1
|
Luo H, Chen L, Cui Z, Du J, Yang H, Qiu W, Zhai L, Liang H, Tang H. Poly(ADP-ribose)polymerase-1 affects hydroquinone-induced aberrant cell cycle and apoptosis through activation of p16/pRb signaling pathway in TK6 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113259. [PMID: 35121258 DOI: 10.1016/j.ecoenv.2022.113259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Hydroquinone (HQ), a key metabolite of benzene, affects cell cycle and apoptosis. Poly (ADP-ribose) polymerase-1 (PARP-1) plays an important role in DNA damage repair. To explore whether PARP-1 is involved in HQ-induced cell cycle and apoptosis, we assessed the effect of PARP-1 suppression and overexpression on induction of cell cycle and apoptosis analyzed by flow cytometry analysis. We observed that HQ induced aberrant cell cycle progression and apoptosis. We further confirmed that PARP-1 suppression accelerated the cell cycle progression and inhibited cell apoptosis via inhibiting p16/pRb signal pathway after acute HQ exposure, while overexpression of PARP-1 displayed the opposite results. Therefore, we concluded that HQ-induced cell cycle and apoptosis were regulated by PARP-1 through activation of p16/pRb signaling pathway.
Collapse
Affiliation(s)
- Hao Luo
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lin Chen
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zheming Cui
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinlin Du
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hui Yang
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Weifeng Qiu
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lu Zhai
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hairong Liang
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
2
|
Cervical Carcinoma: Oncobiology and Biomarkers. Int J Mol Sci 2021; 22:ijms222212571. [PMID: 34830452 PMCID: PMC8624663 DOI: 10.3390/ijms222212571] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
Cervical cancer is one of the most common types of carcinomas causing morbidity and mortality in women in all countries of the world. At the moment, the oncology, oncobiology, and oncomorphology of cervical cancer are characterized by the accumulation of new information; various molecular biological, genetic, and immunohistochemical methods of investigation of the mechanisms of cervical carcinogenesis are tested and applied; targeted antitumour drugs and diagnostic, prognostic, and predictive biomarkers are being searched for. Many issues of the etiopathogenesis of cervical cancer have not been sufficiently studied, and the role of many biomarkers characterizing various stages of cervical carcinogenesis remains unclear. Therefore, the target of this review is to systematize and understand several problems in the pathogenesis of cervical cancer and to evaluate the significance and role of biomarkers in cervical carcinogenesis.
Collapse
|
3
|
Luo H, Zhai L, Qiu W, Liang H, Yu L, Li Y, Xiong M, Guo J, Tang H. p16 loss facilitate hydroquinone-induced malignant transformation of TK6 cells through promoting cell proliferation and accelerating the cell cycle progression. ENVIRONMENTAL TOXICOLOGY 2021; 36:1591-1599. [PMID: 33932074 DOI: 10.1002/tox.23155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
The p16INK4A is a multifunction gene that includes regulation of the cell cycle, apoptosis, senescence and tumor development. However, the effects of p16 in hydroquinone-induced malignant transformation of TK6 cells remain unclear. The present study aimed to explore whether p16 loss facilitate malignant transformation in TK6 cells. The results demonstrated that p16/Rb signal pathway was suppressed in hydroquinone-induced malignant transformation of TK6 cells. We further confirmed that p16 loss stimulated cell proliferation, and accelerated cell cycle progression in vitro and in vivo. The immunoblotting analysis indicated that p16 regulated cell cycle progression via Rb and p53. Therefore, we conclude that p16 is involved in HQ-induced malignant transformation associated with suppressing Rb and p53 which resulting in accelerating the cell cycle progression.
Collapse
Affiliation(s)
- Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lu Zhai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Weifeng Qiu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lei Yu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuan Li
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Mengyun Xiong
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jiaying Guo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
4
|
Zhai L, Liang H, Du J, Sun M, Qiu W, Tang H, Luo H. PARP-1 via regulation of p53 and p16, is involved in the hydroquinone-induced malignant transformation of TK6 cells by decelerating the cell cycle. Toxicol In Vitro 2021; 74:105153. [PMID: 33771647 DOI: 10.1016/j.tiv.2021.105153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/23/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
Poly(ADP-ribose)polymerase-1 (PARP-1) plays a crucial role in DNA damage repair and could be viewed as both a tumor promoter and tumor-suppressor gene. However, the effects of PARP-1 in hydroquinone-induced malignant transformation of TK6 cells remain to be further elucidated. The present research evaluated the potential mechanism of PARP-1 in hydroquinone-induced malignant transformation of TK6 cells. The results indicated that high PARP-1 inhibited TK6 cells malignant transformation after chronic exposure to HQ. We further confirmed that PARP-1 overexpression blocked cell proliferation, and decelerated cell cycle progression in vitro and in vivo. The immunoblotting analysis indicated that PARP-1 regulated cell cycle progression via p16/Rb and p53. Therefore, we conclude that PARP-1 is involved in HQ-induced malignant transformation associated with increasing p16/Rb and p53 which resulting in decelerating the cell cycle progression.
Collapse
Affiliation(s)
- Lu Zhai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinlin Du
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Mingwei Sun
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Weifeng Qiu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| | - Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
5
|
Sobh A, Loguinov A, Stornetta A, Balbo S, Tagmount A, Zhang L, Vulpe CD. Genome-Wide CRISPR Screening Identifies the Tumor Suppressor Candidate OVCA2 As a Determinant of Tolerance to Acetaldehyde. Toxicol Sci 2020; 169:235-245. [PMID: 31059574 DOI: 10.1093/toxsci/kfz037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acetaldehyde, a metabolite of ethanol, is a cellular toxicant and a human carcinogen. A genome-wide CRISPR-based loss-of-function screen in erythroleukemic K562 cells revealed candidate genetic contributors affecting acetaldehyde cytotoxicity. Secondary screening exposing cells to a lower acetaldehyde dose simultaneously validated multiple candidate genes whose loss results in increased sensitivity to acetaldehyde. Disruption of genes encoding components of various DNA repair pathways increased cellular sensitivity to acetaldehyde. Unexpectedly, the tumor suppressor gene OVCA2, whose function is unknown, was identified in our screen as a determinant of acetaldehyde tolerance. Disruption of the OVCA2 gene resulted in increased acetaldehyde sensitivity and higher accumulation of the acetaldehyde-derived DNA adduct N2-ethylidene-dG. Together these results are consistent with a role for OVCA2 in adduct removal and/or DNA repair.
Collapse
Affiliation(s)
- Amin Sobh
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida.,Department of Nutritional Sciences & Toxicology, Comparative Biochemistry Program, University of California, Berkeley, California
| | - Alex Loguinov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Abderrahmane Tagmount
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California
| | - Chris D Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Tripathi R, Rath G, Jawanjal P, Bharadwaj M, Mehrotra R. ≤ Cyclin D1 protein affecting global women's health by regulating HPV mediated adenocarcinoma of the uterine cervix. Sci Rep 2019; 9:5019. [PMID: 30903019 PMCID: PMC6430791 DOI: 10.1038/s41598-019-41394-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/26/2019] [Indexed: 01/06/2023] Open
Abstract
Adenocarcinoma (ADC) of the uterine cervix (UC) is a rare form of cervical cancer (CC) caused due to the infection of Human Papilloma Virus (HPV). Cyclin D1 is one of the downstream targets of aberrantly activated Notch signaling, contribute to the etiology of CC. However, little is known about the role of Cyclin D1 in the modulation of cervical ADC and is controversial. The purpose of this study is to determine the role of Cyclin D1 protein and to elucidate the combined analysis with Notch signaling proteins in HPV associated ADCs of CC. A total of 60 biopsy samples (40 normal and 20 ADCs of CC) were analyzed for the expression of Cyclin D1 in HPV associated ADCs via immunohistochemistry and by immunoblotting. HPV-16 positive ADC patients showed a strong association with the Cyclin D1 expression (p = 0.007). The significant mean difference (p = 0.0001) and the pairwise comparison between Cyclin D1/JAG1 (p = 0.0001), and Cyclin D1/Notch-3 (p = 0.0001) were observed. The above Notch signaling proteins showed their synergistic role in modulating Cyclin D1 which in-turn regulates HPV-16 associated ADC of the uterine cervix (UC), affecting women's global health.
Collapse
Affiliation(s)
- Richa Tripathi
- Division of Molecular Genetics & Biochemistry, ICMR-National Institute of Cancer Prevention and Research (NICPR), Noida, India
- Division of Preventive Oncology, ICMR-National Institute of Cancer Prevention and Research (NICPR), Noida, India
| | - Gayatri Rath
- Department of Anatomy, VMMC & Safdarjung Hospital, New Delhi, India
| | - Poonam Jawanjal
- Department of Anatomy, VMMC & Safdarjung Hospital, New Delhi, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics & Biochemistry, ICMR-National Institute of Cancer Prevention and Research (NICPR), Noida, India.
| | - Ravi Mehrotra
- Division of Preventive Oncology, ICMR-National Institute of Cancer Prevention and Research (NICPR), Noida, India.
| |
Collapse
|
7
|
Teshima M, Tokita K, Ryo E, Matsumoto F, Kondo M, Ikegami Y, Shinomiya H, Otsuki N, Hiraoka N, Nibu KI, Yoshimoto S, Mori T. Clinical impact of a cytological screening system using cyclin D1 immunostaining and genomic analysis for the diagnosis of thyroid nodules. BMC Cancer 2019; 19:245. [PMID: 30885146 PMCID: PMC6423761 DOI: 10.1186/s12885-019-5452-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 03/12/2019] [Indexed: 11/10/2022] Open
Abstract
Background Fine-needle aspiration (FNA) is the most reliable method for diagnosing thyroid nodules; however, some features such as atypia of undetermined significance or follicular lesion of undetermined significance can confound efforts to identify malignancies. Similar to BRAF, cyclin D1 may be a strong marker of cell proliferation. Methods One hundred two patients with thyroidal nodule were enrolled in this prospective study. Expression of cyclin D1 in thyroid nodules was determined by immunohistochemistry using both surgical specimens and their cytological specimens. The identification of the optimal cut off points for the diagnosis of malignancy were evaluated using the receiver operating characteristic (ROC) curves and the assessment of the area under the ROC curve (AUC). The specificity, sensitivity, positive predictive value (PPV) of markers were evaluated from crosstabs based on cut off points and significance were calculated. We also analyzed genetic variants by target NGS for thyroid nodule samples. Results The positive predictive value (PPV) and median stain ratio (MSR) of cyclin D1 nuclear staining was determined in papillary thyroid carcinoma (PPV = 91.5%, MSR = 48.5%), follicular adenoma (PPV = 66.7%, MSR = 13.1%), and adenomatous goiter and inflammation controls (MSR = 3.4%). In FNA samples, a threshold of 46% of immunolabelled cells allows to discriminate malignant lesions from benign ones (P < 0.0001), with 81% sensitivity and 100% specificity. A 46% cutoff value for positive cyclin D1 immunostaining in thyroid cells demonstrated 81% sensitivity and 100% specificity. In surgical specimens, ROC curve analysis showed a 5.8% cyclin D1 immunostaining score predicted thyroid neoplasms at 94.4% sensitivity and 92.3% specificity (P = 0.003), while a 15.7% score predicted malignancy at 86.4% sensitivity and 80.5% specificity (P < 0.0001). Finally, three tested clinico-pathological variables (extra thyroidal extension, intraglandular metastasis, and lymph node metastasis) were significant predictors of cyclin D1 immunostaining (P < 0.001). Conclusion Our cytological cyclin D1 screening system provides a simple, accurate, and convenient diagnostic method in precision medicine enabling ready determination of personalized treatment strategies for patients by next generation sequencing using cytological sample. Electronic supplementary material The online version of this article (10.1186/s12885-019-5452-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masanori Teshima
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan.,Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan.,Department of Otolaryngology - Head and Neck Surgery, Kobe University, School of Medicine, Kobe, Japan
| | - Kazuya Tokita
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Eijitsu Ryo
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Fumihiko Matsumoto
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Madoka Kondo
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yota Ikegami
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirotaka Shinomiya
- Department of Otolaryngology - Head and Neck Surgery, Kobe University, School of Medicine, Kobe, Japan
| | - Naoki Otsuki
- Department of Otolaryngology - Head and Neck Surgery, Kobe University, School of Medicine, Kobe, Japan
| | - Nobuyoshi Hiraoka
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Ken-Ichi Nibu
- Department of Otolaryngology - Head and Neck Surgery, Kobe University, School of Medicine, Kobe, Japan
| | - Seiichi Yoshimoto
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Taisuke Mori
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan. .,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
8
|
Inhibition of sonic hedgehog signaling blocks cell migration and growth but induces apoptosis via suppression of FOXQ1 in natural killer/T-cell lymphoma. Leuk Res 2017; 64:1-9. [PMID: 29132010 DOI: 10.1016/j.leukres.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 01/04/2023]
Abstract
The present study explored the effects of Forkhead box Q1 (FOXQ1) on cell proliferation, cell cycle and apoptosis via the Sonic hedgehog (Shh) pathway in Natural killer/T-cell lymphoma (NKTCL). Quantitative real time-polymerase chain reaction (qRT-PCR) was performed to detect FOXQ1 expression in 117 NKTCL patients and 120 healthy controls. Additionally, FOXQ1 expression in NKTCL cell lines (HANK-1, NK-92, SNK-6, SNT-8 and YT) was determined by western blotting and qRT-PCR. SNK-6 cells were transfected with FOXQ1-shRNA or Shh pathway inhibitor Cyclopamine/recombinant protein Shh. Cell counting kit-8 (CCK-8) and 5-bromo-2-deoxy-uridine (BrdU) incorporation assays were conducted to detect cell proliferation, flow cytometry was used to determine the cell cycle and cell apoptosis, and western blotting was used to detect protein expression. FOXQ1 expression was higher in NKTCL patients than in healthy controls, which was related to Ann Arbor stage, bone marrow involvement and the 5year survival rate in NKTCL patients. Moreover, FOXQ1 expression, pathological type, Ann Arbor stage, B symptom and bone marrow involvement were independent risk factors in NKTCL. Shh pathway-related proteins were down-regulated after transfection of SNK-6 cells with FOXQ1-shRNA. Additionally, SNK-6 cell proliferation was greatly reduced, the cell cycle was blocked at the G0/G1 phase, and the expression of CyclinD1 and CyclinE was markedly decreased, while an increase in cell apoptosis with elevated Bcl-2-associated X protein (Bax) and Caspase-3 and reduced B-cell lymphoma/leukemia-2 (Bcl-2) were also observed. However, no significant alterations were observed between the FOXQ1-shRNA+Shh and Blank groups. The inhibition of FOXQ1 restricted NKTCL cell proliferation and growth but induced apoptosis via blocking the Shh signaling pathway.
Collapse
|