1
|
Mrozewski L, Tharmalingam S, Michael P, Kumar A, Tai TC. C5a Induces Inflammatory Signaling and Apoptosis in PC12 Cells through C5aR-Dependent Signaling: A Potential Mechanism for Adrenal Damage in Sepsis. Int J Mol Sci 2024; 25:10673. [PMID: 39409001 PMCID: PMC11477224 DOI: 10.3390/ijms251910673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
The complement system is critically involved in the pathogenesis of sepsis. In particular, complement anaphylatoxin C5a is generated in excess during sepsis, leading to cellular dysfunction. Recent studies have shown that excessive C5a impairs adrenomedullary catecholamine production release and induces apoptosis in adrenomedullary cells. Currently, the mechanisms by which C5a impacts adrenal cell function are poorly understood. The PC12 cell model was used to examine the cellular effects following treatment with recombinant rat C5a. The levels of caspase activation and cell death, protein kinase signaling pathway activation, and changes in inflammatory protein expression were examined following treatment with C5a. There was an increase in apoptosis of PC12 cells following treatment with high-dose C5a. Ten inflammatory proteins, primarily involved in apoptosis, cell survival, and cell proliferation, were upregulated following treatment with high-dose C5a. Five inflammatory proteins, involved primarily in chemotaxis and anti-inflammatory functions, were downregulated. The ERK/MAPK, p38/MAPK, JNK/MAPK, and AKT protein kinase signaling pathways were upregulated in a C5aR-dependent manner. These results demonstrate an apoptotic effect and cellular signaling effect of high-dose C5a. Taken together, the overall data suggest that high levels of C5a may play a role in C5aR-dependent apoptosis of adrenal medullary cells in sepsis.
Collapse
Affiliation(s)
- Lucas Mrozewski
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
| | - Sujeenthar Tharmalingam
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| | - Paul Michael
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
| | - Aseem Kumar
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| | - T. C. Tai
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
2
|
Zhang F, Qi Y, Li J, Liu B, Liu Z, Cui X. Activin A induces apoptosis of human lung adenocarcinoma A549 cells through endoplasmic reticulum stress pathway. Oncol Rep 2024; 51:29. [PMID: 38131250 PMCID: PMC10777458 DOI: 10.3892/or.2023.8688] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Activin A, a member of the transforming growth factor‑β (TGF‑β) superfamily, has been implicated in the tumorigenesis and progression of various cancers. However, it remains unclear whether activin A induces apoptosis in human lung adenocarcinoma cells through the endoplasmic reticulum (ER) stress pathway. In the present study, BrdU, flow cytometry and western blotting were used to examine cell proliferation, apoptosis and protein expression, respectively. The present study revealed that activin A inhibited human lung adenocarcinoma A549 cell proliferation, induced apoptosis, and upregulated the protein levels of C/EBP homologous protein (CHOP), growth arrest and DNA damage‑inducible protein 34 (GADD34), cleaved‑caspase‑3 and caspase‑12. Furthermore, the administration of activin A did not alter the levels of suppressor of mothers against decapentaplegic 3 (Smad3) or phosphorylated (p)‑Smad3 proteins, whereas, it significantly elevated the levels of ActRIIA and p‑extracellular signal regulated kinase proteins 1 and 2 (ERK1/2) proteins in A549 cells. The apoptotic effects of activin A on A549 cells were attenuated by the ERK inhibitor FR180204, which also downregulated CHOP and caspase‑12 protein levels. Additionally, activin A increased intracellular calcium flux in A549 cells, and the calcium ion chelator BAPTA acetoxymethyl ester (BAPTA‑AM) inhibited activin A‑induced A549 cell apoptosis, whereas the calcium agonist ionomycin significantly increased apoptosis of A549 cells induced by activin A. These findings indicated that the activation of the ER stress pathway resulting in apoptosis of A549 cells triggered by activin A is facilitated by the ActRIIA‑ERK1/2 signaling and calcium signaling. The present findings suggest that the agonists of ERK and calcium signaling exhibit promising clinical therapeutic potential for the induction of apoptosis in lung adenocarcinoma.
Collapse
Affiliation(s)
- Fenglin Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
- Key Laboratory of Neuroimmunology and Clinical Immunology in Jilin, Changchun, Jilin 130021, P.R. China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
- Key Laboratory of Neuroimmunology and Clinical Immunology in Jilin, Changchun, Jilin 130021, P.R. China
| | - Jing Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
- Key Laboratory of Neuroimmunology and Clinical Immunology in Jilin, Changchun, Jilin 130021, P.R. China
| | - Boyang Liu
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Scientific Research, Jilin Jianzhu University, Changchun, Jilin 130118, P.R. China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
- Key Laboratory of Neuroimmunology and Clinical Immunology in Jilin, Changchun, Jilin 130021, P.R. China
| | - Xueling Cui
- Key Laboratory of Neuroimmunology and Clinical Immunology in Jilin, Changchun, Jilin 130021, P.R. China
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
3
|
Fei ZY, Wang J, Liang J, Zhou X, Guo M. Analysis of bacterial spectrum, activin A, and CD64 in chronic obstructive pulmonary disease patients complicated with pulmonary infections. World J Clin Cases 2022; 10:2382-2392. [PMID: 35434072 PMCID: PMC8968607 DOI: 10.12998/wjcc.v10.i8.2382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/27/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary infections often lead to poor prognoses in patients with chronic obstructive pulmonary disease (COPD). Activin A and CD64 play crucial pathological roles in the development of COPD.
AIM To explore the bacterial spectrum via analysis of activing A levels, CD64 index, and related mechanisms in COPD patients complicated with pulmonary infection.
METHODS Between March 2015 and January 2018, a total of 85 patients with COPD, who also suffered from pulmonary infections, were enrolled in this study as the pulmonary infection group. In addition, a total of 96 COPD patients, without pulmonary infection, were selected as the control group. Sputum samples of patients in the pulmonary infection group were cultivated for bacterial identification prior to administration of antibiotics. The neutrophil CD64 index was measured using flow cytometry, serum activin A levels were detected via an enzyme-linked immunosorbent assay, and activin A, Smad3, TLR4, MyD88, and NFκB protein expression was analyzed by Western blotting.
RESULTS Gram-negative bacteria were identified in 57.65% of the sputum samples in the pulmonary infection group. The most prevalent Gram-negative species were Pseudomonas aeruginosa and Klebsiella pneumoniae. Conversely, Gram-positive bacteria were identified in 41.18% of the sputum samples in the pulmonary infection group. The most common Gram-positive species was Streptococcus pneumoniae. Fungi were identified in 1.17% of the sputum samples in the pulmonary infection group. The CD64 index was significantly higher in the pulmonary infection group (0.91 ± 0.38) than in the control group (0.23 ± 0.14, P < 0.001). The serum activin A levels were significantly higher in the pulmonary infection group (43.50 ± 5.22 ng/mL), compared to the control group (34.82 ± 4.16 ng/mL, P < 0.001). The relative expression levels of activin A, Smad3, TLR4, MyD88, and NFκB were all significantly higher in the pulmonary infection group, compared to the control group (all P < 0.001).
CONCLUSION Pulmonary infections in COPD patients are mainly caused by Streptococcus pneumoniae, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Pulmonary infections can significantly increase neutrophil CD64 index and serum levels of activin A, thereby activating the activin A/Smad3 signaling pathway, which may positively regulate the TLR4/MyD88/NFκB signaling pathway.
Collapse
Affiliation(s)
- Zhao-Yang Fei
- Experimental Research Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jiang Wang
- Experimental Research Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jie Liang
- Experimental Research Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xue Zhou
- Experimental Research Centre, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Min Guo
- Department of Laboratory Medicine, Lianyungang Second People's Hospital, Lianyungang 222006, Jiangsu Province, China
| |
Collapse
|
4
|
Yurasakpong L, Nantasenamat C, Nobsathian S, Chaithirayanon K, Apisawetakan S. Betulinic Acid Modulates the Expression of HSPA and Activates Apoptosis in Two Cell Lines of Human Colorectal Cancer. Molecules 2021; 26:6377. [PMID: 34770786 PMCID: PMC8588033 DOI: 10.3390/molecules26216377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Betulinic acid (BA) is a pentacyclic triterpene usually isolated from botanical sources. Numerous studies have reported the inhibitory effect of BA against human colorectal cancer cells (CRC). However, its effect on the expression of the molecular chaperone HSPA is unclear. The aim of this research is to investigate the anti-cancer activities of BA purified from Piper retrofractum and study its effect on the expression of HSPA in colorectal cancer HCT116 and SW480 cells. The viability of both cancer cells was reduced after they were treated with an increasing dosage of BA. Flow cytometry assay revealed that levels of cell apoptosis significantly increased after incubation with BA in both cancer cells. Pro-apoptotic markers including Bax, cleaved-caspase-3 and cleaved-caspase-9 were increased while anti-apoptotic marker Bcl-2 was decreased after BA treatment. Western blot also showed that the expression of HSPA fluctuated upon BA treatment, whereby HSPA was increased at lower BA concentrations while at higher BA concentrations HSPA expression was decreased. Preliminary molecular docking assay showed that BA can bind to the nucleotide binding domain of the HSP70 at its ADP-bound state of the HSP70. Although further research is needed to comprehend the BA-HSPA interaction, our findings indicate that BA can be considered as potential candidate for the development of new treatment for colorectal cancer.
Collapse
Affiliation(s)
- Laphatrada Yurasakpong
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand; (L.Y.); (K.C.)
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand;
| | | | - Kulathida Chaithirayanon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand; (L.Y.); (K.C.)
| | - Somjai Apisawetakan
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Wattana, Bangkok 10110, Thailand
| |
Collapse
|
5
|
Zhang X, Xu X, Lu L, Wan X, Qin Y, Ruan W, Lv C, He L, Guo X. A new Mfn-2 related synthetic peptide promotes vascular smooth muscle cell apoptosis via regulating the mitochondrial apoptotic pathway by inhibiting Akt signaling. J Transl Med 2021; 19:395. [PMID: 34538249 PMCID: PMC8451139 DOI: 10.1186/s12967-021-03064-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/02/2021] [Indexed: 01/11/2023] Open
Abstract
Background Restenosis after angioplasty is a major challenge for the treatment of coronary artery diseases. Facilitation of vascular smooth muscle cell (VSMC) apoptosis may be an attractive approach to decrease the incidence of restenosis. We synthesized a 16-amino acid mitofusin-2 (Mfn-2) gene related peptide (MRSP) based on the sequence of the p21ras signature motif, the smallest functional sequence of the Mfn-2 gene with proapoptotic properties in VSMC. We investigated whether MRSP enhanced apoptotic activities to inhibit VSMC accumulation and neointimal hyperplasia in rats with carotid balloon injury. Methods VSMCs were treated with different concentrations of MRSP, the PI3K agonist 740 Y-P and the inhibitor LY294002. Cell apoptosis and related pathway molecules were assessed. MRSP was also given to rats with carotid artery balloon injury. Neointimal hyperplasia and cell apoptotic pathways were detected. Results In vitro experiments revealed that MRSP treatment significantly increased VSMC apoptosis and induced increases in procaspase-9 cleavage, caspase-3 activation, cytochrome c release from mitochondria to the cytoplasm and the Bax/Bcl-2 ratio but not caspase-8 expression, indicating that the mitochondrial apoptotic cascade was activated by MRSP, which might be attributed to suppression of the PI3K/Akt signaling pathway. We further found that the PI3K agonist 740 Y-P prevented and that the inhibitor LY294002 strengthened the proapoptotic effects of MRSP. MRSP strongly inhibited neointimal hyperplasia and VSMC accumulation, but increased VSMC apoptosis in the vascular wall after balloon injury. Moreover, MRSP substantially enhanced Bax and cleaved caspase-3 expression and decreased Bcl-2 levels in intima, accompanied by decreased levels of phosphorylated Akt and PI3K in vivo. Conclusions Taken together, the present study showed that MRSP treatment results in a strong proapoptotic effect by activating the mitochondrial apoptotic cascade through suppression of the PI3K/Akt pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03064-1.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiangyu Xu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Li Lu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoning Wan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yating Qin
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weibin Ruan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Lv
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin He
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai, China
| | - Xiaomei Guo
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Ge J, Sun H, Li J, Shan Y, Zhao Y, Liao F, Yang Y, Cui X, Liu Z. Involvement of CHOP in activin A‑induced myeloma NS‑1 cell apoptosis. Oncol Rep 2019; 42:2644-2654. [PMID: 31638256 PMCID: PMC6859442 DOI: 10.3892/or.2019.7382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Activin A, a multifunctional cytokine, is a member of transforming growth factor-β (TGF-β) superfamily. It is associated with a variety of pathophysiological processes, including inflammation, fibrosis, and tumorigenesis. Chronic or prolonged endoplasmic reticulum (ER) stress can lead to cells apoptosis. However, whether ER stress-related proteins, such as CHOP, GADD34 are involved in activin A-induced myeloma cell apoptosis remains unknown. In the present study, it was revealed that activin A inhibited the proliferation of myeloma cell line NS-1 cells and induced NS-1 cell apoptosis. Activin A upregulated the expression of CHOP, GADD34, caspase-3, and caspase-12. Moreover, both Smad3 and p-Smad3 levels were increased with treatment of activin A. Further studies revealed that the overexpression of activin signaling protein Smad3 in NS-1 cells increased the levels of CHOP, caspase-3, and p-Smad3. These data indicated that the CHOP protein of the ER stress pathway may be involved in activin A-induced NS-1 cell apoptosis, and also indicated the potential therapy of activin A-induced apoptosis via CHOP signaling for multiple myeloma.
Collapse
Affiliation(s)
- Jingyan Ge
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongyan Sun
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yidi Shan
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zhao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fangwei Liao
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yu Yang
- Department of Functional Laboratory, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
7
|
Ponselvi Induja M, Ezhilarasan D, Ashok Vardhan N. Evolvulus alsinoides methanolic extract triggers apoptosis in HepG2 cells. AVICENNA JOURNAL OF PHYTOMEDICINE 2018; 8:504-512. [PMID: 30456198 PMCID: PMC6235665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The objective of the present study was to evaluate the cytotoxic potentials of Evolvulus alsinoides in human hepatoma HepG2 cells. MATERIALS AND METHODS HepG2 cells were treated with methanolic extract of E. alsinoides at 20, 40 and 80 µg/ml for 24 hr and cytotoxic effect was analyzed by MTT assay. The apoptosis rate was investigated by Hoechst 33342 and annexin V/propidium iodide staining. Mitochondrial membrane potential was evaluated by rhodamine staining. Also, the expression of catenin - β 1 protein was analyzed by western blotting. RESULTS E. alsinoides methanolic extract treatment caused significant cytotoxicity in HepG2 cells in a concentration-dependent manner. Dual staining assay confirmed the presence of early and late apoptotic cells only in extract-treated groups. Plant extract treatment also caused nuclear fragmentation and chromatin condensation in HepG2 cells. Mitochondrial membrane potential also reduced upon E. alsinoides treatments. This treatment also modulated the catenin - β 1 protein expression. CONCLUSION In this study, we demonstrated the proapoptotic potential E. alsinoides in HepG2 cells; thus, this plant may be beneficial in the treatment of liver cancer.
Collapse
Affiliation(s)
- Murugan Ponselvi Induja
- Department of Pharmacology, Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India,Corresponding Author: Tel: 044-26801580-87, Fax: +91 44 26800892 ,
| | - Nandigam Ashok Vardhan
- Department of Biochemistry, Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|