, People's Republic of China
| | - Ling Qi
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, People's Republic of China.
| |
Collapse
|
8
|
Hu C, Wang K, Damon C, Fu Y, Ma T, Kratz L, Lal B, Ying M, Xia S, Cahill DP, Jackson CM, Lim M, Laterra J, Li Y. ATRX loss promotes immunosuppressive mechanisms in IDH1 mutant glioma. Neuro Oncol 2022; 24:888-900. [PMID: 34951647 PMCID: PMC9159463 DOI: 10.1093/neuonc/noab292] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND ATRX inactivation occurs with IDH1R132H and p53 mutations in over 80% of Grades II/III astrocytomas. It is believed that ATRX loss contributes to oncogenesis by dysregulating epigenetic and telomere mechanisms but effects on anti-glioma immunity have not been explored. This paper examines how ATRX loss contributes to the malignant and immunosuppressive phenotypes of IDH1R132H/p53mut glioma cells and xenografts. METHODS Isogenic astrocytoma cells (+/-IDH1R132H/+/-ATRXloss) were established in p53mut astrocytoma cell lines using lentivirus encoding doxycycline-inducible IDH1R132H, ATRX shRNA, or Lenti-CRISPR/Cas9 ATRX. Effects of IDH1R132H+/-ATRXloss on cell migration, growth, DNA repair, and tumorigenicity were evaluated by clonal growth, transwell and scratch assays, MTT, immunofluorence and immunoblotting assays, and xenograft growth. Effects on the expression and function of modulators of the immune microenvironment were quantified by qRT-PCR, immunoblot, T-cell function, macrophage polarization, and flow cytometry assays. Pharmacologic inhibitors were used to examine epigenetic drivers of the immunosuppressive transcriptome of IDH1R132H/p53mut/ATRXloss cells. RESULTS Adding ATRX loss to the IDH1R132H/p53mut background promoted astrocytoma cell aggressiveness, induced expression of BET proteins BRD3/4 and an immune-suppressive transcriptome consisting of up-regulated immune checkpoints (e.g., PD-L1, PD-L2) and altered cytokine/chemokine profiles (e.g., IL33, CXCL8, CSF2, IL6, CXCL9). ATRX loss enhanced the capacity of IDH1R132H/p53mut cells to induce T-cell apoptosis, tumorigenic/anti-inflammatory macrophage polarization and Treg infiltration. The transcriptional and biological immune-suppressive responses to ATRX loss were enhanced by temozolomide and radiation and abrogated by pharmacologic BET inhibition. CONCLUSIONS ATRX loss activates a BRD-dependent immune-suppressive transcriptome and immune escape mechanism in IDH1R132H/p53mut astrocytoma cells.
Collapse
Affiliation(s)
- Chengchen Hu
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Kimberly Wang
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Ceylan Damon
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Yi Fu
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Tengjiao Ma
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Lisa Kratz
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bachchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mingyao Ying
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Lim
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yunqing Li
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Goutnik M, Lucke-Wold B. Commentary: Evaluating potential glioma serum biomarkers, with future applications. World J Clin Oncol 2022; 13:412-416. [PMID: 35662986 PMCID: PMC9153077 DOI: 10.5306/wjco.v13.i5.412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/15/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
Systemic inflammation within malignant glioma is a topic of ongoing significance. In this commentary, we highlight recent findings from Gandhi et al and discuss alternative approaches. We present a counter argument with findings that IL-6 markers are controversial. We highlight the potential benefit of looking at microRNAs and other biomarkers. Finally, we present ideas for future application involving differentiation between radiation necrosis and recurrence. The commentary is intended to serve as a catalyst for further scientific discovery.
Collapse
Affiliation(s)
- Michael Goutnik
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, United States
| |
Collapse
|
10
|
Chen N, Peng C, Li D. Epigenetic Underpinnings of Inflammation: A Key to Unlock the Tumor Microenvironment in Glioblastoma. Front Immunol 2022; 13:869307. [PMID: 35572545 PMCID: PMC9100418 DOI: 10.3389/fimmu.2022.869307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor in adults, and immunotherapies and genetic therapies for GBM have evolved dramatically over the past decade, but GBM therapy is still facing a dilemma due to the high recurrence rate. The inflammatory microenvironment is a general signature of tumors that accelerates epigenetic changes in GBM and helps tumors avoid immunological surveillance. GBM tumor cells and glioma-associated microglia/macrophages are the primary contributors to the inflammatory condition, meanwhile the modification of epigenetic events including DNA methylation, non-coding RNAs, and histone methylation and deacetylases involved in this pathological process of GBM, finally result in exacerbating the proliferation, invasion, and migration of GBM. On the other hand, histone deacetylase inhibitors, DNA methyltransferases inhibitors, and RNA interference could reverse the inflammatory landscapes and inhibit GBM growth and invasion. Here, we systematically review the inflammatory-associated epigenetic changes and regulations in the microenvironment of GBM, aiming to provide a comprehensive epigenetic profile underlying the recognition of inflammation in GBM.
Collapse
Affiliation(s)
- Nian Chen
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Deng C, Li H, Li Q. F-box protein 17 promotes glioma progression by regulating glycolysis pathway. Biosci Biotechnol Biochem 2022; 86:455-463. [PMID: 35044455 DOI: 10.1093/bbb/zbac008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022]
Abstract
F-box protein 17 (FBXO17) is associated with high-grade glioma and acted as a promotor of glioma development. This study investigated the effect and underlying pathway of FBXO17 on glioma. The Cancer Genome Atlas database was applied to analyze FBXO17 expression information in glioma. First, high FBXO17 expressions are associated with glioma and poor prognosis. Then, FBXO17 was upregulated in glioma cells. Meanwhile, knock-down of FBXO17 inhibited cell proliferation, migration, and invasion, but increased the cell apoptosis. Besides, knock-down of FBXO17 inhibited mitochondrial membrane potential and increased reactive oxygen species. Furthermore, knock-down of FBXO17 decreased level of adenosine triphosphate, glucose, lactate, GLUT1, HK2, PFKP, PKM2, and LDHA. In conclusion, FBXO17 was high expression in glioma, and FBXO17 regulates glioma by regulating glycolysis pathway, providing novel theoretical for the treatment of glioma.
Collapse
Affiliation(s)
- Chao Deng
- Department of Neurosurgery, Taian City Central Hospital, Taian, Shandong, P. R. China
| | - Hongzhi Li
- Department of Neurosurgery, Taian City Central Hospital, Taian, Shandong, P. R. China
| | - Qingmin Li
- Department of Neurosurgery, Taian City Central Hospital, Taian, Shandong, P. R. China
| |
Collapse
|
12
|
Akcora-Yildiz D, Yukselten Y, Sunguroglu M, Ugur HC, Sunguroglu A. IL-33 induces ADAMTS5 expression and cell migration in glioblastoma multiforme. Med Oncol 2022; 39:22. [PMID: 34982269 DOI: 10.1007/s12032-021-01590-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022]
Abstract
Glioblastoma multiforme (GBM), characterized by a high rate of proliferation and migration capacity, is an incurable brain tumor in adults. Interleukin-33 (IL-33), a member of the IL-1 cytokine superfamily, and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), a family of zinc dependent metalloproteinases, are known to have essential roles in GBM migration and invasion. Previous studies have separately revealed elevated expressions of IL-33 and ADAMTS5 in GBM; however, the interaction between IL-33 and ADAMTS5 in GBM remains unclear. Here, using publically available GlioVis and GEPIA programs, we showed that mRNA expressions of IL-33 and ADAMTS5 are significantly high in GBM cells, and a positive correlation between IL-33 and ADAMTS5 was also determined in these cells. In parallel with the mRNA data of IL-33 and ADAMTS5, by Western blot analysis, protein levels were found to be elevated in GBM tissues and increased gradually with the disease progression. Primary GBM cells and low-grade glioma cells were then treated with IL-33 to examine its stimulating effect on ADAMTS5 expression. Exposure to IL-33 raised ADAMTS5 protein levels in a dose-dependent manner. Finally, the wound-healing method was performed to confirm the impact of IL-33 on migration in primary GBM cells. IL-33 promoted migration of primary GBM cells three times higher than untreated GBM cells. Thus, the current study suggests for the first time that IL-33 might have a role in playing a part in GBM progression through induction of ADAMTS5 expression and promotion of migration in GBM cells.
Collapse
Affiliation(s)
- Dilara Akcora-Yildiz
- Department of Biology, Science & Art Faculty, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Yunus Yukselten
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey.,Research Laboratories for Health Science, Y Gen Biotechnology Company Ltd., Ankara, Turkey
| | - Merve Sunguroglu
- Department of Medical Biology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Hasan Caglar Ugur
- Department of Neurosurgery, School of Medicine, Ankara University, Ankara, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
13
|
Zats LP, Ahmad L, Casden N, Lee MJ, Belzer V, Adato O, Bar Cohen S, Ko SHB, Filbin MG, Unger R, Lauffenburger DA, Segal RA, Behar O. An affinity for brainstem microglia in pediatric high-grade gliomas of brainstem origin. Neurooncol Adv 2022; 4:vdac117. [PMID: 35990702 PMCID: PMC9389428 DOI: 10.1093/noajnl/vdac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background High-grade gliomas (HGG) in children have a devastating prognosis and occur in a remarkable spatiotemporal pattern. Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPG), typically occur in mid-childhood, while cortical HGGs are more frequent in older children and adults. The mechanisms behind this pattern are not clear. Methods We used mouse organotypic slice cultures and glial cell cultures to test the impact of the microenvironment on human DIPG cells. Comparing the expression between brainstem and cortical microglia identified differentially expressed secreted proteins. The impact of some of these proteins on DIPGs was tested. Results DIPGs, pediatric HGGs of brainstem origin, survive and divide more in organotypic slice cultures originating in the brainstem as compared to the cortex. Moreover, brainstem microglia are better able to support tumors of brainstem origin. A comparison between the two microglial populations revealed differentially expressed genes. One such gene, interleukin-33 (IL33), is highly expressed in the pons of young mice and its DIPG receptor is upregulated in this context. Consistent with this observation, the expression levels of IL33 and its receptor, IL1RL1, are higher in DIPG biopsies compared to low-grade cortical gliomas. Furthermore, IL33 can enhance proliferation and clonability of HGGs of brainstem origin, while blocking IL33 in brainstem organotypic slice cultures reduced the proliferation of these tumor cells. Conclusions Crosstalk between DIPGs and the brainstem microenvironment, in particular microglia, through IL33 and other secreted factors, modulates spatiotemporal patterning of this HGG and could prove to be an important future therapeutic target.
Collapse
Affiliation(s)
- Liat Peretz Zats
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| | - Labiba Ahmad
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| | - Natania Casden
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| | - Meelim J Lee
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Vitali Belzer
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| | - Orit Adato
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Shaked Bar Cohen
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| | - Seung-Hyun B Ko
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA
| | - Ron Unger
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | | | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Oded Behar
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
14
|
Chung YH, Qian Q, Huang HY, Chiu WT, Yang CS, Tzeng SF. The Nuclear Function of IL-33 in Desensitization to DNA Damaging Agent and Change of Glioma Nuclear Structure. Front Cell Neurosci 2021; 15:713336. [PMID: 34744630 PMCID: PMC8565524 DOI: 10.3389/fncel.2021.713336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
Glioma, the most common subtype of primary brain tumor, is an aggressive and highly invasive neurologically tumor among human cancers. Interleukin-33 (IL-33) is considered as a dual functional cytokine, an alarmin upon tissue damage and a nuclear chromatin-associated protein. Despite that, IL-33 is known to foster the formation of the inflammatory tumor microenvironment and facilitate glioma progression, evidence showing nuclear IL-33 function is still poor. In this study using lentivirus-mediated IL-33 gene knockdown (IL33KD) and IL-33 overexpression (IL33oe) in rat C6 glioma cells and human glioma cell lines (U251MG and U87MG), we found that IL33oe-glioma cells had resistance to the insults of the alkylating agent, temozolomide (TMZ), possibly because of the increased expression of DNA repair genes (i.e., BRCA1, BRCA2, Rad51, FANCB, and FANCD) in IL33oe-glioma cells. Alternatively, examination of glioma nuclear shape from transmission electron microscopy (TEM) imaging analysis and immunofluorescence for histone protein H2A staining showed that IL33KD attenuated the abnormal cancerous nuclear characteristic, such as indentation, long clefts, and multiple nucleoids. Yet, IL33oe promoted the changes in glioma nuclear shapes, such as the formation of multiple lobes. We further found that histone proteins, H2A and H3, were reduced in IL33KD glioma cells. The non-histone DNA-binding nucleoproteins, the high mobility group A1 (HMGA1) and HMGA2, were also downregulated by IL33KD. In contrast, IL33oe increased H2A and H3 proteins and HMGA1 and HMGA2 in glioma cells. Altogether, the upregulation of nuclear IL-33 expression was along with an increase in the expression of DNA repair genes, contributing to the desensitization of glioma cells to DNA damaging agents. Moreover, nuclear IL-33 proteins in cooperation with chromatin-associated proteins regulate glioma nuclear structure, which might be crucial for glioma progression and malignancy.
Collapse
Affiliation(s)
- Yu-Han Chung
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Qiu Qian
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Ying Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Shi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
15
|
Ethemoglu O, Calık M, Koyuncu I, Ethemoglu KB, Göcmen A, Güzelcicek A, Cadırcı D. Interleukin-33 and oxidative stress in epilepsy patients. Epilepsy Res 2021; 176:106738. [PMID: 34482240 DOI: 10.1016/j.eplepsyres.2021.106738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/16/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE İnflammation and oxidative stress plays an important role in the etiology of epilepsy. Interleukin-33 (IL-33), a new member of the cytokine family associated with interleukin-1 (IL-1), has been found to play a role in pathogenesis of central nervous system diseases and cause the production of proinflammatory cytokines and oxidative stress molecules. Our aim was to investigate IL-33 and oxidative stress values (total antioxidant capacity (TAS), total oxidant capacity (TOS), and oxidative stress index (OSI)) in patients with epilepsy and to evaluate their relationship with each other. METHODS The study included 60 patients with epilepsy and 35 healthy controls. The group of patients with epilepsy consisted of 21 patients with treatment-resistant epilepsy and 39 patients with well-controlled epilepsy. The patients with epilepsy were also classified as monotherapy and polytherapy group according to the number of antiepileptic drugs they used, and focal and generalized epilepsy group according to the seizure type. Serum IL-33, TAS, TOS and OSI levels were measured in the patients with epilepsy and the control group. RESULTS The mean serum TAS level was significantly lower in the all patients with epilepsy group compared to the control group, and the mean serum IL-33, TOS, and OSI levels were significantly higher. The mean serum TOS and OSI levels were significantly lower and TAS levels were significantly higher in the patients with well-controlled epilepsy than the patients with treatment-resistant epilepsy. While there was a positive correlation between serum IL-33 and OSI levels in the all patients with epilepsy group, a negative correlation was shown between IL-33 and TAS levels. CONCLUSION The IL-33/ST2 pathway may represent a new promising therapeutic strategy both for the treatment and the prevention of the disease.
Collapse
Affiliation(s)
- Ozlem Ethemoglu
- Harran University School of Medicine, Department of Neurology, Sanlıurfa, Turkey.
| | - Mustafa Calık
- Harran University School of Medicine, Department of Pediatric Neurology, Sanliurfa, Turkey.
| | - Ismail Koyuncu
- Harran University School of Medicine, Department of Medical Biochemistry, Şanlıurfa, Turkey.
| | - Kadri Burak Ethemoglu
- Harran University School of Medicine, Department of Neurosurgery, Sanliurfa, Turkey.
| | - Adalet Göcmen
- Harran University School of Medicine, Department of Neurology, Sanlıurfa, Turkey.
| | - Ahmet Güzelcicek
- Harran University School of Medicine, Department of Pediatrics, Sanliurfa, Turkey.
| | - Dursun Cadırcı
- Harran University School of Medicine, Department of Family Medicine, Sanliurfa, Turkey.
| |
Collapse
|
16
|
Aimi F, Moch H, Schraml P, Hottiger MO. Cytoplasmic ADP-ribosylation levels correlate with markers of patient outcome in distinct human cancers. Mod Pathol 2021; 34:1468-1477. [PMID: 33742140 PMCID: PMC8295037 DOI: 10.1038/s41379-021-00788-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
ADP-ribosylation (ADPR) is a posttranslational modification whose importance in oncology keeps increasing due to frequent use of PARP inhibitors (PARPi) to treat different tumor types. Due to the lack of suitable tools to analyze cellular ADPR levels, ADPR's significance for cancer progression and patient outcome is unclear. In this study, we assessed ADPR levels by immunohistochemistry using a newly developed anti-ADP-ribose (ADPr) antibody, which is able to detect both mono- and poly-ADPR. Tissue microarrays containing brain (n = 103), breast (n = 1108), colon (n = 236), lung (n = 138), ovarian (n = 142), and prostate (n = 328) cancers were used to correlate ADPR staining intensities to clinico-pathological data, including patient overall survival (OS), tumor grade, tumor stage (pT), lymph node status (pN), and the presence of distant metastasis (pM). While nuclear ADPR was detected only in a minority of the samples, cytoplasmic ADPR (cyADPR) staining was observed in most tumor types. Strong cyADPR intensities were significantly associated with better overall survival in invasive ductal breast cancer (p < 0.0001), invasive lobular breast cancer (p < 0.005), and high grade serous ovarian cancer patients (p < 0.01). Furthermore, stronger cytoplasmic ADPR levels significantly correlated with early tumor stage in colorectal and in invasive ductal breast adenocarcinoma (p < 0.0001 and p < 0.01, respectively) and with the absence of regional lymph node metastasis in colorectal adenocarcinoma (p < 0.05). No correlation to cyADPR was found for prostate and lung cancer or brain tumors. In conclusion, our new anti-ADP-ribose antibody revealed heterogeneous ADPR staining patterns with predominant cytoplasmic ADPR staining in most tumor types. Different cyADPR staining patterns could help to better understand variable response rates to PARP inhibitors in the future.
Collapse
Affiliation(s)
- Fabio Aimi
- University of Zurich (UZH), Department of Molecular Mechanisms of Disease (DMMD), Zurich, Switzerland
- University of Zurich and University Hospital Zurich (USZ), Department of Pathology and Molecular Pathology, Zürich, Switzerland
| | - Holger Moch
- University of Zurich and University Hospital Zurich (USZ), Department of Pathology and Molecular Pathology, Zürich, Switzerland
| | - Peter Schraml
- University of Zurich and University Hospital Zurich (USZ), Department of Pathology and Molecular Pathology, Zürich, Switzerland
| | - Michael O Hottiger
- University of Zurich (UZH), Department of Molecular Mechanisms of Disease (DMMD), Zurich, Switzerland.
| |
Collapse
|
17
|
Sun Y, Wen Y, Wang L, Wen L, You W, Wei S, Mao L, Wang H, Chen Z, Yang X. Therapeutic Opportunities of Interleukin-33 in the Central Nervous System. Front Immunol 2021; 12:654626. [PMID: 34079543 PMCID: PMC8165230 DOI: 10.3389/fimmu.2021.654626] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family, is involved in various diseases. IL-33 exerts its effects via its heterodimeric receptor complex, which comprises suppression of tumorigenicity 2 (ST2) and the IL-1 receptor accessory protein (IL-1RAP). Increasing evidence has demonstrated that IL-33/ST2 signaling plays diverse but crucial roles in the homeostasis of the central nervous system (CNS) and the pathogenesis of CNS diseases, including neurodegenerative diseases, cerebrovascular diseases, infection, trauma, and ischemic stroke. In the current review, we focus on the functional roles and cellular signaling mechanisms of IL-33 in the CNS and evaluate the potential for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Yun Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Luxi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Wen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Wendong You
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shuang Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lin Mao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zuobing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaofeng Yang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
De Boeck A, Ahn BY, D'Mello C, Lun X, Menon SV, Alshehri MM, Szulzewsky F, Shen Y, Khan L, Dang NH, Reichardt E, Goring KA, King J, Grisdale CJ, Grinshtein N, Hambardzumyan D, Reilly KM, Blough MD, Cairncross JG, Yong VW, Marra MA, Jones SJM, Kaplan DR, McCoy KD, Holland EC, Bose P, Chan JA, Robbins SM, Senger DL. Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nat Commun 2020; 11:4997. [PMID: 33020472 PMCID: PMC7536425 DOI: 10.1038/s41467-020-18569-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Despite a deeper molecular understanding, human glioblastoma remains one of the most treatment refractory and fatal cancers. It is known that the presence of macrophages and microglia impact glioblastoma tumorigenesis and prevent durable response. Herein we identify the dual function cytokine IL-33 as an orchestrator of the glioblastoma microenvironment that contributes to tumorigenesis. We find that IL-33 expression in a large subset of human glioma specimens and murine models correlates with increased tumor-associated macrophages/monocytes/microglia. In addition, nuclear and secreted functions of IL-33 regulate chemokines that collectively recruit and activate circulating and resident innate immune cells creating a pro-tumorigenic environment. Conversely, loss of nuclear IL-33 cripples recruitment, dramatically suppresses glioma growth, and increases survival. Our data supports the paradigm that recruitment and activation of immune cells, when instructed appropriately, offer a therapeutic strategy that switches the focus from the cancer cell alone to one that includes the normal host environment.
Collapse
Affiliation(s)
- Astrid De Boeck
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bo Young Ahn
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Charlotte D'Mello
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xueqing Lun
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shyam V Menon
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mana M Alshehri
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Frank Szulzewsky
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Lubaba Khan
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ngoc Ha Dang
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elliott Reichardt
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kimberly-Ann Goring
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer King
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cameron J Grisdale
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Natalie Grinshtein
- Department of Molecular Genetics, University of Toronto and Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute and the Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Karlyne M Reilly
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Michael D Blough
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - J Gregory Cairncross
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - David R Kaplan
- Department of Molecular Genetics, University of Toronto and Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eric C Holland
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Pinaki Bose
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Chan
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Stephen M Robbins
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Donna L Senger
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
19
|
Zhou Q, Wu X, Wang X, Yu Z, Pan T, Li Z, Chang X, Jin Z, Li J, Zhu Z, Liu B, Su L. The reciprocal interaction between tumor cells and activated fibroblasts mediated by TNF-α/IL-33/ST2L signaling promotes gastric cancer metastasis. Oncogene 2020; 39:1414-1428. [PMID: 31659258 PMCID: PMC7018661 DOI: 10.1038/s41388-019-1078-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 01/25/2023]
Abstract
Gastric cancer (GC) is characterized by extensive local invasion, distant metastasis and poor prognosis. In most cases, GC progression is associated with aberrant expression of cytokines or activation of signaling cascades mediated by tumor-stroma interactions. However, the mechanisms by which these interactions contribute to GC progression are poorly understood. In this study, we find that IL-33 and its receptor ST2L are upregulated in the human GC and served as prognostic markers for poor survival of GC patients. In a co-culture model with GC cells and cancer-associated fibroblasts (CAFs), we further demonstrate that CAFs-derived IL-33 enhances the migration and invasion of GC cells by inducing the epithelial-mesenchymal transition (EMT) through activation of the ERK1/2-SP1-ZEB2 pathway in a ST2L-dependent manner. Furthermore, the secretion of IL-33 by CAFs can be induced by the proinflammatory cytokines TNF-α that is released by GC cells via TNFR2-NF-κB-IRF-1 pathway. Additionally, silencing of IL-33 expression in CAFs or ST2L expression in GC cells inhibits the peritoneal dissemination and metastatic potential of GC cells in nude mice. Taken together, these results characterize a critical role of the interaction between epithelial-stroma mediated by the TNF-α/IL-33/ST2L signaling in GC progression, and provide a rationale for targeting this pathway to treat GC metastasis.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
- Department of Urology, Center for Organ Transplantation, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Xiongyan Wu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Xiaofeng Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Zhenjia Yu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Tao Pan
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Zhen Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Xinyu Chang
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Zhijian Jin
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Jianfang Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Zhenggang Zhu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Bingya Liu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China.
| | - Liping Su
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China.
| |
Collapse
|
20
|
Lin L, Li Y, Liu M, Li Q, Liu Q, Li R. The Interleukin-33/ST2 axis promotes glioma mesenchymal transition, stemness and TMZ resistance via JNK activation. Aging (Albany NY) 2020; 12:1685-1703. [PMID: 32003751 PMCID: PMC7053587 DOI: 10.18632/aging.102707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022]
Abstract
IL-33 is an important member of the IL-1 family which has pleiotropic activities in innate and adaptive immune responses. Recently, some researchers have focused on the function of cellular immunity in the development of tumor. The biological role of IL-33 in glioma is poorly understood. In this study, we showed that glioma cells and tissues expressed higher levels of IL-33 and its receptor ST2 compared to normal brain. Clinically, IL-33 expression was associated with poor survival in patients with glioma. Administration of human IL-33 enhanced cell migration, invasion, epithelial to mesenchymal transition and stemness. Anti-ST2 blocked these effects of IL-33 on tumor. Mechanistically, IL-33 activated JNK signaling pathway via ST2 and increased the expression of key transcription factors that controlled the process of EMT and stemness. Moreover, IL-33 prevented temozolomide induced tumor apoptosis. Anti-ST2 or knockdown IL-33 increased the sensitivity of tumor to temozolomide. Thus, targeting the IL-33/ST2 axis may offer an opportunity to the treatment of glioma patients.
Collapse
Affiliation(s)
- Lin Lin
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Chinese Glioma Cooperative Group (CGCG), Beijing 100050, China
| | - Yang Li
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Chinese Glioma Cooperative Group (CGCG), Beijing 100050, China
| | - Mingli Liu
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Chinese Glioma Cooperative Group (CGCG), Beijing 100050, China
| | - Qingbin Li
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Chinese Glioma Cooperative Group (CGCG), Beijing 100050, China
| | - Quan Liu
- Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruiyan Li
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Chinese Glioma Cooperative Group (CGCG), Beijing 100050, China.,Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| |
Collapse
|
21
|
IL-33/ST2 axis promotes glioblastoma cell invasion by accumulating tenascin-C. Sci Rep 2019; 9:20276. [PMID: 31889095 PMCID: PMC6937274 DOI: 10.1038/s41598-019-56696-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023] Open
Abstract
Tenascin-C (TNC), a very large multimeric glycoprotein, is overexpressed in human glioblastomas, leading to a highly motile and invasive phenotype of glioma cells. However, the regulation of TNC expression in glioma has remained unclear until now. Our data suggest that interleukin-33 (IL-33) may promote the accumulation of TNC protein by autocrine or paracrine modes of action in glioma. In the present study, the expression levels of TNC, IL-33, and ST2 were measured in glioma tissue specimens, and the impact of altered IL-33 expression on TNC was investigated in vitro and in vivo. In contrast with control treatment, IL-33 treatment increased TNC expression, and knockdown of IL-33 attenuated TNC expression in glioma cells. Furthermore, IL-33 induced the activation of nuclear factor κB (NF-κB) and increased the expression of TNC in U251 cells. In addition, blockage of the IL-33-ST2-NFκB pathway resulted in downregulation of TNC production. IL-33 promoted glioma cell invasion by stimulating the secretion of TNC. Similarly, knockdown of TNC inhibited the invasiveness of glioma cells. These findings provide a novel perspective on the role of the IL-33/NF-κB/TNC signalling pathway in supporting cancer progression. Thus, targeting the IL-33/NF-κB/TNC signalling pathway may be a useful therapeutic approach in glioma.
Collapse
|
22
|
Cheng J, Fan YQ, Liu BH, Zhou H, Wang JM, Chen QX. ACSL4 suppresses glioma cells proliferation via activating ferroptosis. Oncol Rep 2019; 43:147-158. [PMID: 31789401 PMCID: PMC6912066 DOI: 10.3892/or.2019.7419] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/30/2019] [Indexed: 01/22/2023] Open
Abstract
Acyl-CoA synthetase long-chain family member 4 (ACSL4) is a member of the long chain family of acyl-CoA synthetase proteins, which have recently been shown to serve an important role in ferroptosis. Previous studies have suggested that ferroptosis is involved in the occurrence of glioma; however, the role of ACSL4 in glioma remains unknown. In the present study, a reduction of ferroptosis in human glioma tissues and glioma cells was observed. Subsequently, it was demonstrated that the expression of ACSL4 was also downregulated in human glioma tissues and cells. A ferroptosis inhibitor and inducer were used to investigate the effects of ferroptosis on viability. The results showed that promoting ferroptosis inhibited the proliferation of glioma cells, and that the use of inducers had the reverse effect. Therefore, it was hypothesized that the reduction in ACSL4 expression may have been involved in ferroptosis and proliferation in glioma. Overexpression of ACSL4 decreased expression of glutathione peroxidase 4 and increased the levels of ferroptotic markers, including 5-hydroxyeicosatetraenoic (HETE), 12-HETE and 15-HETE. Additionally, ACSL4 overexpression resulted in an increase in lactate dehydrogenase release and a reduction in cell viability. The opposite results were observed when ACSL4 was silenced. These findings suggest that ACSL4 regulates ferroptosis and proliferation of glioma cells. To further investigate the mechanism underlying ACSL4-mediated regulation of proliferation in glioma cells, cells were treated with small interfering (si)-ACSL4 and sorafenib, a ferroptosis inducer. sorafenib attenuated the ability of siRNA-mediated silencing of ACSL4, thus improving cell viability. These results demonstrate that ACSL4 protects glioma cells and exerts anti-proliferative effects by activating a ferroptosis pathway and highlight the pivotal role of ferroptosis regulation by ACSL4 in its protective effects on glioma. Therefore, ACSL4 may serve as a novel therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Qin Fan
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bao-Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Han Zhou
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jun-Min Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian-Xue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
23
|
IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization. Nat Commun 2019; 10:2735. [PMID: 31227713 PMCID: PMC6588585 DOI: 10.1038/s41467-019-10676-1] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/22/2019] [Indexed: 12/31/2022] Open
Abstract
The contribution of mast cells in the microenvironment of solid malignancies remains controversial. Here we functionally assess the impact of tumor-adjacent, submucosal mast cell accumulation in murine and human intestinal-type gastric cancer. We find that genetic ablation or therapeutic inactivation of mast cells suppresses accumulation of tumor-associated macrophages, reduces tumor cell proliferation and angiogenesis, and diminishes tumor burden. Mast cells are activated by interleukin (IL)-33, an alarmin produced by the tumor epithelium in response to the inflammatory cytokine IL-11, which is required for the growth of gastric cancers in mice. Accordingly, ablation of the cognate IL-33 receptor St2 limits tumor growth, and reduces mast cell-dependent production and release of the macrophage-attracting factors Csf2, Ccl3, and Il6. Conversely, genetic or therapeutic macrophage depletion reduces tumor burden without affecting mast cell abundance. Therefore, tumor-derived IL-33 sustains a mast cell and macrophage-dependent signaling cascade that is amenable for the treatment of gastric cancer. Mast cells within the tumor microenvironment have controversial roles. Here, the authors show, using genetic mouse models, that in gastric cancer, mast cells at the periphery of the tumors are activated via cancer cell produced-IL33 and promote tumorigenesis by recruiting macrophages within the tumors.
Collapse
|
24
|
Fairlie-Clarke K, Barbour M, Wilson C, Hridi SU, Allan D, Jiang HR. Expression and Function of IL-33/ST2 Axis in the Central Nervous System Under Normal and Diseased Conditions. Front Immunol 2018; 9:2596. [PMID: 30515150 PMCID: PMC6255965 DOI: 10.3389/fimmu.2018.02596] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Interleukin-33 (IL-33) is a well-recognized immunomodulatory cytokine which plays critical roles in tissue function and immune-mediated diseases. The abundant expression of IL-33 in brain and spinal cord prompted many scientists to explore its unique role in the central nervous system (CNS) under physiological and pathological conditions. Indeed emerging evidence from over a decade's research suggests that IL-33 acts as one of the key molecular signaling cues coordinating the network between the immune and CNS systems, particularly during the development of neurological diseases. Here, we highlight the recent advances in our knowledge regarding the distribution and cellular localization of IL-33 and its receptor ST2 in specific CNS regions, and more importantly the key roles IL-33/ST2 signaling pathway play in CNS function under normal and diseased conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
25
|
Afferni C, Buccione C, Andreone S, Galdiero MR, Varricchi G, Marone G, Mattei F, Schiavoni G. The Pleiotropic Immunomodulatory Functions of IL-33 and Its Implications in Tumor Immunity. Front Immunol 2018; 9:2601. [PMID: 30483263 PMCID: PMC6242976 DOI: 10.3389/fimmu.2018.02601] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
Interleukin-33 (IL-33) is a IL-1 family member of cytokines exerting pleiotropic activities. In the steady-state, IL-33 is expressed in the nucleus of epithelial, endothelial, and fibroblast-like cells acting as a nuclear protein. In response to tissue damage, infections or necrosis IL-33 is released in the extracellular space, where it functions as an alarmin for the immune system. Its specific receptor ST2 is expressed by a variety of immune cell types, resulting in the stimulation of a wide range of immune reactions. Recent evidences suggest that different IL-33 isoforms exist, in virtue of proteolytic cleavage or alternative mRNA splicing, with potentially different biological activity and functions. Although initially studied in the context of allergy, infection, and inflammation, over the past decade IL-33 has gained much attention in cancer immunology. Increasing evidences indicate that IL-33 may have opposing functions, promoting, or dampening tumor immunity, depending on the tumor type, site of expression, and local concentration. In this review we will cover the biological functions of IL-33 on various immune cell subsets (e.g., T cells, NK, Treg cells, ILC2, eosinophils, neutrophils, basophils, mast cells, DCs, and macrophages) that affect anti-tumor immune responses in experimental and clinical cancers. We will also discuss the possible implications of diverse IL-33 mutations and isoforms in the anti-tumor activity of the cytokine and as possible clinical biomarkers.
Collapse
Affiliation(s)
- Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Buccione
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, Naples, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
26
|
The Role of IL-33/ST2 Pathway in Tumorigenesis. Int J Mol Sci 2018; 19:ijms19092676. [PMID: 30205617 PMCID: PMC6164146 DOI: 10.3390/ijms19092676] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer is initiated by mutations in critical regulatory genes; however, its progression to malignancy is aided by non-neoplastic cells and molecules that create a permissive environment known as the tumor stroma or microenvironment (TME). Interleukin 33 (IL-33) is a dual function cytokine that also acts as a nuclear factor. IL-33 typically resides in the nucleus of the cells where it is expressed. However, upon tissue damage, necrosis, or injury, it is quickly released into extracellular space where it binds to its cognate receptor suppression of tumorigenicity 2 (ST2)L found on the membrane of target cells to potently activate a T Helper 2 (Th2) immune response, thus, it is classified as an alarmin. While its role in immunity and immune-related disorders has been extensively studied, its role in tumorigenesis is only beginning to be elucidated and has revealed opposing roles in tumor development. The IL-33/ST2 axis is emerging as a potent modulator of the TME. By recruiting a cohort of immune cells, it can remodel the TME to promote malignancy or impose tumor regression. Here, we review its multiple functions in various cancers to better understand its potential as a therapeutic target to block tumor progression or as adjuvant therapy to enhance the efficacy of anticancer immunotherapies.
Collapse
|
27
|
Eissmann MF, Dijkstra C, Wouters MA, Baloyan D, Mouradov D, Nguyen PM, Davalos-Salas M, Putoczki TL, Sieber OM, Mariadason JM, Ernst M, Masson F. Interleukin 33 Signaling Restrains Sporadic Colon Cancer in an Interferon-γ-Dependent Manner. Cancer Immunol Res 2018; 6:409-421. [PMID: 29463593 DOI: 10.1158/2326-6066.cir-17-0218] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/13/2017] [Accepted: 01/30/2018] [Indexed: 11/16/2022]
Abstract
Interleukin 33 (IL33) is an inflammatory cytokine released during necrotic cell death. The epithelium and stroma of the intestine express large amounts of IL33 and its receptor St2. IL33 is therefore continuously released during homeostatic turnover of the intestinal mucosa. Although IL33 can prevent colon cancer associated with inflammatory colitis, the contribution of IL33 signaling to sporadic colon cancer remains unknown. Here, we utilized a mouse model of sporadic colon cancer to investigate the contribution of IL33 signaling to tumorigenesis in the absence of preexisting inflammation. We demonstrated that genetic ablation of St2 enhanced colon tumor development. Conversely, administration of recombinant IL33 reduced growth of colon cancer cell allografts. In reciprocal bone marrow chimeras, the concurrent loss of IL33 signaling within radioresistant nonhematopoietic, and the radiosensitive hematopoietic, compartments was associated with increased tumor burden. We detected St2 expression within the radioresistant mesenchymal cell compartment of the colon whose stimulation with IL33 induced expression of bona fide NF-κB target genes. Mechanistically, we discovered that St2 deficiency within the nonhematopoietic compartment coincided with increased abundance of regulatory T cells and suppression of an IFNγ gene expression signature, whereas IL33 administration triggered IFNγ expression by tumor allograft-infiltrating T cells. The decrease of this IFNγ gene expression signature was associated with more aggressive disease in human colon cancer patients, suggesting that lack of IL33 signaling impaired the generation of a potent IFNγ-mediated antitumor immune response. Collectively, our data reveal that IL33 functions as a tumor suppressor in sporadic colon cancer. Cancer Immunol Res; 6(4); 409-21. ©2018 AACR.
Collapse
Affiliation(s)
- Moritz F Eissmann
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - Christine Dijkstra
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - Merridee A Wouters
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - David Baloyan
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - Dmitri Mouradov
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul M Nguyen
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.,Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Mercedes Davalos-Salas
- Oncogenic Transcription Laboratory, Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - Tracy L Putoczki
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.,Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Oliver M Sieber
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia.,School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - John M Mariadason
- Oncogenic Transcription Laboratory, Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - Matthias Ernst
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia.
| | - Frederick Masson
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia.
| |
Collapse
|
28
|
Du LX, Wang YQ, Hua GQ, Mi WL. IL-33/ST2 Pathway as a Rational Therapeutic Target for CNS Diseases. Neuroscience 2017; 369:222-230. [PMID: 29175156 DOI: 10.1016/j.neuroscience.2017.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022]
Abstract
Interleukin (IL)-33 is a member of the interleukin-1 cytokine family that is produced by many different types of tissues including the central nervous system (CNS). IL-33 mediates its effects via its heterodimeric receptor complex, comprised of ST2 and the IL-1 receptor accessory protein (IL-1RAcp). As a pleiotropic nuclear cytokine, IL-33 is a crucial factor in the development of cardiovascular diseases, allergic diseases, infectious diseases, and autoimmune diseases. Recently, accumulated evidence shows that the IL-33/ST2 axis plays a crucial and diverse role in the pathogenesis of CNS diseases, including neurodegenerative diseases, cerebrovascular diseases, infectious diseases, traumatic CNS injury, chronic pain, etc. In this review, we discuss the recent findings in the cellular signaling of IL-33 and advancement of the role of IL-33 in several CNS diseases, as well as its therapeutic potential for the treatment of those diseases.
Collapse
Affiliation(s)
- Li-Xia Du
- Department of Integrative Medicine and Neurobiology, Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, People's Republic of China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, People's Republic of China
| | - Guo-Qiang Hua
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, Academy of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, People's Republic of China.
| |
Collapse
|
29
|
Gbolahan OB, Zeidan AM, Stahl M, Abu Zaid M, Farag S, Paczesny S, Konig H. Immunotherapeutic Concepts to Target Acute Myeloid Leukemia: Focusing on the Role of Monoclonal Antibodies, Hypomethylating Agents and the Leukemic Microenvironment. Int J Mol Sci 2017; 18:E1660. [PMID: 28758974 PMCID: PMC5578050 DOI: 10.3390/ijms18081660] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
Intensive chemotherapeutic protocols and allogeneic stem cell transplantation continue to represent the mainstay of acute myeloid leukemia (AML) treatment. Although this approach leads to remissions in the majority of patients, long-term disease control remains unsatisfactory as mirrored by overall survival rates of approximately 30%. The reason for this poor outcome is, in part, due to various toxicities associated with traditional AML therapy and the limited ability of most patients to tolerate such treatment. More effective and less toxic therapies therefore represent an unmet need in the management of AML, a disease for which therapeutic progress has been traditionally slow when compared to other cancers. Several studies have shown that leukemic blasts elicit immune responses that could be exploited for the development of novel treatment concepts. To this end, early phase studies of immune-based therapies in AML have delivered encouraging results and demonstrated safety and feasibility. In this review, we discuss opportunities for immunotherapeutic interventions to enhance the potential to achieve a cure in AML, thereby focusing on the role of monoclonal antibodies, hypomethylating agents and the leukemic microenvironment.
Collapse
Affiliation(s)
- Olumide Babajide Gbolahan
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Amer M Zeidan
- Department of Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Maximilian Stahl
- Department of Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Mohammad Abu Zaid
- Department of Medicine, Bone Marrow and Stem Cell Transplantation, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Sherif Farag
- Department of Medicine, Bone Marrow and Stem Cell Transplantation, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Sophie Paczesny
- Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Heiko Konig
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
30
|
Wasmer MH, Krebs P. The Role of IL-33-Dependent Inflammation in the Tumor Microenvironment. Front Immunol 2017; 7:682. [PMID: 28119694 PMCID: PMC5220330 DOI: 10.3389/fimmu.2016.00682] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022] Open
Abstract
There is compelling evidence that inflammation contributes to tumorigenesis. Inflammatory mediators within the tumor microenvironment can either promote an antitumor immune response or support tumor pathogenesis. Therefore, it is critical to determine the relative contribution of tumor-associated inflammatory pathways to cancer development. Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines that is released upon tissue stress or damage to operate as an alarmin. IL-33 has been primarily implicated in the induction of type-2 immune responses. However, recent findings have shown a role of IL-33 in several cancers where it may exert multiple functions. In this review, we will present the current knowledge on the role of IL-33 in the microenvironment of different tumors. We will highlight which cells produce and which cells are activated by IL-33 in cancer. Furthermore, we will explain how IL-33 modulates the tumor-associated inflammatory microenvironment to restrain or promote tumorigenesis. Finally, we will discuss the issues to be addressed first before potentially targeting the IL-33 pathway for cancer therapy.
Collapse
Affiliation(s)
- Marie-Hélène Wasmer
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern , Bern , Switzerland
| |
Collapse
|